Bounding suprema of canonical processes via convex hull *

Rafał Latała

Abstract

We discuss the method of bounding suprema of canonical processes based on the inclusion of their index set into a convex hull of a well-controlled set of points. While the upper bound is immediate, the reverse estimate was established to date only for a narrow class of regular stochastic processes. We show that for specific index sets, including arbitrary ellipsoids, regularity assumptions may be substantially weakened.

1 Formulation of the problem

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a centered random vector with independent coordinates. To simplify the notation we will write

$$
X_{t}=\langle t, X\rangle=\sum_{i} t_{i} X_{i} \quad \text { for } t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}
$$

Our aim is to estimate the expected value of the supremum of the process $\left(X_{t}\right)_{t \in T}$, i.e. the quantity

$$
b_{X}(T):=\mathbb{E} \sup _{t \in T} X_{t}, \quad T \subset \mathbb{R}^{n} \text { nonempty bounded. }
$$

There is a long line of research devoted to bounding $b_{X}(T)$ via the chaining method (cf. the monograph [11]). However chaining methods do not work well for heavy-tailed random variables. In this paper we will investigate another approach based on the convex hull method.

First let us discuss an easy upper bound. Suppose that there exists $t_{0}, t_{1}, \ldots \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
T-t_{0} \subset \overline{\operatorname{conv}}\left\{ \pm t_{i}: i \geq 1\right\} \tag{1}
\end{equation*}
$$

then for any $u>0$,

$$
\mathbb{E} \sup _{t \in T} X_{t}=\mathbb{E} \sup _{t \in T} X_{t-t_{0}} \leq \mathbb{E} \sup _{i \geq 1}\left|X_{t_{i}}\right| \leq u+\sum_{i \geq 1} \mathbb{E}\left|X_{t_{i}}\right| I_{\left\{\left|X_{t_{i}}\right| \geq u\right\}} .
$$

[^0]Indeed the equality above follows since $X_{t-t_{0}}=X_{t}-X_{t_{0}}$ and $\mathbb{E} X_{t_{0}}=0$ and all inequalities are pretty obvious. To make the notation more compact let us define for nonempty countable sets $S \subset \mathbb{R}^{n}$
$M_{X}(S)=\inf _{u>0}\left[u+\sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq u\right\}}\right], \quad \widetilde{M}_{X}(S)=\inf \left\{m>0: \quad \sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq m\right\}} \leq m\right\}$.
It is easy to observe that

$$
\begin{equation*}
\widetilde{M}_{X}(S) \leq M_{X}(S) \leq 2 \widetilde{M}_{X}(S) \tag{2}
\end{equation*}
$$

To see the lower bound let us fix $u>0$ and set $m=u+\sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq u\right\}}$ then

$$
\sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq m\right\}} \leq \sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq u\right\}} \leq m
$$

so $\widetilde{M}_{X}(s) \leq m$. For the upper bound it is enough to observe that for $u>\widetilde{M}_{X}(S)$ we have $\sum_{t \in S} \mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq u\right\}} \leq u$.

We have thus shown that

$$
\begin{equation*}
b_{X}(T) \leq M_{X}(S) \leq 2 \widetilde{M}_{X}(S) \quad \text { if } \quad T-t_{0} \subset \overline{\operatorname{conv}}(S \cup-S) \tag{3}
\end{equation*}
$$

Remark 1. The presented proof of (3) did not use independence of coordinates of X, the only required property is mean zero.
Main question. When can we reverse bound (3) - what should be assumed about variables X_{i} (and the set T) in order that

$$
\begin{equation*}
T-t_{0} \subset \overline{\operatorname{conv}}(S \cup-S) \quad \text { and } \quad M_{X}(S) \lesssim \mathbb{E} \sup _{t \in T} X_{t} \tag{4}
\end{equation*}
$$

for some $t_{0} \in \mathbb{R}^{n}$ and nonempty countable set $S \subset \mathbb{R}^{n}$?
Remark 2. It is not hard to show (see Section 3 below) that $M_{X}(S) \sim \mathbb{E} \max _{i}\left|X_{t_{i}}\right|=$ $b_{X}(S \cup-S)$ if $S=\left\{t_{1}, \ldots, t_{k}\right\}$ and variables $\left(X_{t_{i}}\right)_{i}$ are independent. Thus our main question asks whether the parameter $b_{X}(T)$ may be explained by enclosing a translation of T into the convex hull of points $\pm t_{i}$ for which variables $X_{t_{i}}$ behave as though they are independent.
Remark 3. The main question is related to Talagrand conjectures about suprema of positive selector processes, c.f. $[11$, Section 13.1$]$, i.e. the case when $T \subset \mathbb{R}_{+}^{n}$ and $\mathbb{P}\left(X_{i} \in\{0,1\}\right)=1$. Talagrand investigates possibility of enclosing T into a solid convex hull, which is bigger than the convex hull. On the other hand we think that in our question some regularity conditions on variables X_{i} is needed (such as $4+\delta$ moment condition (10), which is clearly not satisfied for nontrivial classes of selector processes).

Remark 4. i) In the one dimensional case if $a=\inf T, b=\sup T$, then $T \subset[a, b]=$ $\frac{a+b}{2}+\operatorname{conv}\left\{\frac{a-b}{2}, \frac{b-a}{2}\right\}$. Hence

$$
b_{X_{1}}(T)=\mathbb{E} \max \left\{a X_{1}, b X_{1}\right\}=\frac{a+b}{2} \mathbb{E} X_{1}+\mathbb{E}\left|\frac{b-a}{2} X_{1}\right|=\frac{b-a}{2} \mathbb{E}\left|X_{1}\right| \geq \widetilde{M}_{X_{1}}\left(\left\{\frac{b-a}{2}\right\}\right),
$$

so this case is trivial. Thus in the sequel it is enough to consider $n \geq 2$.
ii) The set $V:=\overline{\operatorname{conv}}(S \cup-S)$ is convex and origin-symmetric. Hence if $T=-T$ and $T-t_{0} \subset V$ then $T+t_{0}=-\left(-T-t_{0}\right)=-\left(T-t_{0}\right) \subset V$ and $T \subset \operatorname{conv}\left(\left(T-t_{0}\right) \cup\left(T+t_{0}\right)\right) \subset V$. Thus for symmetric sets it is enough to consider only $t_{0}=0$.
iii) Observe that $b_{X}(\operatorname{conv}(T))=b_{X}(T)$ and $T-t_{0}$ is a subset of a convex set if and only if $\operatorname{conv}(T)-t_{0}$ is a subset of this set. Moreover, if $T-T \subset V$ then $T-t_{0} \subset V$ for any $t_{0} \in V$ and $b_{X}(T-T)=b_{X}(T)+b_{X}(-T)=b_{X}(t)+b_{-X}(T)$. So if X is symmetric it is enough to consider symmetric convex sets T.
Notation. Letters c, C will denote absolute constants which value may differ at each occurence. For two nonnegative functions f and g we write $f \gtrsim g$ (or $g \lesssim f$) if $g \leq C f$. Notation $f \sim g$ means that $f \gtrsim g$ and $g \gtrsim f$. We write $c(\alpha), C(\alpha)$ for constants depending only on a parameter α and define accordingly relations $\gtrsim \alpha, \lesssim \alpha, \sim_{\alpha}$.
Organization of the paper. In Section 2 we present another quantity $m_{X}(S)$, defined via L_{p}-norms of $\left(X_{t}\right)_{t \in S}$, and show that for regular variables X_{i} it is equivalent to $M_{X}(S)$. We also discuss there the relation of the convex hull method to the chaining functionals. In Section 3 we show that for $T=B_{1}^{n}$ the bound (3) may be reversed for arbitrary independent X_{1}, \ldots, X_{n} and $S=\left\{e_{1}, \ldots, e_{n}\right\}$. Section 4 is devoted to the study of ellipsoids. First we show that for $T=B_{2}^{n}$ and symmetric p-stable random variables, $1<p<2$, one cannot reverse (3). Then we prove that under $4+\delta$ moment condition our main question have the affirmative answer for $T=B_{2}^{n}$ and more general case of ellipsoids. We extend this result to the case of linear images of B_{q}^{n}-balls, $q \geq 2$ in Section 5 . We conclude by discussing some open questions in the last section.

2 Regular growth of moments.

In this section we consider variables with regularly growing moments in a sense that

$$
\begin{equation*}
\left\|X_{i}\right\|_{2 p} \leq \alpha\left\|X_{i}\right\|_{p}<\infty \quad \text { for } p \geq 1, \tag{5}
\end{equation*}
$$

where $\|X\|_{p}=\left(\mathbb{E}|X|^{p}\right)^{1 / p}$.
For such variables we will prove that there is alternate quantity equivalent to $M_{X}(S)$, namely

$$
m_{X}(S):=\inf \sup _{i}\left\|X_{t_{i}}\right\|_{\log (e+i)}
$$

where the infimum runs over all numerations of $S=\left\{t_{i}: 1 \leq i \leq N\right\}, N \leq \infty$.

It is not hard to check (cf. Lemma 4.1 in [7]) that (5) yields

$$
\begin{equation*}
\left\|X_{t}\right\|_{2 p} \leq C_{0}(\alpha)\left\|X_{t}\right\|_{p} \quad \text { for } p \geq 1 \tag{6}
\end{equation*}
$$

and as a consequence we have for $p>0$,

$$
\begin{equation*}
\mathbb{P}\left(\left|X_{t}\right| \geq e\left\|X_{t}\right\|_{p}\right) \leq e^{-p}, \quad \mathbb{P}\left(\left|X_{t}\right| \geq c_{1}(\alpha)\left\|X_{t}\right\|_{p}\right) \geq \min \left\{c_{2}(\alpha), e^{-p}\right\} \tag{7}
\end{equation*}
$$

where the first bound follows by Chebyshev's inequality and the second one by the PaleyZygmund inequality.

Proposition 5. Suppose that X_{i} are independent r.v's satisfying condition (5). Then $M_{X}(S) \sim_{\alpha} m_{X}(S)$.
Proof. Let $S=\left\{t_{i}: 1 \leq i \leq N\right\}$ and $m:=\sup _{i}\left\|X_{t_{i}}\right\|_{\log (e+i)}$. Then for $u>1$,

$$
\sum_{s \in S} \mathbb{P}\left(\left|X_{s}\right| \geq u m\right) \leq \sum_{i=1}^{N} \mathbb{P}\left(\left|X_{t_{i}}\right| \geq u\left\|X_{t_{i}}\right\|_{\log (e+i)}\right) \leq \sum_{i=1}^{N} u^{-\log (e+i)} .
$$

Therefore

$$
\begin{aligned}
\sum_{s \in S} \mathbb{E}\left|X_{s}\right| I_{\left\{\left|X_{s}\right| \geq e^{2} m\right\}} & =\sum_{s \in S}\left(e^{2} m \mathbb{P}\left(\left|X_{s}\right| \geq e^{2} m\right)+m \int_{e^{2}}^{\infty} \mathbb{P}\left(\left|X_{s}\right| \geq u m\right) \mathrm{d} u\right) \\
& \leq m \sum_{i=1}^{N}\left(e^{2-2 \log (e+i)}+\int_{e^{2}}^{\infty} u^{-\log (e+i)} \mathrm{d} u\right) \\
& \leq m \sum_{i=1}^{N}\left((e+i)^{-2}\left(e^{2}+\frac{1}{\log (e+i)-1}\right)\right) \leq 100 m
\end{aligned}
$$

which shows that $M_{X}(S) \leq 100 m_{X}(S)$ (this bound does not use neither regularity neither independence of X_{i}).

To establish the reverse inequality let us take any $m>2 M_{X}(S) \geq \widetilde{M}_{X}(S)$ and enumerate elements of S as t_{1}, t_{2}, \ldots in such a way that that $i \rightarrow \mathbb{P}\left(\left|X_{t_{i}}\right| \geq m\right)$ is nonincreasing. By the definition of $\widetilde{M}_{X}(S)$ we have

$$
\sum_{i=1}^{N} \mathbb{P}\left(\left|X_{t_{i}}\right| \geq m\right) \leq \frac{1}{m} \sum_{i=1}^{N} \mathbb{E}\left|X_{t_{i}}\right| I_{\left\{\left|X_{t_{i}}\right| \geq m\right\}} \leq 1
$$

In particular it means that $\mathbb{P}\left(\left|X_{t_{i}}\right| \geq m\right) \leq 1 / i$. By (7) this yields that for $i>1 / c_{2}(\alpha)$ $\left\|X_{t_{i}}\right\|_{\log (i)} \leq m / c_{1}(\alpha)$. Since $\log (e+i) / \log (i) \leq 2$ for $i \geq 3$ we have $\left\|X_{t_{i}}\right\|_{\log (e+i)} \leq C(\alpha) m$ for large i. For $i \leq \max \left\{3,1 / c_{2}(\alpha)\right\}$ it is enough to observe that $\log (e+i) \leq 2^{k(\alpha)}$, so

$$
\left\|X_{t_{i}}\right\|_{\log (e+i)} \leq C_{0}(\alpha)^{k(\alpha)} \mathbb{E}\left|X_{t_{i}}\right| \leq C_{0}(\alpha)^{k(\alpha)} M_{X}(S)
$$

This shows that $\left\|X_{t_{i}}\right\|_{\log (e+i)} \lesssim \alpha m$ for all i and therefore $m_{X}(S) \lesssim \alpha M_{X}(S)$.

$2.1 \quad \gamma_{X}$-functional

The famous Fernique-Talagrand theorem $[3,10]$ states that suprema of Gaussian processes may be estimated in geometrical terms by γ_{2}-functional. This result was extended in several directions. One of them is based on the so-called γ_{X} functional.

For a nonempty subset $T \subset \mathbb{R}^{n}$ we define

$$
\gamma_{X}(T):=\inf \sup _{t \in T} \sum_{n=0}^{\infty} \Delta_{n, X}\left(A_{n}(t)\right),
$$

where the infimum runs over all increasing sequences of partitions $\left(\mathcal{A}_{n}\right)_{n \geq 0}$ of T such that $\mathcal{A}_{0}=\{T\}$ and $\left|\mathcal{A}_{n}\right| \leq N_{n}:=2^{2^{n}}$ for $n \geq 1, A_{n}(t)$ is the unique element of \mathcal{A}_{n} which contains t and $\Delta_{n, X}(A)$ denotes the diameter of A with respect to the distance $d_{n}(s, t):=\left\|X_{s}-X_{t}\right\|_{2^{n}}$.

It is not hard to check that $b_{X}(T) \lesssim \gamma_{X}(T)$. The reverse bound was discussed in [6], where it was shown that it holds (with constants depending on β and λ) if

$$
\begin{equation*}
\left\|X_{i}\right\|_{p} \leq \beta \frac{p}{q}\left\|X_{i}\right\|_{q} \text { and }\left\|X_{i}\right\|_{\lambda p} \geq 2\left\|X_{i}\right\|_{p} \text { for all } i \text { and } p \geq q \geq 2 \tag{8}
\end{equation*}
$$

Moreover the condition $\left\|X_{i}\right\|_{p} \leq \beta \frac{p}{q}\left\|X_{i}\right\|_{q}$ is necessary in the i.i.d. case if the estimate $\gamma_{X}(T) \leq C b_{X}(T)$ holds with a constant independent on n and $T \subset \mathbb{R}^{n}$.

The next result may be easily deduced from the proof of [6, Corollary 2.7], but we provide its proof for the sake of completeness.

Proposition 6. Let X_{i} be independent and satisfy condition (5) and let T be a nonempty subset of \mathbb{R}^{n} such that $\gamma_{X}(T)<\infty$. Then there exists set $S \subset \mathbb{R}^{n}$ such that for any $t_{0} \in T$, $T-t_{0} \subset T-T \subset \overline{\overline{c o n v}}(S \cup-S)$ and $M_{X}(S) \lesssim m_{X}(S) \lesssim{ }_{\alpha} \gamma_{X}(T)$.
Proof. Wlog (since it is only a matter of rescaling) we may assume that $\mathbb{E} X_{i}^{2}=1$.
By the definition of $\gamma_{X}(T)$ we may find an increasing sequence of partitions $\left(\mathcal{A}_{n}\right)$ such that $\mathcal{A}_{0}=\{T\},\left|\mathcal{A}_{j}\right| \leq N_{j}$ for $j \geq 1$ and

$$
\begin{equation*}
\sup _{t \in T} \sum_{n=0}^{\infty} \Delta_{n, X}\left(A_{n}(t)\right) \leq 2 \gamma_{X}(T) . \tag{9}
\end{equation*}
$$

For any $A \in \mathcal{A}_{n}$ let us choose a point $\pi_{n}(A) \in A$ and set $\pi_{n}(t):=\pi_{n}\left(A_{n}(t)\right)$.
Let $M_{n}:=\sum_{j=0}^{n} N_{j}$ for $n=0,1, \ldots$ (we put $N_{0}:=1$). Then $\log \left(M_{n}+2\right) \leq 2^{n+1}$. Notice that there are $\left|\mathcal{A}_{n}\right| \leq N_{n}$ points of the form $\pi_{n}(t)-\pi_{n-1}(t), t \in T$. So we may define s_{k}, $M_{n-1} \leq k<M_{n}, n=1,2, \ldots$ as some rearrangement (with repetition if $\left|\mathcal{A}_{n}\right|<N_{n}$) of points of the form $\left(\pi_{n}(t)-\pi_{n-1}(t)\right) /\left\|X_{\pi_{n}(t)}-X_{\pi_{n-1}(t)}\right\|_{2^{n+1}}, t \in T$. Then $\left\|X_{s_{k}}\right\|_{\log (k+e)} \leq 1$ for all $k \geq 1$.

Observe that

$$
\left\|t-\pi_{n}(t)\right\|_{2}=\left\|X_{t}-X_{\pi_{n}(t)}\right\|_{2} \leq \Delta_{2, X}\left(A_{n}(t)\right) \leq \Delta_{n, X}\left(A_{n}(t)\right) \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

For any $s, t \in T$ we have $\pi_{0}(s)=\pi_{0}(t)$ and thus

$$
s-t=\lim _{n \rightarrow \infty}\left(\pi_{n}(s)-\pi_{n}(t)\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left(\pi_{k}(s)-\pi_{k-1}(s)\right)-\sum_{k=1}^{n}\left(\pi_{k}(t)-\pi_{k-1}(t)\right)\right) .
$$

This shows that

$$
T-T \subset R \overline{\operatorname{conv}}\left\{ \pm s_{k}: k \geq 1\right\}
$$

where

$$
\begin{aligned}
R & :=2 \sup _{t \in T} \sum_{n=1}^{\infty} d_{n+1}\left(\pi_{n}(t), \pi_{n-1}(t)\right) \leq 2 \sup _{t \in T} \sum_{n=1}^{\infty} \Delta_{n+1, X}\left(A_{n-1}(t)\right) \\
& \leq C(\alpha) \sup _{t \in T} \sum_{n=1}^{\infty} \Delta_{n-1, X}\left(A_{n-1}(t)\right) \leq 2 C(\alpha) \gamma_{X}(T),
\end{aligned}
$$

where the second inequality follows by (6). Thus it is enough to define $S:=\left\{R s_{k}: k \geq\right.$ $1\}$.

Remark 7. Proposition 6 together with the equivalence $b_{X}(T) \sim_{\alpha, \lambda} \gamma_{X}(T)$ shows that the main question has the affirmative answer for any bounded nonempty set T if symmetric random variables X_{i} satisfy moment bounds (5). We strongly believe that the condition $\left\|X_{i}\right\|_{\lambda p} \geq 2\left\|X_{i}\right\|_{p}$ is not necessary - equivalence of $b_{X}(T)$ and the convex hull bound was established in the case of symmetric Bernoulli r.v's $\left(\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2\right)$ in [1, Corollary 1.2]. However to treat the general case of r.v's satisfying only the condition $\left\|X_{i}\right\|_{p} \leq \beta \frac{p}{q}\left\|X_{i}\right\|_{q}$ one should most likely combine γ_{X} functional with a suitable decomposition of the process $\left(X_{t}\right)_{t \in T}$, as was done for Bernoulli processes.

3 Toy case: ℓ_{1}-Ball

Let us now consider a simple case of $T=B_{1}^{n}=\left\{t \in \mathbb{R}^{n}:\|t\|_{1} \leq 1\right\}$. Let

$$
u_{0}:=\inf \left\{u>0: \mathbb{P}\left(\max _{i}\left|X_{i}\right| \geq u\right) \leq \frac{1}{2}\right\} .
$$

Since

$$
\mathbb{P}\left(\max _{i}\left|X_{i}\right| \geq u\right) \geq \frac{1}{2} \min \left\{1, \sum_{i} \mathbb{P}\left(\left|X_{i}\right| \geq u\right)\right\}
$$

we get

$$
\begin{aligned}
\mathbb{E} \sup _{t \in B_{1}^{n}} X_{t} & =\mathbb{E} \max _{1 \leq i \leq n}\left|X_{i}\right|=\int_{0}^{\infty} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|X_{i}\right| \geq u\right) \mathrm{d} u \geq \frac{1}{2} u_{0}+\int_{u_{0}}^{\infty} \frac{1}{2} \sum_{i=1}^{n} \mathbb{P}\left(\left|X_{i}\right| \geq u\right) \mathrm{d} u \\
& =\frac{1}{2} u_{0}+\frac{1}{2} \sum_{i=1}^{n} \int_{u_{0}}^{\infty} \mathbb{P}\left(\left|X_{i}\right| \geq u\right) \mathrm{d} u=\frac{1}{2} u_{0}+\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|-u_{0}\right)_{+} .
\end{aligned}
$$

Therefore

$$
2 u_{0}+\sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right| I_{\left\{\left|X_{i}\right| \geq 2 u_{0}\right\}} \leq 2 u_{0}+2 \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|-u_{0}\right)_{+} \leq 4 \mathbb{E} \sup _{t \in B_{1}^{n}} X_{t},
$$

so that $M_{X}\left(\left\{e_{i}: i \leq n\right\}\right) \leq 4 \mathbb{E} \sup _{t \in B_{1}^{n}} X_{t}$, where $\left(e_{i}\right)_{i \leq n}$ is the canonical basis of \mathbb{R}^{n}. Since $B_{1}^{n} \subset \operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}$ we get the affirmative answer to the main question for $T=B_{1}^{n}$.

Proposition 8. If $T=B_{1}^{n}$ then estimate (4) holds for arbitrary independent integrable r.v's X_{1}, \ldots, X_{n} with $S=\left\{e_{1}, \ldots, e_{n}\right\}$ and $t_{0}=0$.

4 Case II. Euclidean balls

Now we move to the case $T=B_{2}^{n}$. Then $\sup _{t \in T}\langle t, x\rangle=|x|$, where $|x|=\|x\|_{2}$ is the Euclidean norm of $x \in \mathbb{R}^{n}$.

4.1 Counterexample

In this subsection $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where X_{k} have symmetric p-stable distribution with characteristic function $\varphi_{X_{k}}(t)=\exp \left(-|t|^{p}\right)$ and $p \in(1,2)$. We will assume for convenience that n is even. Let G be a canonical n-dimensional Gaussian vector, independent of X. Then

$$
\begin{aligned}
\mathbb{E}|X| & =\mathbb{E}_{X} \mathbb{E}_{G} \sqrt{\frac{\pi}{2}}|\langle X, G\rangle|=\sqrt{\frac{\pi}{2}} \mathbb{E}_{G} \mathbb{E}_{X}|\langle X, G\rangle|=\sqrt{\frac{\pi}{2}} \mathbb{E}_{G}\|G\|_{p} \mathbb{E}\left|X_{1}\right| \\
& \sim_{p} \mathbb{E}\|G\|_{p} \sim\left(\mathbb{E}\|G\|_{p}^{p}\right)^{1 / p} \sim n^{1 / p} .
\end{aligned}
$$

Observe also that for $u>0, \mathbb{P}\left(\left|X_{1}\right| \geq u\right) \sim_{p} \min \left\{1, u^{-p}\right\}$, so

$$
\mathbb{E}\left|X_{1}\right| I_{\left\{\left|X_{1}\right| \geq u\right\}} \sim_{p} u \min \left\{1, u^{-p}\right\}+\int_{u}^{\infty} \min \left\{1, v^{-p}\right\} \mathrm{d} v \sim_{p} \min \left\{1, u^{1-p}\right\}, \quad u>0
$$

and

$$
\mathbb{E}\left|X_{t}\right| I_{\left\{\left|X_{t}\right| \geq u\right\}}=\|t\|_{p} \mathbb{E}\left|X_{1}\right| I_{\left\{\left|X_{1}\right| \geq u /\|t\|_{p}\right\}} \sim_{p} \min \left\{\|t\|_{p}, u^{1-p}\|t\|_{p}^{p}\right\}, \quad u>0, t \in \mathbb{R}^{n} .
$$

Hence

$$
\sum_{t \in S}\|t\|_{p}^{p} \lesssim_{p} u^{p} \quad \text { for } u>\widetilde{M}_{X}(S) .
$$

Suppose that $B_{2}^{n} \subset \overline{\operatorname{conv}}(S \cup-S)$ and $M_{X}(S) \sim \widetilde{M}_{X}(S)<\infty$. We may then enumerate elements of S as $\left(t_{k}\right)_{k=1}^{N}, N \leq \infty$ in such a way that $\left(\left\|t_{k}\right\|_{p}\right)_{k=1}^{N}$ is nonincreasing. Obviously
$N \geq n$ (otherwise $\operatorname{conv}(S \cup-S)$ would have empty interior). Take $u>\widetilde{M}_{X}(S)$ and set $E:=\operatorname{span}\left(\left\{t_{k}: k \leq n / 2\right\}\right)$. Then $\left\|t_{k}\right\|_{p}^{p} \leq C_{p} u^{p} / n$ for $k>n / 2$. Thus

$$
B_{2}^{n} \subset \overline{\operatorname{conv}}(S \cup-S) \subset E+\overline{\operatorname{conv}}\left(\left\{ \pm t_{k}: k>n / 2\right\}\right) \subset E+\left(\frac{C_{p}}{n}\right)^{1 / p} u B_{p}^{n}
$$

Let $F=E^{\perp}$ and P_{F} denotes the ortogonal projection of \mathbb{R}^{n} onto the space F. Then $\operatorname{dim} F=\operatorname{dim} E=n / 2$ and

$$
B_{2}^{n} \cap F=P_{F}\left(B_{2}^{n}\right) \subset\left(\frac{C_{p}}{n}\right)^{1 / p} u P_{F}\left(B_{p}^{n}\right) .
$$

In particular

$$
n^{-1 / 2} \sim \operatorname{vol}_{n / 2}^{2 / n}\left(B_{2}^{n} \cap F\right) \leq\left(\frac{C_{p}}{n}\right)^{1 / p} u \operatorname{vol}_{n / 2}^{2 / n}\left(P_{F}\left(B_{p}^{n}\right)\right)
$$

By the Rogers-Shephard inequality [8] and inclusion $B_{2}^{n} \subset n^{1 / p-1 / 2} B_{p}^{n}$ we have

$$
\operatorname{vol}_{n / 2}\left(P_{F}\left(B_{p}^{n}\right)\right) \leq\binom{ n}{n / 2} \frac{\operatorname{vol}_{n}\left(B_{p}^{n}\right)}{\operatorname{vol}_{n / 2}\left(B_{p}^{n} \cap E\right)} \leq 2^{n} \frac{\operatorname{vol}_{n}\left(B_{p}^{n}\right)}{\operatorname{vol}_{n / 2}\left(n^{1 / 2-1 / p} B_{2}^{n} \cap E\right)} \leq\left(C n^{-1 / p}\right)^{n / 2} .
$$

This shows that $u \gtrsim_{p} n^{2 / p-1 / 2}$. Thus $M_{X}(S) \gtrsim_{p} n^{2 / p-1 / 2} \gg n^{1 / p} \sim_{p} b_{X}\left(B_{2}^{n}\right)$ and our question has a negative answer in this case.

$4.24+\delta$ moment condition

In this part we establish positive answer to the main question in the case $T=B_{2}^{n}$ under the following $4+\delta$ moment condition

$$
\begin{equation*}
\exists_{r \in(4,8], \lambda<\infty}\left(\mathbb{E} X_{i}^{r}\right)^{1 / r} \leq \lambda\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}<\infty \quad i=1, \ldots, n \tag{10}
\end{equation*}
$$

The restriction $r \leq 8$ is just for convenience. The following easy consequence of (10) will be helpful in the sequel.

Lemma 9. Suppose that X_{1}, \ldots, X_{n} are independent mean zero r.v's satisfying condition (10). Then for any $1 \leq p \leq r$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} u_{i} X_{i}\right\|_{p} \sim_{\lambda}\left\|\sum_{i=1}^{n} u_{i} X_{i}\right\|_{2}=\left(\sum_{i=1}^{n} u_{i}^{2} \mathbb{E} X_{i}^{2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{1 \leq i<j \leq n} u_{i j} X_{i} X_{j}\right\|_{p} \sim_{\lambda}\left\|\sum_{1 \leq i<j \leq n} u_{i j} X_{i} X_{j}\right\|_{2}=\left(\sum_{1 \leq i<j \leq n} u_{i j}^{2} \mathbb{E} X_{i}^{2} \mathbb{E} X_{j}^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Proof. Since it is only a matter of scaling wlog we may and will assume that $\mathbb{E} X_{i}^{2}=1$ for all i.

Rosenthal's inequality [9] gives for $2 \leq p \leq r$ (recall that $r \in(4,8$], so constants below do not depend on r)

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} u_{i} X_{i}\right\|_{p} & \sim\left(\sum_{i} \mathbb{E}\left|u_{i} X_{i}\right|^{2}\right)^{1 / 2}+\left(\sum_{i} \mathbb{E}\left|u_{i} X_{i}\right|^{p}\right)^{1 / p} \sim_{\lambda}\left(\sum_{i} u_{i}^{2}\right)^{1 / 2}+\left(\sum_{i}\left|u_{i}\right|^{p}\right)^{1 / p} \\
& \sim\left(\sum_{i} u_{i}^{2}\right)^{1 / 2}
\end{aligned}
$$

To estimate $\|S\|_{p}$ for $1 \leq p \leq 2$ and $S=\sum_{i=1}^{n} u_{i} X_{i}$ it is enough to note that $\|S\|_{1} \leq$ $\|S\|_{p} \leq\|S\|_{2}$ and $\|S\|_{2} \leq\|S\|_{4}^{1 / 3}\|S\|_{1}^{2 / 3} \sim_{\lambda}\|S\|_{2}^{1 / 3}\|S\|_{1}^{2 / 3}$, so $\|S\|_{p} \sim\|S\|_{2}$.

To prove the last part of the assertion we will use the hypercontractive method. Observe that for a real number u there exists $\theta \in[0,1]$ such that

$$
\begin{aligned}
(1+u)^{r} & \leq\left(1+r u+\frac{r(r-1)}{2}(1+\theta u)^{r-2} u^{2}\right) I_{\{|u|<1\}}+(2|u|)^{r} I_{\{|u| \geq 1\}} \\
& \leq 1+r u+r^{2} 2^{r-3} u^{2}+2^{r}|u|^{r} .
\end{aligned}
$$

Hence (note that $\lambda \geq 1, \mathbb{E} X_{i}=0, \mathbb{E} X_{i}^{2}=1$ and $\mathbb{E}\left|X_{i}\right|^{r} \leq \lambda^{r}$)

$$
\mathbb{E}\left(1+\frac{1}{32 \lambda} u X_{i}\right)^{r} \leq 1+r^{2} 2^{r-3} \frac{u^{2}}{1024}+2^{-4 r}|u|^{r} \leq 1+\frac{r u^{2}}{4}+\frac{|u|^{r}}{2} \leq 1+\max \left\{\frac{r}{2} u^{2},|u|^{r}\right\} .
$$

Since

$$
\left(\mathbb{E}\left(1+u X_{i}\right)^{2}\right)^{r / 2}=\left(1+u^{2}\right)^{r / 2} \geq 1+\max \left\{\frac{r}{2} u^{2},|u|^{r}\right\}
$$

we get $\left\|1+\frac{1}{32 \lambda} u X_{i}\right\|_{r} \leq\left\|1+u X_{i}\right\|_{2}$ for any $u \in \mathbb{R}$ and the hypercontractivity method (cf. [5, Theorem 6.5.2]) yields (12) for $p=r$. The case $1 \leq p \leq r$ may be obtained in the same way as in the proof of (11).

Observe that (10) implies that $\operatorname{Var}\left(X_{i}^{2}\right) \leq\left(\lambda^{4}-1\right)\left(\mathbb{E} X_{i}^{2}\right)^{2}$, so $\operatorname{Var}\left(|X|^{2}\right) \leq \sum_{i}\left(\lambda^{4}-\right.$ 1) $\left(\mathbb{E} X_{i}^{2}\right)^{2} \leq\left(\lambda^{4}-1\right)\left(\mathbb{E}|X|^{2}\right)^{2}$. This yields that $\mathbb{E}|X|^{4} \leq \lambda^{4}\left(\mathbb{E}|X|^{2}\right)^{2}$ and $\left(\mathbb{E}|X|^{2}\right)^{1 / 2} \leq$ $\lambda^{2} \mathbb{E}|X|$.

The next fact is pretty standard, we prove it for completeness.
Lemma 10. For any k there exists $T \subset B_{2}^{k}$ with $|T| \leq 5^{k}$ such that $B_{2}^{k} \subset 2 \operatorname{conv}(T)$.
Proof. Let T be the maximal $\frac{1}{2}$-separated set in B_{2}^{k}, the standard volumetric argument shows that $|T| \leq 5^{k}$. We have $B_{2}^{k} \subset T+\frac{1}{2} B_{2}^{k} \subset \operatorname{conv}(T)+\frac{1}{2} B_{2}^{k}$, so $B_{2}^{k} \subset 2 \operatorname{conv}(T)$.

The next lemma comes from [4].

Lemma 11. For any $1 \leq k \leq n$ there exists $T \subset B_{2}^{n}$ with $|T| \leq \frac{2 n}{k} 5^{k}$ such that $B_{2}^{n} \subset$ $2 \sqrt{\frac{2 n}{k}} \operatorname{conv}(T)$.

Proof. Let $l=\lceil n / k\rceil \leq 2 n / k$ and $\mathbb{R}^{n}=F_{1} \oplus \cdots \oplus F_{l}$ be an orthogonal decomposition of \mathbb{R}^{n} into spaces of dimension at most k. By Lemma 10 we can find $T_{i} \subset B_{2}\left(F_{i}\right):=B_{2}^{n} \cap F_{i}$ such that $B_{2}\left(F_{i}\right) \subset 2 \operatorname{conv}\left(T_{i}\right)$ and $\left|T_{i}\right| \leq 5^{k}$. Let $T:=\bigcup_{i \leq l} T_{i}$. Then $T \subset B_{2}^{n}$ and $|T| \leq l 5^{k} \leq \frac{2 n}{k} 5^{k}$.

Fix now $x \in B_{2}^{n}$ and x_{i} denotes its orthogonal projection on F_{i}. Observe that

$$
\sum_{i \leq l}\left\|x_{i}\right\| \leq \sqrt{l}\left(\sum_{i \leq l}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \leq \sqrt{l}
$$

Therefore

$$
x \subset \sqrt{l} \operatorname{conv}\left\{0, \frac{x_{1}}{\left\|x_{1}\right\|}, \ldots, \frac{x_{l}}{\left\|x_{l}\right\|}\right\} \subset \sqrt{l} \operatorname{conv}\left(\bigcup_{i \leq l} B_{2}\left(F_{i}\right)\right) \subset 2 \sqrt{l} \operatorname{conv}(T) .
$$

Lemma 12. Let Y be a vector uniformly distributed over S^{n-1}. Then

$$
\mathbb{E}|\langle Y, t\rangle| I_{\{|\langle Y, t\rangle| \geq u\}} \leq \min \left\{\frac{|t|}{\sqrt{n}}, \frac{2\left(|t|^{2}+n u^{2}\right)}{n u} e^{-n u^{2} /\left(2|t|^{2}\right)}\right\} \quad t \in \mathbb{R}^{n}, u>0
$$

Proof. Observe that $\langle Y, t\rangle$ is distributed as $|t| Y_{1}$. Hence

$$
\mathbb{E}|\langle Y, t\rangle| I_{\{|\langle Y, t\rangle| \geq u\}}=|t| \mathbb{E}\left|Y_{1}\right| I_{\left\{\left|Y_{1}\right| \geq u /|t|\right\}} .
$$

We have $\mathbb{E}\left|Y_{1}\right| \leq\left(\mathbb{E}\left|Y_{1}\right|^{2}\right)^{1 / 2}=n^{-1 / 2}$. Moreover $\mathbb{P}\left(Y_{1} \geq v\right) \leq \exp \left(-n v^{2} / 2\right)$ for $v \geq 0$ (cf. [12]). Therefore

$$
\begin{aligned}
\mathbb{E}\left|Y_{1}\right| I_{\left\{\left|Y_{1}\right| \geq u\right\}} & \leq u \mathbb{P}\left(\left|Y_{1}\right| \geq u\right)+\int_{u}^{\infty} \mathbb{P}\left(\left|Y_{1}\right| \geq v\right) \mathrm{d} v \leq 2 u e^{-n u^{2} / 2}+2 \int_{u}^{\infty} e^{-n v^{2} / 2} \mathrm{~d} v \\
& \leq 2 u e^{-n u^{2} / 2}+2 \int_{u}^{\infty} \frac{n v}{n u} e^{-n v^{2} / 2} \mathrm{~d} v=\frac{2\left(1+n u^{2}\right)}{n u} e^{-n u^{2} / 2}
\end{aligned}
$$

Now we are able to show that (4) holds for $T=B_{2}^{n}$ under $4+\delta$ moment condition.
Proposition 13. Let X_{1}, \ldots, X_{n} be independent centered r.v's with variance 1 satisfying condition (10). Then there exists $S \subset \mathbb{R}^{n}$ such that $|S| \leq 10 n^{2}, B_{2}^{n} \subset \operatorname{conv}(S)$ and

$$
M_{X}(S) \lesssim_{r, \lambda} \sqrt{n} \sim_{\lambda} \mathbb{E}|X|=b_{X}\left(B_{2}^{n}\right)
$$

Proof. By the Rosenthal inequality [9] we have (recall that $r \in(4,8]$),

$$
\begin{aligned}
\left\||X|^{2}-n\right\|_{r / 2} & =\left\|\sum_{i=1}^{n}\left(X_{i}^{2}-1\right)\right\|_{r / 2} \lesssim\left(\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{2}\right)\right)^{1 / 2}+\left(\sum_{i=1}^{n} \mathbb{E}\left|X_{i}^{2}-1\right|^{r / 2}\right)^{2 / r} \\
& \lesssim \lambda n^{1 / 2}+n^{2 / r} \leq 2 n^{1 / 2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathbb{E}|X| I_{\{|X| \geq \sqrt{2 n}\}} \leq \mathbb{E} \sqrt{2\left(|X|^{2}-n\right)} I_{\{|X| \geq \sqrt{2 n}\}} \leq \sqrt{2} n^{1 / 2-r / 2} \mathbb{E}\left(|X|^{2}-n\right)^{r / 2} \leq C(\lambda) n^{1 / 2-r / 4} \tag{13}
\end{equation*}
$$

By Lemma 11 (applied with $k=c(r) \log n$) there exists t_{1}, \ldots, t_{N} such that $B_{2}^{n} \subset$ $\operatorname{conv}\left\{t_{1}, \ldots, t_{N}\right\}, N \leq 10 n^{1 / 2+r / 8}$ and $\left|t_{i}\right| \leq C(r) \sqrt{n / \log n}, 1 \leq i \leq N$. Let U be the random rotation (uniformly distributed on $O(n)$) then $U t_{i}$ is distributed as $\left|t_{i}\right| Y$, where Y has uniform distribution on S^{n-1}. Thus by Lemma 12,

$$
\begin{aligned}
\mathbb{E}_{U} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\left|\left\langle X, U t_{i}\right\rangle\right| \geq u\right\}} & \left.=\mathbb{E}_{X} \mathbb{E}_{Y}\left|\langle Y,| t_{i}\right| X\right\rangle \mid I_{\left\{\mid\langle Y,| t_{i}|X| \mid \geq u\right\}} \\
& \leq \mathbb{E} \min \left\{\frac{\left|t_{i}\right||X|}{\sqrt{n}}, \frac{2\left(\left|t_{i}\right|^{2}|X|^{2}+n u^{2}\right)}{n u} e^{-n u^{2} /\left(2\left|t_{i}\right|^{2}|X|^{2}\right)}\right\} \\
& \leq \frac{\left|t_{i}\right|}{\sqrt{n}} \mathbb{E}|X| I_{\{|X| \geq \sqrt{2 n}\}}+\frac{4\left|t_{i}\right|^{2}+2 u^{2}}{u} e^{-u^{2} /\left(4\left|t_{i}\right|^{2}\right)} .
\end{aligned}
$$

Recall that $\left|t_{i}\right| \lesssim r \sqrt{n / \log n}$ so for sufficiently large $C(r)$ we get by (13),

$$
\mathbb{E}_{U} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\left|\left\langle X, U t_{i}\right\rangle\right| \geq C(r) \sqrt{n}\right\}} \leq C(\lambda) n^{-r / 4}\left|t_{i}\right|+n^{-2} \leq C(r, \lambda) n^{1 / 2-r / 4} .
$$

As a consequence there exists $U \in O(n)$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\left|\left\langle X, U t_{i}\right\rangle\right| \geq C(r) \sqrt{n}\right\}} \leq N C(r, \lambda) n^{1 / 2-r / 4} \leq 10 C(r, \lambda) n^{1-r / 8} \tag{14}
\end{equation*}
$$

Thus if we put $S:=\left\{U t_{1}, \ldots, U t_{N}\right\}$ we will have $\operatorname{conv}(S)=U \operatorname{conv}\left\{t_{1}, \ldots, t_{N}\right\} \supset B_{2}^{n}$ and $M_{X}(S) \leq C^{\prime}(r, \lambda) \sqrt{n}$.

4.3 Ellipsoids

We now extend the bounds from the previous subsection to the case of ellipsoids, i.e. sets of the form

$$
\begin{equation*}
\mathcal{E}:=\left\{t \in \mathbb{R}^{n}: \sum_{i=1}^{n} \frac{\left\langle t, u_{i}\right\rangle^{2}}{a_{i}^{2}} \leq 1\right\} \tag{15}
\end{equation*}
$$

where u_{1}, \ldots, u_{n} is an orthonormal system in \mathbb{R}^{n} and $a_{1}, \ldots, a_{n}>0$.

Observe that

$$
\sup _{t \in \mathcal{E}}\langle t, x\rangle=\sqrt{\sum_{i=1}^{n} a_{i}^{2}\left\langle x, u_{i}\right\rangle^{2}} .
$$

To treat this case we will need the following Lemma.
Lemma 14. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, where X_{i} are independent mean zero and variance one r.v's satisfying $4+\delta$ condition (10).
i) For any $a_{1}, \ldots, a_{n} \geq 0$ and any o.n. vectors u_{1}, \ldots, u_{n},

$$
\mathbb{E}\left(\sum_{k=1}^{n} a_{k}^{2}\left\langle X, u_{k}\right\rangle^{2}\right)^{1 / 2} \sim_{\lambda}\left(\mathbb{E} \sum_{k=1}^{n} a_{k}^{2}\left\langle X, u_{k}\right\rangle^{2}\right)^{1 / 2}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2} .
$$

ii) For any $n \times n$ matrix B,

$$
\left(\mathbb{E}\left(|B X|^{2}-\|B\|_{\mathrm{HS}}^{2}\right)^{r / 2}\right)^{2 / r} \leq C(\lambda)\left\|B^{T} B\right\|_{\mathrm{HS}}^{1 / 2}
$$

In particular for any linear supspace $E \subset \mathbb{R}^{n}$ od dimension $k \in\{1, \ldots, n\}$,

$$
\left(\mathbb{E}\left(\left|P_{E} X\right|^{2}-k\right)^{r / 2}\right)^{2 / r} \leq C(\lambda) k^{1 / 2}
$$

Proof. Part i) follows from Lemma 9.
To show part ii) let $B=\left(b_{i j}\right)_{i, j=1}^{n}, e_{1}, e_{2}, \ldots, e_{n}$ be the canonical basis of \mathbb{R}^{n} and let

$$
\sigma_{i, j}:=\sum_{l=1}^{n} b_{l, i} b_{l, j}=\left\langle B e_{i}, B e_{j}\right\rangle, \quad 1 \leq i, j \leq n .
$$

Then

$$
\begin{aligned}
\left\||B X|^{2}-\right\| B\left\|_{\mathrm{HS}}^{2}\right\|_{r / 2} & =\left\|\sum_{i=1}^{n}\left(X_{i}^{2}-1\right) \sigma_{i, i}+\sum_{1 \leq i \neq j \leq n} X_{i} X_{j} \sigma_{i, j}\right\|_{r / 2} \\
& \leq\left\|\sum_{i=1}^{n}\left(X_{i}^{2}-1\right) \sigma_{i, i}\right\|_{r / 2}+\left\|\sum_{1 \leq i \neq j \leq n} X_{i} X_{j} \sigma_{i, j}\right\|_{r / 2} .
\end{aligned}
$$

Applying Rosenthal's inequality we get

$$
\begin{aligned}
\left\|\sum_{i=1}^{n}\left(X_{i}^{2}-1\right) \sigma_{i, i}\right\|_{r / 2} & \lesssim\left(\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{2}\right) \sigma_{i, i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}-1\right)^{r / 2} \sigma_{i, i}^{r / 2}\right)^{2 / r} \\
& \lesssim \lambda\left(\sum_{i=1}^{n} \sigma_{i, i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} \sigma_{i, i}^{r / 2}\right)^{2 / r} \leq 2\left(\sum_{i=1}^{n} \sigma_{i, i}^{2}\right)^{1 / 2}
\end{aligned}
$$

Hypercontractive method (as in the proof of Lemma 9) yields

$$
\left\|\sum_{i \neq j} X_{i} X_{j} \sigma_{i, j}\right\|_{r / 2} \lesssim \lambda\left\|\sum_{i \neq j} X_{i} X_{j} \sigma_{i, j}\right\|_{2}=\left(\sum_{i \neq j} \sigma_{i, j}^{2}\right)^{1 / 2} .
$$

Finally

$$
\left(\sum_{i=1}^{n} \sigma_{i, i}^{2}\right)^{1 / 2}+\left(\sum_{i \neq j} \sigma_{i, j}^{2}\right)^{1 / 2} \leq 2\left(\sum_{i, j} \sigma_{i, j}^{2}\right)^{1 / 2}=2\left\|B^{T} B\right\|_{\mathrm{HS}} .
$$

Now we state and prove the main result of this section.
Theorem 15. Let X_{1}, \ldots, X_{n} be independent centered r.v's satisfying the condition (10) and let T be an ellipsoid in \mathbb{R}^{n}. Then there exists $S \subset \mathbb{R}^{n}$ such that $|S| \leq 10 n^{2}, T \subset$ $\operatorname{conv}(S)$ and

$$
M_{X}(S) \lesssim r, \lambda ~ b_{X}(T)
$$

Proof. Since it is only a matter of scaling we may and will assume that $\mathbb{E} X_{i}^{2}=1$ for all i. Let $T=\mathcal{E}$ be an ellipsoid of the form (15). Then the first part of Lemma 14 yields

$$
\mathbb{E} \sup _{t \in \mathcal{E}} X_{t}=\mathbb{E}\left(\sum_{k=1}^{n} a_{k}^{2}\left\langle X, u_{k}\right\rangle^{2}\right)^{1 / 2} \sim_{\lambda} \sqrt{\sum_{k=1}^{n} a_{k}^{2}}
$$

By homogenity we may assume that $\sum_{k=1}^{n} a_{k}^{2}=1$.
Define
$I_{k}:=\left\{i: 2^{-k-1}<a_{i} \leq 2^{-k}\right\}, n_{k}:=\left|I_{k}\right|, \quad J:=\left\{k \in \mathbb{Z}: I_{k} \neq \emptyset\right\}, \quad E_{k}:=\operatorname{span}\left\{u_{i}: i \in I_{k}\right\}$.
Then

$$
\begin{equation*}
1 \leq \sum_{k \in J} n_{k} 2^{-2 k}<4 . \tag{16}
\end{equation*}
$$

In particular J is a subset of nonnegative integers.
We claim that for any positive sequence $\left(c_{k}\right)_{k \in J}$ such that $\sum_{k} c_{k}^{-2} \leq 1$,

$$
\mathcal{E} \subset \operatorname{conv}\left(\bigcup_{k \in J} c_{k} 2^{-k} B_{2}^{I_{k}}\right), \quad \text { where } \quad B_{2}^{I_{k}}:=B_{2}^{n} \cap E_{k} .
$$

Indeed, let $P_{k} x:=\sum_{i \in I_{k}}\left\langle x, u_{i}\right\rangle u_{i}$ be the projection of x onto E_{k}, then

$$
x=\sum_{k \in J} c_{k}^{-1} 2^{k}\left|P_{k} x\right| c_{k} 2^{-k} \frac{P_{k} x}{\left|P_{k} x\right|}
$$

and for $x \in \mathcal{E}$,

$$
\sum_{k \in J} c_{k}^{-1} 2^{k}\left|P_{k} x\right| \leq \sqrt{\sum_{k \in J} c_{k}^{-2}} \sqrt{\sum_{k \in J} 2^{2 k}\left|P_{k} x\right|^{2}} \leq \sqrt{\sum_{k \in J} \sum_{i \in I_{k}} \frac{\left\langle x, u_{i}\right\rangle^{2}}{a_{i}^{2}}} \leq 1
$$

Let us for a moment fix $k \in J$. By Lemma 11 (applied with $k=c(r) \log n_{k}$) there exists $t_{1}, \ldots, t_{N_{k}} \in E_{k}$ such that $B_{2}^{I_{k}} \subset \operatorname{conv}\left\{t_{1}, \ldots, t_{N_{k}}\right\}, N_{k} \leq 10 n_{k}^{1 / 2+r / 8}$ and $\left|t_{i}\right| \leq$ $C(r) \sqrt{n_{k} / \log \left(n_{k}\right)}$. Let U be the random rotation of E_{k} (uniformly distributed on $O\left(E_{k}\right)$) then $U t_{i}$ is distributed as $\left|t_{i}\right| Y$, where Y has uniform distribution on $S^{I_{k}}:=S^{n-1} \cap E_{k}$. Thus by Lemma 12,

$$
\begin{aligned}
& \mathbb{E}_{U} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\mid\left\langle X, U t_{i}\right| \mid \geq u\right\}} \\
&\left.=\mathbb{E}_{X} \mathbb{E}_{Y}\left|\langle Y,| t_{i}\right| P_{E_{k}} X\right\rangle \mid I_{\left\{\mid\langle Y,| t_{i}\left|P_{E_{k}} X\right| \mid \geq u\right\}} \\
& \leq \mathbb{E} \min \left\{\frac{\left|t_{i}\right|\left|P_{E_{k}} X\right|}{\sqrt{n_{k}}}, \frac{2\left(\left|t_{i}\right|^{2}\left|P_{E_{k}} X\right|^{2}+n_{k} u^{2}\right)}{n_{k} u} e^{-n_{k} u^{2} /\left(2\left|t_{i}\right|^{2}\left|P_{E_{k}} X\right|^{2}\right)}\right\} \\
& \leq \frac{\left|t_{i}\right|}{\sqrt{n_{k}}} \mathbb{E}\left|P_{E_{k}} X\right| I_{\left\{\left|P_{E_{k}} X\right| \geq \sqrt{2 n_{k}}\right\}}+\frac{4\left|t_{i}\right|^{2}+2 u^{2}}{u} e^{-u^{2} /\left(4\left|t_{i}\right|^{2}\right)} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathbb{E}\left|P_{E_{k}} X\right| I_{\left\{\left|P_{E_{k}} X\right| \geq \sqrt{2 n_{k}}\right\}} & \leq \sqrt{2} \mathbb{E}\left(\left|P_{E_{k}} X\right|^{2}-n_{k}\right)^{1 / 2} I_{\left\{\left|P_{E_{k}} X\right| \geq \sqrt{2 n_{k}}\right\}} \\
& \leq \sqrt{2} n_{k}^{1 / 2-r / 2} \mathbb{E}\left(\left|P_{E_{k}} X\right|^{2}-n_{k}\right)^{r / 2} \leq C(\lambda) n_{k}^{1 / 2-r / 4}
\end{aligned}
$$

where the last bound follows by Lemma 14. Recall that $\left|t_{i}\right| \lesssim r \sqrt{n_{k} / \log n_{k}}$, thus for sufficiently large $C(r)$ we get

$$
\mathbb{E}_{U} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\left|\left\langle X, U t_{i}\right\rangle\right| \geq C(r) \sqrt{n}\right\}} \leq C(\lambda) n_{k}^{-r / 4}\left|t_{i}\right|+n_{k}^{-2} \leq C(r, \lambda) n_{k}^{1 / 2-r / 4}
$$

As a consequence there exists $U \in O\left(E_{k}\right)$ such that

$$
\sum_{i=1}^{N_{k}} \mathbb{E}_{X}\left|\left\langle X, U t_{i}\right\rangle\right| I_{\left\{\left|\left\langle X, U t_{i}\right\rangle\right| \geq C(r) \sqrt{n_{k}}\right\}} \leq N_{k} C(r, \lambda) n_{k}^{1 / 2-r / 4} \leq 10 C(r, \lambda) n_{k}^{1-r / 8}
$$

Define $S_{k}=\left\{t_{k, 1}, \ldots, t_{k, N_{k}}\right\}:=\left\{U t_{1}, \ldots, U t_{N_{k}}\right\}$. Then $\operatorname{conv}\left(S_{k}\right)=U \operatorname{conv}\left\{t_{1}, \ldots, t_{N_{k}}\right\} \supset$ $B_{2}^{I_{k}}, N_{k} \leq 10 n_{k}^{1 / 2+r / 8} \leq 10 n_{k}^{2}$ and

$$
\sum_{i=1}^{N_{k}} \mathbb{E}_{X}\left|\left\langle X, t_{k, i}\right\rangle\right| I_{\left\{\left|\left\langle X, t_{k, i}\right\rangle\right| \geq C(r) \sqrt{n_{k}}\right\}} \leq C(r, \lambda) n_{k}^{1-r / 8}
$$

Set $c_{k}:=2^{k+2}\left(2^{k}+n_{k}\right)^{-1 / 2}$. By (16) we get $\sum_{k \in J} c_{k}^{-2} \leq 1$, so

$$
\mathcal{E} \subset \operatorname{conv}\left(\bigcup_{k \in J} c_{k} 2^{-k} B_{2}^{I_{k}}\right) \subset \operatorname{conv}\left(\left\{c_{k} 2^{-k} t_{k, i}: \quad k \in J, i \leq N_{k}\right\}\right):=\operatorname{conv}(S) .
$$

We have

$$
|S|=\sum_{k \in J} N_{k} \leq \sum_{k \in J} 10 n_{k}^{2} \leq 10\left(\sum_{k \in J} n_{k}\right)^{2}=10 n^{2}
$$

Moreover,

$$
\begin{aligned}
\sum_{s \in S} \mathbb{E}|\langle s, X\rangle| I_{\{|\langle s, X\rangle| \geq 4 C(r)\}} & =\sum_{k \in J} 2^{-k} c_{k} \sum_{i=1}^{N_{k}} \mathbb{E}\left|\left\langle t_{k, i}, X\right\rangle\right| I_{\left\{2^{-k} c_{k}\left|\left\langle t_{k, i}, X\right\rangle\right| \geq 4 C(r)\right\}} \\
& \leq \sum_{k \in J} 4\left(2^{k}+n_{k}\right)^{-1 / 2} \sum_{i=1}^{N_{k}} \mathbb{E}\left|\left\langle t_{k, i}, X\right\rangle\right| I_{\left\{\left|\left\langle t_{k, i}, X\right\rangle\right| \geq C(r) \sqrt{n_{k}}\right\}} \\
& \leq \sum_{k \in J} 4\left(2^{k}+n_{k}\right)^{-1 / 2} C(r, \lambda) n_{k}^{1-r / 8} \\
& \leq 4 C(r, \lambda) \sum_{k \in J}\left(2^{k}+n_{k}\right)^{1 / 2-r / 8} \leq 4 C(r, \lambda) \sum_{k \geq 0} 2^{k(1 / 2-r / 8)} \\
& \leq C^{\prime}(r, \lambda),
\end{aligned}
$$

which shows that $M_{X}(S) \sim \widetilde{M}_{X}(S) \lesssim_{\lambda, r} 1 \sim b_{X}(\mathcal{E})$.

5 Case III. ℓ_{q}^{n}-balls, $2<q \leq \infty$

It turns out that results of the previous sections may be easily applied to get estimates in the case when $T=B_{q}^{n}$ is the unit ball in ℓ_{q}^{n} and $q \in(2, \infty]$. In the whole section by q^{\prime} we will denote the Hölder dual of q, i.e. $q^{\prime}=\frac{q}{q-1}, 2 \leq q<\infty$ and $q^{\prime}=1$ for $q=\infty$.
Proposition 16. Let X_{1}, \ldots, X_{n} be independent centered r.v's with variance 1 satisfying condition (10). Then there exists $S \subset \mathbb{R}^{n}$ such that $|S| \leq 10 n^{2}, B_{q}^{n} \subset \operatorname{conv}(S)$ and

$$
M_{X}(S) \lesssim_{r, \lambda} n^{1 / q^{\prime}} \sim_{\lambda} b_{X}\left(B_{q}^{n}\right)
$$

Proof. Since $q^{\prime} \in(1,2]$, condition (10) yields $\left\|X_{i}\right\|_{q^{\prime}} \sim_{\lambda}\left\|X_{i}\right\|_{2 q^{\prime}} \sim_{\lambda}\left\|X_{i}\right\|_{2}=1$ and hence $\left(\mathbb{E}\|X\|_{q^{\prime}}^{2 q^{\prime}}\right)^{1 /\left(2 q^{\prime}\right)} \sim_{\lambda}\left(\mathbb{E}\|X\|_{q^{\prime}}^{q^{\prime}}\right)^{1 / q^{\prime}}$. Therefore

$$
b_{X}\left(B_{q}^{n}\right)=\mathbb{E} \sup _{t \in B_{q}^{n}}\langle t, X\rangle=\mathbb{E}\|X\|_{q^{\prime}} \sim_{\lambda}\left(\mathbb{E}\|X\|_{q^{\prime}}^{q^{\prime}}\right)^{1 / q^{\prime}} \sim_{\lambda} n^{1 / q^{\prime}} .
$$

Hölder's inequality implies $B_{q}^{n} \subset n^{1 / 2-1 / q} B_{2}^{n}=n^{1 / q^{\prime}-1 / 2} B_{2}^{n}$ and the assertion easily follows from Proposition 13.

Now let us consider the case of linear transformation of ℓ_{q}^{n}-ball, i.e. $T=A B_{q}^{n}$. Next simple lemma shows how to estimate $b_{X}(T)$.

Lemma 17. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, where X_{i} are independent mean zero and variance one r.v's satisfying $4+\delta$ condition (10). Then for any $n \times n$ matrix A and $2 \leq q \leq \infty$ we have

$$
b_{X}\left(A B_{q}^{n}\right)=b_{A^{T} X}\left(B_{q}^{n}\right) \sim_{\lambda}\left(\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

Proof. Observe that

$$
\sup _{t \in A B_{q}^{n}}\langle X, t\rangle=\sup _{t \in B_{q}^{n}}\left\langle A^{T} X, t\right\rangle=\left(\sum_{i=1}^{n}\left|\left\langle A^{T} X, e_{i}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}=\left(\sum_{i=1}^{n}\left|\left\langle X, A e_{i}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

Condition (10) (see Lemma 9) implies that

$$
\left\|\left\langle X, A e_{i}\right\rangle\right\|_{2 q^{\prime}} \sim_{\lambda}\left\|\left\langle X, A e_{i}\right\rangle\right\|_{q^{\prime}} \sim_{\lambda}\left\|\left\langle X, A e_{i}\right\rangle\right\|_{2}=\left|A e_{i}\right| .
$$

Hence $\left\|\sup _{t \in A B_{q}^{n}}\langle X, t\rangle\right\|_{2 q^{\prime}} \sim_{\lambda}\left\|\sup _{t \in A B_{q}^{n}}\langle X, t\rangle\right\|_{q^{\prime}}$ and

$$
b_{X}\left(A B_{q}^{n}\right)=\left\|\sup _{t \in A B_{q}^{n}}\langle X, t\rangle\right\|_{1} \sim_{\lambda}\left\|\sup _{t \in A B_{q}^{n}}\langle X, t\rangle\right\|_{q^{\prime}} \sim_{\lambda}\left(\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

As in the proof of Proposition 16 we may include linear image of B_{q}^{n} into ellipsoid with the comparable b_{X}-bound and deduce from Theorem 15 the following more general result.

Theorem 18. Let X_{1}, \ldots, X_{n} be independent centered r.v's satisfying condition (10) and let $T=A B_{q}^{n}$ for some $2 \leq q \leq \infty$ and an $n \times n$ matrix A. Then there exists $S \subset \mathbb{R}^{n}$ such that $|S| \leq 10 n^{2}, T \subset \operatorname{conv}(S)$ and

$$
M_{X}(S) \lesssim r, \lambda ~ b_{X}(T)
$$

Proof. Since it is only a matter of scaling we may and will assume that $\mathbb{E} X_{i}^{2}=1$ for all i. By Lemma 17 it is enough to show that

$$
M_{X}(S) \lesssim_{r, \lambda}\left(\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}\right)^{1 / q^{\prime}}
$$

By homogenity we may assume that $\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}=1$. Case $q=2$ was treated in Theorem 15 , so we may assume that $q>2$, i.e. $q^{\prime}<2$. Moreover, we may assume that $A e_{i} \neq 0$ for all i.

Let $\lambda_{i}:=\left|A e_{i}\right|^{1-q^{\prime} / 2}$. Observe that if $t \in B_{q}^{n}$ then by Hölder's inequality

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\lambda_{i} t_{i}\right|^{2} & \leq\left(\sum_{i=1}^{n}\left|t_{i}\right|^{q}\right)^{2 / q}\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2 q /(q-2)}\right)^{(q-2) / q} \\
& =\left(\sum_{i=1}^{n}\left|t_{i}\right|^{q}\right)^{2 / q}\left(\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}\right)^{(q-2) / q} \leq 1
\end{aligned}
$$

This shows that $D^{-1} B_{q}^{n} \subset B_{2}^{n}$, where $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $d_{i}:=\left|A e_{i}\right|^{q^{\prime} / 2-1}$. Hence $A B_{q}^{n} \subset A D B_{2}^{n}$ and

$$
b_{X}\left(A D B_{2}^{n}\right) \sim_{\lambda}\left(\sum_{i=1}^{n}\left|A D e_{i}\right|^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{n}\left|A e_{i}\right|^{q^{\prime}}\right)^{1 / 2}=1 .
$$

We get the assertion applying Theorem 15 for the ellipsoid $A D B_{2}^{n}$.

6 Concluding remarks and open questions

We have shown that the main question has the affirmative answer in the case T is an ellipsoid (or more general linear image of ℓ_{q}^{n}-ball, $2 \leq q \leq n$) if X_{i} are independent mean zero r.v's satisfying the $4+\delta$ moment condition (10). The following questions are up to our best knowledge open.

- Does (4) holds for $T=B_{q}^{n}, 1<q<2$ and X_{i} satisfying $4+\delta$ moment condition?
- John's theorem states that for any convex symmetric set T in \mathbb{R}^{n} there exists an ellipsoid \mathcal{E} such that $\mathcal{E} \subset T \subset \sqrt{n} \mathcal{E}$. Hence Theorem 15 implies that under $4+\delta$ condition (10) one may find finite set S such that $T \subset \operatorname{conv}(S \cup-S)$ and $M_{X}(S) \leq$ $C(r, \lambda) \sqrt{n} b_{X}(T)$. We do not whether one may improve upon \sqrt{n} factor for general sets T.
- Are there heavy-tailed random variables X_{i} such that (4) holds for arbitrary set T (for heavy-tailed r.v's approach via chaining functionals described in Subsection 2.1 fails to work)?
- Let X_{i} be heavy-tailed symmetric Weibull r.v's (i.e. symmetric variables with tails $\left.\exp \left(-t^{r}\right), 0<r<1\right)$. Bogucki [2] was able to obtain two-sided bounds for $b_{X}(T)$ with the use of random permutations (which may be eliminated if T is permutationally invariant). We do not know if the convex hull method works in this case.

References

[1] W. Bednorz, R. Latała, On the boundedness of Bernoulli processes, Ann. of Math. (2) 180 (2014), 1167-1203.
[2] R. Bogucki, Suprema of canonical Weibull processes, Statist. Probab. Lett. 107 (2015).
[3] X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, École d'Été de Probabilités de Saint-Flour, IV-1974, Lecture Notes in Mathematics 480, 1-96, Springer, Berlin, 1975.
[4] M. Kochol, Constructive approximation of a ball by polytopes, Math. Slovaca 44 (1994), 99-105.
[5] S. Kwapień, W. A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhauser, Boston, 1992.
[6] R. Latała, T. Tkocz, A note on suprema of canonical processes based on random variables with regular moments, Electron. J. Probab. 20 (2015), no. 36, 1-17.
[7] R. Latała, M. Strzelecka, Comparison of weak and strong moments for vectors with independent coordinates, Mathematika 64 (2018), 211-229.
[8] C. A. Rogers, G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270-281.
[9] H. P. Rosenthal On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
[10] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149.
[11] M. Talagrand, Upper and lower bounds for stochastic processes, 2nd edition, Springer, Cham, 2021.
[12] T. Tkocz, An upper bound for spherical caps, Amer. Math. Monthly 119 (2012), 606607.

[^0]: *Supported by the National Science Centre, Poland grant 2015/18/A/ST1/00553

