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Abstract

We discuss the method of bounding suprema of canonical processes based on the
inclusion of their index set into a convex hull of a well-controlled set of points. While
the upper bound is immediate, the reverse estimate was established to date only for
a narrow class of regular stochastic processes. We show that for specific index sets,
including arbitrary ellipsoids, regularity assumptions may be substantially weakened.

1 Formulation of the problem

Let X = (X1, . . . , Xn) be a centered random vector with independent coordinates. To
simplify the notation we will write

Xt = 〈t,X〉 =
∑
i

tiXi for t = (t1, . . . , tn) ∈ Rn.

Our aim is to estimate the expected value of the supremum of the process (Xt)t∈T , i.e. the
quantity

bX(T ) := E sup
t∈T

Xt, T ⊂ Rn nonempty bounded.

There is a long line of research devoted to bounding bX(T ) via the chaining method (cf.
the monograph [11]). However chaining methods do not work well for heavy-tailed random
variables. In this paper we will investigate another approach based on the convex hull
method.

First let us discuss an easy upper bound. Suppose that there exists t0, t1, . . . ∈ Rn such
that

T − t0 ⊂ conv{±ti : i ≥ 1} (1)

then for any u > 0,

E sup
t∈T

Xt = E sup
t∈T

Xt−t0 ≤ E sup
i≥1
|Xti | ≤ u+

∑
i≥1

E|Xti |I{|Xti |≥u}.
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Indeed the equality above follows since Xt−t0 = Xt − Xt0 and EXt0 = 0 and all inequal-
ities are pretty obvious. To make the notation more compact let us define for nonempty
countable sets S ⊂ Rn

MX(S) = inf
u>0

[
u+

∑
t∈S

E|Xt|I{|Xt|≥u}

]
, M̃X(S) = inf

{
m > 0:

∑
t∈S

E|Xt|I{|Xt|≥m} ≤ m
}
.

It is easy to observe that

M̃X(S) ≤MX(S) ≤ 2M̃X(S). (2)

To see the lower bound let us fix u > 0 and set m = u+
∑

t∈S E|Xt|I{|Xt|≥u} then∑
t∈S

E|Xt|I{|Xt|≥m} ≤
∑
t∈S

E|Xt|I{|Xt|≥u} ≤ m,

so M̃X(s) ≤ m. For the upper bound it is enough to observe that for u > M̃X(S) we have∑
t∈S E|Xt|I{|Xt|≥u} ≤ u.
We have thus shown that

bX(T ) ≤MX(S) ≤ 2M̃X(S) if T − t0 ⊂ conv(S ∪ −S). (3)

Remark 1. The presented proof of (3) did not use independence of coordinates of X, the
only required property is mean zero.

Main question. When can we reverse bound (3) – what should be assumed about variables
Xi (and the set T ) in order that

T − t0 ⊂ conv(S ∪ −S) and MX(S) . E sup
t∈T

Xt (4)

for some t0 ∈ Rn and nonempty countable set S ⊂ Rn?

Remark 2. It is not hard to show (see Section 3 below) that MX(S) ∼ Emaxi |Xti | =
bX(S ∪ −S) if S = {t1, . . . , tk} and variables (Xti)i are independent. Thus our main
question asks whether the parameter bX(T ) may be explained by enclosing a translation
of T into the convex hull of points ±ti for which variables Xti behave as though they are
independent.

Remark 3. The main question is related to Talagrand conjectures about suprema of positive
selector processes, c.f. [11, Section 13.1], i.e. the case when T ⊂ Rn+ and P(Xi ∈ {0, 1}) = 1.
Talagrand investigates possibility of enclosing T into a solid convex hull, which is bigger
than the convex hull. On the other hand we think that in our question some regularity
conditions on variables Xi is needed (such as 4 + δ moment condition (10), which is clearly
not satisfied for nontrivial classes of selector processes).
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Remark 4. i) In the one dimensional case if a = inf T , b = supT , then T ⊂ [a, b] =
a+b
2 + conv{a−b2 , b−a2 }. Hence

bX1(T ) = Emax{aX1, bX1} =
a+ b

2
EX1 + E

∣∣∣b− a
2

X1

∣∣∣ =
b− a

2
E|X1| ≥ M̃X1

({b− a
2

})
,

so this case is trivial. Thus in the sequel it is enough to consider n ≥ 2.

ii) The set V := conv(S ∪ −S) is convex and origin-symmetric. Hence if T = −T and
T−t0 ⊂ V then T+t0 = −(−T−t0) = −(T−t0) ⊂ V and T ⊂ conv((T−t0)∪(T+t0)) ⊂ V .
Thus for symmetric sets it is enough to consider only t0 = 0.

iii) Observe that bX(conv(T )) = bX(T ) and T − t0 is a subset of a convex set if and only
if conv(T ) − t0 is a subset of this set. Moreover, if T − T ⊂ V then T − t0 ⊂ V for any
t0 ∈ V and bX(T − T ) = bX(T ) + bX(−T ) = bX(t) + b−X(T ). So if X is symmetric it is
enough to consider symmetric convex sets T .

Notation. Letters c, C will denote absolute constants which value may differ at each
occurence. For two nonnegative functions f and g we write f & g (or g . f) if g ≤ Cf .
Notation f ∼ g means that f & g and g & f . We write c(α), C(α) for constants depending
only on a parameter α and define accordingly relations &α, .α, ∼α.

Organization of the paper. In Section 2 we present another quantity mX(S), defined
via Lp-norms of (Xt)t∈S , and show that for regular variables Xi it is equivalent to MX(S).
We also discuss there the relation of the convex hull method to the chaining functionals. In
Section 3 we show that for T = Bn

1 the bound (3) may be reversed for arbitrary independent
X1, . . . , Xn and S = {e1, . . . , en}. Section 4 is devoted to the study of ellipsoids. First we
show that for T = Bn

2 and symmetric p-stable random variables, 1 < p < 2, one cannot
reverse (3). Then we prove that under 4 + δ moment condition our main question have the
affirmative answer for T = Bn

2 and more general case of ellipsoids. We extend this result
to the case of linear images of Bn

q -balls, q ≥ 2 in Section 5. We conclude by discussing
some open questions in the last section.

2 Regular growth of moments.

In this section we consider variables with regularly growing moments in a sense that

‖Xi‖2p ≤ α‖Xi‖p <∞ for p ≥ 1, (5)

where ‖X‖p = (E|X|p)1/p.
For such variables we will prove that there is alternate quantity equivalent to MX(S),

namely
mX(S) := inf sup

i
‖Xti‖log(e+i).

where the infimum runs over all numerations of S = {ti : 1 ≤ i ≤ N}, N ≤ ∞.
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It is not hard to check (cf. Lemma 4.1 in [7]) that (5) yields

‖Xt‖2p ≤ C0(α)‖Xt‖p for p ≥ 1 (6)

and as a consequence we have for p > 0,

P(|Xt| ≥ e‖Xt‖p) ≤ e−p, P(|Xt| ≥ c1(α)‖Xt‖p) ≥ min{c2(α), e−p}, (7)

where the first bound follows by Chebyshev’s inequality and the second one by the Paley-
Zygmund inequality.

Proposition 5. Suppose that Xi are independent r.v’s satisfying condition (5). Then
MX(S) ∼α mX(S).

Proof. Let S = {ti : 1 ≤ i ≤ N} and m := supi ‖Xti‖log(e+i). Then for u > 1,

∑
s∈S

P(|Xs| ≥ um) ≤
N∑
i=1

P(|Xti | ≥ u‖Xti‖log(e+i)) ≤
N∑
i=1

u− log(e+i).

Therefore∑
s∈S

E|Xs|I{|Xs|≥e2m} =
∑
s∈S

(
e2mP(|Xs| ≥ e2m) +m

∫ ∞
e2

P(|Xs| ≥ um)du
)

≤ m
N∑
i=1

(
e2−2 log(e+i) +

∫ ∞
e2

u− log(e+i)du
)

≤ m
N∑
i=1

(
(e+ i)−2

(
e2 +

1

log(e+ i)− 1

))
≤ 100m,

which shows that MX(S) ≤ 100mX(S) (this bound does not use neither regularity neither
independence of Xi).

To establish the reverse inequality let us take any m > 2MX(S) ≥ M̃X(S) and enumer-
ate elements of S as t1, t2, . . . in such a way that that i → P(|Xti | ≥ m) is nonincreasing.

By the definition of M̃X(S) we have

N∑
i=1

P(|Xti | ≥ m) ≤ 1

m

N∑
i=1

E|Xti |I{|Xti |≥m} ≤ 1.

In particular it means that P(|Xti | ≥ m) ≤ 1/i. By (7) this yields that for i > 1/c2(α)
‖Xti‖log(i) ≤ m/c1(α). Since log(e+ i)/ log(i) ≤ 2 for i ≥ 3 we have ‖Xti‖log(e+i) ≤ C(α)m

for large i. For i ≤ max{3, 1/c2(α)} it is enough to observe that log(e+ i) ≤ 2k(α), so

‖Xti‖log(e+i) ≤ C0(α)k(α)E|Xti | ≤ C0(α)k(α)MX(S).

This shows that ‖Xti‖log(e+i) .α m for all i and therefore mX(S) .α MX(S).
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2.1 γX-functional

The famous Fernique-Talagrand theorem [3, 10] states that suprema of Gaussian processes
may be estimated in geometrical terms by γ2-functional. This result was extended in
several directions. One of them is based on the so-called γX functional.

For a nonempty subset T ⊂ Rn we define

γX(T ) := inf sup
t∈T

∞∑
n=0

∆n,X(An(t)),

where the infimum runs over all increasing sequences of partitions (An)n≥0 of T such
that A0 = {T} and |An| ≤ Nn := 22

n
for n ≥ 1, An(t) is the unique element of An

which contains t and ∆n,X(A) denotes the diameter of A with respect to the distance
dn(s, t) := ‖Xs −Xt‖2n .

It is not hard to check that bX(T ) . γX(T ). The reverse bound was discussed in [6],
where it was shown that it holds (with constants depending on β and λ) if

‖Xi‖p ≤ β
p

q
‖Xi‖q and ‖Xi‖λp ≥ 2‖Xi‖p for all i and p ≥ q ≥ 2. (8)

Moreover the condition ‖Xi‖p ≤ β pq‖Xi‖q is necessary in the i.i.d. case if the estimate
γX(T ) ≤ CbX(T ) holds with a constant independent on n and T ⊂ Rn.

The next result may be easily deduced from the proof of [6, Corollary 2.7], but we
provide its proof for the sake of completeness.

Proposition 6. Let Xi be independent and satisfy condition (5) and let T be a nonempty
subset of Rn such that γX(T ) <∞. Then there exists set S ⊂ Rn such that for any t0 ∈ T ,
T − t0 ⊂ T − T ⊂ conv(S ∪ −S) and MX(S) . mX(S) .α γX(T ).

Proof. Wlog (since it is only a matter of rescaling) we may assume that EX2
i = 1.

By the definition of γX(T ) we may find an increasing sequence of partitions (An) such
that A0 = {T}, |Aj | ≤ Nj for j ≥ 1 and

sup
t∈T

∞∑
n=0

∆n,X(An(t)) ≤ 2γX(T ). (9)

For any A ∈ An let us choose a point πn(A) ∈ A and set πn(t) := πn(An(t)).
Let Mn :=

∑n
j=0Nj for n = 0, 1, . . . (we put N0 := 1). Then log(Mn+2) ≤ 2n+1. Notice

that there are |An| ≤ Nn points of the form πn(t)− πn−1(t), t ∈ T . So we may define sk,
Mn−1 ≤ k < Mn, n = 1, 2, . . . as some rearrangement (with repetition if |An| < Nn) of
points of the form (πn(t)−πn−1(t))/‖Xπn(t)−Xπn−1(t)‖2n+1 , t ∈ T . Then ‖Xsk‖log(k+e) ≤ 1
for all k ≥ 1.

Observe that

‖t− πn(t)‖2 = ‖Xt −Xπn(t)‖2 ≤ ∆2,X(An(t)) ≤ ∆n,X(An(t))→ 0 for n→∞.
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For any s, t ∈ T we have π0(s) = π0(t) and thus

s− t = lim
n→∞

(πn(s)− πn(t)) = lim
n→∞

(
n∑
k=1

(πk(s)− πk−1(s))−
n∑
k=1

(πk(t)− πk−1(t))

)
.

This shows that
T − T ⊂ R conv{±sk : k ≥ 1},

where

R := 2 sup
t∈T

∞∑
n=1

dn+1(πn(t), πn−1(t)) ≤ 2 sup
t∈T

∞∑
n=1

∆n+1,X(An−1(t))

≤ C(α) sup
t∈T

∞∑
n=1

∆n−1,X(An−1(t)) ≤ 2C(α)γX(T ),

where the second inequality follows by (6). Thus it is enough to define S := {Rsk : k ≥
1}.

Remark 7. Proposition 6 together with the equivalence bX(T ) ∼α,λ γX(T ) shows that the
main question has the affirmative answer for any bounded nonempty set T if symmetric
random variables Xi satisfy moment bounds (5). We strongly believe that the condition
‖Xi‖λp ≥ 2‖Xi‖p is not necessary – equivalence of bX(T ) and the convex hull bound was
established in the case of symmetric Bernoulli r.v’s (P(Xi = ±1) = 1/2) in [1, Corollary 1.2].
However to treat the general case of r.v’s satisfying only the condition ‖Xi‖p ≤ β pq‖Xi‖q
one should most likely combine γX functional with a suitable decomposition of the process
(Xt)t∈T , as was done for Bernoulli processes.

3 Toy case: `1-Ball

Let us now consider a simple case of T = Bn
1 = {t ∈ Rn : ‖t‖1 ≤ 1}. Let

u0 := inf
{
u > 0: P

(
max
i
|Xi| ≥ u

)
≤ 1

2

}
.

Since

P
(

max
i
|Xi| ≥ u

)
≥ 1

2
min

{
1,
∑
i

P(|Xi| ≥ u)
}

we get

E sup
t∈Bn

1

Xt = E max
1≤i≤n

|Xi| =
∫ ∞
0

P
(

max
1≤i≤n

|Xi| ≥ u
)
du ≥ 1

2
u0 +

∫ ∞
u0

1

2

n∑
i=1

P(|Xi| ≥ u)du

=
1

2
u0 +

1

2

n∑
i=1

∫ ∞
u0

P(|Xi| ≥ u)du =
1

2
u0 +

1

2

n∑
i=1

E(|Xi| − u0)+.
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Therefore

2u0 +
n∑
i=1

E|Xi|I{|Xi|≥2u0} ≤ 2u0 + 2
n∑
i=1

E(|Xi| − u0)+ ≤ 4E sup
t∈Bn

1

Xt,

so that MX({ei : i ≤ n}) ≤ 4E supt∈Bn
1
Xt, where (ei)i≤n is the canonical basis of Rn.

Since Bn
1 ⊂ conv{±e1, . . . ,±en} we get the affirmative answer to the main question for

T = Bn
1 .

Proposition 8. If T = Bn
1 then estimate (4) holds for arbitrary independent integrable

r.v’s X1, . . . , Xn with S = {e1, . . . , en} and t0 = 0.

4 Case II. Euclidean balls

Now we move to the case T = Bn
2 . Then supt∈T 〈t, x〉 = |x|, where |x| = ‖x‖2 is the

Euclidean norm of x ∈ Rn.

4.1 Counterexample

In this subsection X = (X1, X2, . . . , Xn), where Xk have symmetric p-stable distribution
with characteristic function ϕXk

(t) = exp(−|t|p) and p ∈ (1, 2). We will assume for conve-
nience that n is even. Let G be a canonical n-dimensional Gaussian vector, independent
of X. Then

E|X| = EXEG
√
π

2
|〈X,G〉| =

√
π

2
EGEX |〈X,G〉| =

√
π

2
EG‖G‖pE|X1|

∼p E‖G‖p ∼ (E‖G‖pp)1/p ∼ n1/p.

Observe also that for u > 0, P(|X1| ≥ u) ∼p min{1, u−p}, so

E|X1|I{|X1|≥u} ∼p umin{1, u−p}+

∫ ∞
u

min{1, v−p}dv ∼p min{1, u1−p}, u > 0

and

E|Xt|I{|Xt|≥u} = ‖t‖pE|X1|I{|X1|≥u/‖t‖p} ∼p min{‖t‖p, u1−p‖t‖pp}, u > 0, t ∈ Rn.

Hence ∑
t∈S
‖t‖pp .p u

p for u > M̃X(S).

Suppose that Bn
2 ⊂ conv(S∪−S) and MX(S) ∼ M̃X(S) <∞. We may then enumerate

elements of S as (tk)
N
k=1, N ≤ ∞ in such a way that (‖tk‖p)Nk=1 is nonincreasing. Obviously
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N ≥ n (otherwise conv(S ∪ −S) would have empty interior). Take u > M̃X(S) and set
E := span({tk : k ≤ n/2}). Then ‖tk‖pp ≤ Cpup/n for k > n/2. Thus

Bn
2 ⊂ conv(S ∪ −S) ⊂ E + conv({±tk : k > n/2}) ⊂ E +

(Cp
n

)1/p
uBn

p .

Let F = E⊥ and PF denotes the ortogonal projection of Rn onto the space F . Then
dimF = dimE = n/2 and

Bn
2 ∩ F = PF (Bn

2 ) ⊂
(Cp
n

)1/p
uPF (Bn

p ).

In particular

n−1/2 ∼ vol
2/n
n/2(B

n
2 ∩ F ) ≤

(Cp
n

)1/p
uvol

2/n
n/2(PF (Bn

p )).

By the Rogers-Shephard inequality [8] and inclusion Bn
2 ⊂ n1/p−1/2Bn

p we have

voln/2(PF (Bn
p )) ≤

(
n

n/2

)
voln(Bn

p )

voln/2(Bn
p ∩ E)

≤ 2n
voln(Bn

p )

voln/2(n1/2−1/pB
n
2 ∩ E)

≤ (Cn−1/p)n/2.

This shows that u &p n
2/p−1/2. Thus MX(S) &p n

2/p−1/2 � n1/p ∼p bX(Bn
2 ) and our

question has a negative answer in this case.

4.2 4 + δ moment condition

In this part we establish positive answer to the main question in the case T = Bn
2 under

the following 4 + δ moment condition

∃r∈(4,8],λ<∞ (EXr
i )1/r ≤ λ(EX2

i )1/2 <∞ i = 1, . . . , n. (10)

The restriction r ≤ 8 is just for convenience. The following easy consequence of (10)
will be helpful in the sequel.

Lemma 9. Suppose that X1, . . . , Xn are independent mean zero r.v’s satisfying condition
(10). Then for any 1 ≤ p ≤ r,∥∥∥ n∑

i=1

uiXi

∥∥∥
p
∼λ
∥∥∥ n∑
i=1

uiXi

∥∥∥
2

=
( n∑
i=1

u2iEX2
i

)1/2
(11)

and ∥∥∥ ∑
1≤i<j≤n

uijXiXj

∥∥∥
p
∼λ
∥∥∥ ∑
1≤i<j≤n

uijXiXj

∥∥∥
2

=
( ∑

1≤i<j≤n
u2ijEX2

i EX2
j

)1/2
. (12)
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Proof. Since it is only a matter of scaling wlog we may and will assume that EX2
i = 1 for

all i.
Rosenthal’s inequality [9] gives for 2 ≤ p ≤ r (recall that r ∈ (4, 8], so constants below

do not depend on r)∥∥∥ n∑
i=1

uiXi

∥∥∥
p
∼
(∑

i

E|uiXi|2
)1/2

+
(∑

i

E|uiXi|p
)1/p

∼λ
(∑

i

u2i

)1/2
+
(∑

i

|ui|p
)1/p

∼
(∑

i

u2i

)1/2
.

To estimate ‖S‖p for 1 ≤ p ≤ 2 and S =
∑n

i=1 uiXi it is enough to note that ‖S‖1 ≤
‖S‖p ≤ ‖S‖2 and ‖S‖2 ≤ ‖S‖1/34 ‖S‖

2/3
1 ∼λ ‖S‖

1/3
2 ‖S‖

2/3
1 , so ‖S‖p ∼ ‖S‖2.

To prove the last part of the assertion we will use the hypercontractive method. Observe
that for a real number u there exists θ ∈ [0, 1] such that

(1 + u)r ≤
(

1 + ru+
r(r − 1)

2
(1 + θu)r−2u2

)
I{|u|<1} + (2|u|)rI{|u|≥1}

≤ 1 + ru+ r22r−3u2 + 2r|u|r.

Hence (note that λ ≥ 1, EXi = 0, EX2
i = 1 and E|Xi|r ≤ λr)

E
(

1 +
1

32λ
uXi

)r
≤ 1 + r22r−3

u2

1024
+ 2−4r|u|r ≤ 1 +

ru2

4
+
|u|r

2
≤ 1 + max

{r
2
u2, |u|r

}
.

Since
(E(1 + uXi)

2)r/2 = (1 + u2)r/2 ≥ 1 + max
{r

2
u2, |u|r

}
we get ‖1 + 1

32λuXi‖r ≤ ‖1 + uXi‖2 for any u ∈ R and the hypercontractivity method (cf.
[5, Theorem 6.5.2]) yields (12) for p = r. The case 1 ≤ p ≤ r may be obtained in the same
way as in the proof of (11).

Observe that (10) implies that Var(X2
i ) ≤ (λ4 − 1)(EX2

i )2, so Var(|X|2) ≤
∑

i(λ
4 −

1)(EX2
i )2 ≤ (λ4 − 1)(E|X|2)2. This yields that E|X|4 ≤ λ4(E|X|2)2 and (E|X|2)1/2 ≤

λ2E|X|.
The next fact is pretty standard, we prove it for completeness.

Lemma 10. For any k there exists T ⊂ Bk
2 with |T | ≤ 5k such that Bk

2 ⊂ 2conv(T ).

Proof. Let T be the maximal 1
2 -separated set in Bk

2 , the standard volumetric argument
shows that |T | ≤ 5k. We have Bk

2 ⊂ T + 1
2B

k
2 ⊂ conv(T ) + 1

2B
k
2 , so Bk

2 ⊂ 2conv(T ).

The next lemma comes from [4].

9



Lemma 11. For any 1 ≤ k ≤ n there exists T ⊂ Bn
2 with |T | ≤ 2n

k 5k such that Bn
2 ⊂

2
√

2n
k conv(T ).

Proof. Let l = dn/ke ≤ 2n/k and Rn = F1 ⊕ · · · ⊕ Fl be an orthogonal decomposition of
Rn into spaces of dimension at most k. By Lemma 10 we can find Ti ⊂ B2(Fi) := Bn

2 ∩ Fi
such that B2(Fi) ⊂ 2conv(Ti) and |Ti| ≤ 5k. Let T :=

⋃
i≤l Ti. Then T ⊂ Bn

2 and

|T | ≤ l5k ≤ 2n
k 5k.

Fix now x ∈ Bn
2 and xi denotes its orthogonal projection on Fi. Observe that∑

i≤l
‖xi‖ ≤

√
l
(∑
i≤l
‖xi‖2

)1/2
≤
√
l.

Therefore

x ⊂
√
lconv

{
0,

x1
‖x1‖

, . . . ,
xl
‖xl‖

}
⊂
√
lconv

(⋃
i≤l
B2(Fi)

)
⊂ 2
√
lconv(T ).

Lemma 12. Let Y be a vector uniformly distributed over Sn−1. Then

E|〈Y, t〉|I{|〈Y,t〉|≥u} ≤ min
{ |t|√

n
,
2(|t|2 + nu2)

nu
e−nu

2/(2|t|2)
}

t ∈ Rn, u > 0.

Proof. Observe that 〈Y, t〉 is distributed as |t|Y1. Hence

E|〈Y, t〉|I{|〈Y,t〉|≥u} = |t|E|Y1|I{|Y1|≥u/|t|}.

We have E|Y1| ≤ (E|Y1|2)1/2 = n−1/2. Moreover P(Y1 ≥ v) ≤ exp(−nv2/2) for v ≥ 0 (cf.
[12]). Therefore

E|Y1|I{|Y1|≥u} ≤ uP(|Y1| ≥ u) +

∫ ∞
u

P(|Y1| ≥ v)dv ≤ 2ue−nu
2/2 + 2

∫ ∞
u

e−nv
2/2dv

≤ 2ue−nu
2/2 + 2

∫ ∞
u

nv

nu
e−nv

2/2dv =
2(1 + nu2)

nu
e−nu

2/2.

Now we are able to show that (4) holds for T = Bn
2 under 4 + δ moment condition.

Proposition 13. Let X1, . . . , Xn be independent centered r.v’s with variance 1 satisfying
condition (10). Then there exists S ⊂ Rn such that |S| ≤ 10n2, Bn

2 ⊂ conv(S) and

MX(S) .r,λ

√
n ∼λ E|X| = bX(Bn

2 ).

10



Proof. By the Rosenthal inequality [9] we have (recall that r ∈ (4, 8]),

∥∥|X|2 − n∥∥
r/2

=

∥∥∥∥∥
n∑
i=1

(X2
i − 1)

∥∥∥∥∥
r/2

.
( n∑
i=1

Var(X2
i )
)1/2

+
( n∑
i=1

E|X2
i − 1|r/2

)2/r
.λ n

1/2 + n2/r ≤ 2n1/2.

Therefore

E|X|I{|X|≥√2n} ≤ E
√

2(|X|2 − n)I{|X|≥
√
2n} ≤

√
2n1/2−r/2E(|X|2 − n)r/2 ≤ C(λ)n1/2−r/4.

(13)
By Lemma 11 (applied with k = c(r) log n) there exists t1, . . . , tN such that Bn

2 ⊂
conv{t1, . . . , tN}, N ≤ 10n1/2+r/8 and |ti| ≤ C(r)

√
n/ log n, 1 ≤ i ≤ N . Let U be the

random rotation (uniformly distributed on O(n)) then Uti is distributed as |ti|Y , where Y
has uniform distribution on Sn−1. Thus by Lemma 12,

EUEX |〈X,Uti〉|I{|〈X,Uti〉|≥u} = EXEY |〈Y, |ti|X〉|I{|〈Y,|ti|X〉|≥u}

≤ Emin
{ |ti||X|√

n
,
2(|ti|2|X|2 + nu2)

nu
e−nu

2/(2|ti|2|X|2)
}

≤ |ti|√
n
E|X|I{|X|≥√2n} +

4|ti|2 + 2u2

u
e−u

2/(4|ti|2).

Recall that |ti| .r

√
n/ log n so for sufficiently large C(r) we get by (13),

EUEX |〈X,Uti〉|I{|〈X,Uti〉|≥C(r)
√
n} ≤ C(λ)n−r/4|ti|+ n−2 ≤ C(r, λ)n1/2−r/4.

As a consequence there exists U ∈ O(n) such that

N∑
i=1

EX |〈X,Uti〉|I{|〈X,Uti〉|≥C(r)
√
n} ≤ NC(r, λ)n1/2−r/4 ≤ 10C(r, λ)n1−r/8. (14)

Thus if we put S := {Ut1, . . . , UtN} we will have conv(S) = Uconv{t1, . . . , tN} ⊃ Bn
2 and

MX(S) ≤ C ′(r, λ)
√
n.

4.3 Ellipsoids

We now extend the bounds from the previous subsection to the case of ellipsoids, i.e. sets
of the form

E :=
{
t ∈ Rn :

n∑
i=1

〈t, ui〉2

a2i
≤ 1
}
, (15)

where u1, . . . , un is an orthonormal system in Rn and a1, . . . , an > 0.

11



Observe that

sup
t∈E
〈t, x〉 =

√√√√ n∑
i=1

a2i 〈x, ui〉2.

To treat this case we will need the following Lemma.

Lemma 14. Let X = (X1, . . . , Xn), where Xi are independent mean zero and variance
one r.v’s satisfying 4 + δ condition (10).
i) For any a1, . . . , an ≥ 0 and any o.n. vectors u1, . . . , un,

E
( n∑
k=1

a2k〈X,uk〉2
)1/2

∼λ
(
E

n∑
k=1

a2k〈X,uk〉2
)1/2

=
( n∑
k=1

a2k

)1/2
.

ii) For any n× n matrix B,(
E(|BX|2 − ‖B‖2HS)r/2

)2/r
≤ C(λ)‖BTB‖1/2HS .

In particular for any linear supspace E ⊂ Rn od dimension k ∈ {1, . . . , n},(
E(|PEX|2 − k)r/2

)2/r
≤ C(λ)k1/2.

Proof. Part i) follows from Lemma 9.
To show part ii) let B = (bij)

n
i,j=1, e1, e2, . . . , en be the canonical basis of Rn and let

σi,j :=
n∑
l=1

bl,ibl,j = 〈Bei, Bej〉, 1 ≤ i, j ≤ n.

Then ∥∥|BX|2 − ‖B‖2HS

∥∥
r/2

=
∥∥∥ n∑
i=1

(X2
i − 1)σi,i +

∑
1≤i 6=j≤n

XiXjσi,j

∥∥∥
r/2

≤
∥∥∥ n∑
i=1

(X2
i − 1)σi,i

∥∥∥
r/2

+
∥∥∥ ∑
1≤i 6=j≤n

XiXjσi,j

∥∥∥
r/2
.

Applying Rosenthal’s inequality we get∥∥∥ n∑
i=1

(X2
i − 1)σi,i

∥∥∥
r/2

.
( n∑
i=1

Var(X2
i )σ2i,i

)1/2
+
( n∑
i=1

E(X2
i − 1)r/2σ

r/2
i,i

)2/r
.λ

( n∑
i=1

σ2i,i

)1/2
+
( n∑
i=1

σ
r/2
i,i

)2/r
≤ 2
( n∑
i=1

σ2i,i

)1/2
.

12



Hypercontractive method (as in the proof of Lemma 9) yields∥∥∥∑
i 6=j

XiXjσi,j

∥∥∥
r/2

.λ

∥∥∥∑
i 6=j

XiXjσi,j

∥∥∥
2

=
(∑
i 6=j

σ2i,j

)1/2
.

Finally ( n∑
i=1

σ2i,i

)1/2
+
(∑
i 6=j

σ2i,j

)1/2
≤ 2
(∑

i,j

σ2i,j

)1/2
= 2‖BTB‖HS.

Now we state and prove the main result of this section.

Theorem 15. Let X1, . . . , Xn be independent centered r.v’s satisfying the condition (10)
and let T be an ellipsoid in Rn. Then there exists S ⊂ Rn such that |S| ≤ 10n2, T ⊂
conv(S) and

MX(S) .r,λ bX(T ).

Proof. Since it is only a matter of scaling we may and will assume that EX2
i = 1 for all i.

Let T = E be an ellipsoid of the form (15). Then the first part of Lemma 14 yields

E sup
t∈E

Xt = E
( n∑
k=1

a2k〈X,uk〉2
)1/2

∼λ

√√√√ n∑
k=1

a2k.

By homogenity we may assume that
∑n

k=1 a
2
k = 1.

Define

Ik := {i : 2−k−1 < ai ≤ 2−k}, nk := |Ik|, J := {k ∈ Z : Ik 6= ∅}, Ek := span{ui : i ∈ Ik}.

Then
1 ≤

∑
k∈J

nk2
−2k < 4. (16)

In particular J is a subset of nonnegative integers.
We claim that for any positive sequence (ck)k∈J such that

∑
k c
−2
k ≤ 1,

E ⊂ conv
( ⋃
k∈J

ck2
−kBIk

2

)
, where BIk

2 := Bn
2 ∩ Ek.

Indeed, let Pkx :=
∑

i∈Ik〈x, ui〉ui be the projection of x onto Ek, then

x =
∑
k∈J

c−1k 2k|Pkx|ck2−k
Pkx

|Pkx|

13



and for x ∈ E ,

∑
k∈J

c−1k 2k|Pkx| ≤
√∑
k∈J

c−2k

√∑
k∈J

22k|Pkx|2 ≤

√√√√∑
k∈J

∑
i∈Ik

〈x, ui〉2
a2i

≤ 1.

Let us for a moment fix k ∈ J . By Lemma 11 (applied with k = c(r) log nk) there

exists t1, . . . , tNk
∈ Ek such that BIk

2 ⊂ conv{t1, . . . , tNk
}, Nk ≤ 10n

1/2+r/8
k and |ti| ≤

C(r)
√
nk/ log(nk). Let U be the random rotation of Ek (uniformly distributed on O(Ek))

then Uti is distributed as |ti|Y , where Y has uniform distribution on SIk := Sn−1 ∩ Ek.
Thus by Lemma 12,

EUEX |〈X,Uti〉|I{|〈X,Uti〉|≥u}
= EXEY |〈Y, |ti|PEk

X〉|I{|〈Y,|ti|PEk
X〉|≥u}

≤ Emin
{ |ti||PEk

X|
√
nk

,
2(|ti|2|PEk

X|2 + nku
2)

nku
e−nku

2/(2|ti|2|PEk
X|2)

}
≤ |ti|√

nk
E|PEk

X|I{|PEk
X|≥
√
2nk} +

4|ti|2 + 2u2

u
e−u

2/(4|ti|2).

We have

E|PEk
X|I{|PEk

X|≥
√
2nk} ≤

√
2E(|PEk

X|2 − nk)1/2I{|PEk
X|≥
√
2nk}

≤
√

2n
1/2−r/2
k E(|PEk

X|2 − nk)r/2 ≤ C(λ)n
1/2−r/4
k ,

where the last bound follows by Lemma 14. Recall that |ti| .r

√
nk/ log nk, thus for

sufficiently large C(r) we get

EUEX |〈X,Uti〉|I{|〈X,Uti〉|≥C(r)
√
n} ≤ C(λ)n

−r/4
k |ti|+ n−2k ≤ C(r, λ)n

1/2−r/4
k .

As a consequence there exists U ∈ O(Ek) such that

Nk∑
i=1

EX |〈X,Uti〉|I{|〈X,Uti〉|≥C(r)
√
nk} ≤ NkC(r, λ)n

1/2−r/4
k ≤ 10C(r, λ)n

1−r/8
k .

Define Sk = {tk,1, . . . , tk,Nk
} := {Ut1, . . . , UtNk

}. Then conv(Sk) = Uconv{t1, . . . , tNk
} ⊃

BIk
2 , Nk ≤ 10n

1/2+r/8
k ≤ 10n2k and

Nk∑
i=1

EX |〈X, tk,i〉|I{|〈X,tk,i〉|≥C(r)
√
nk} ≤ C(r, λ)n

1−r/8
k .

14



Set ck := 2k+2(2k + nk)
−1/2. By (16) we get

∑
k∈J c

−2
k ≤ 1, so

E ⊂ conv
( ⋃
k∈J

ck2
−kBIk

2

)
⊂ conv({ck2−ktk,i : k ∈ J, i ≤ Nk}) := conv(S).

We have

|S| =
∑
k∈J

Nk ≤
∑
k∈J

10n2k ≤ 10
(∑
k∈J

nk

)2
= 10n2.

Moreover,

∑
s∈S

E|〈s,X〉|I{|〈s,X〉|≥4C(r)} =
∑
k∈J

2−kck

Nk∑
i=1

E|〈tk,i, X〉|I{2−kck|〈tk,i,X〉|≥4C(r)}

≤
∑
k∈J

4(2k + nk)
−1/2

Nk∑
i=1

E|〈tk,i, X〉|I{|〈tk,i,X〉|≥C(r)
√
nk}

≤
∑
k∈J

4(2k + nk)
−1/2C(r, λ)n

1−r/8
k

≤ 4C(r, λ)
∑
k∈J

(2k + nk)
1/2−r/8 ≤ 4C(r, λ)

∑
k≥0

2k(1/2−r/8)

≤ C ′(r, λ),

which shows that MX(S) ∼ M̃X(S) .λ,r 1 ∼ bX(E).

5 Case III. `nq -balls, 2 < q ≤ ∞
It turns out that results of the previous sections may be easily applied to get estimates in
the case when T = Bn

q is the unit ball in `nq and q ∈ (2,∞]. In the whole section by q′ we
will denote the Hölder dual of q, i.e. q′ = q

q−1 , 2 ≤ q <∞ and q′ = 1 for q =∞.

Proposition 16. Let X1, . . . , Xn be independent centered r.v’s with variance 1 satisfying
condition (10). Then there exists S ⊂ Rn such that |S| ≤ 10n2, Bn

q ⊂ conv(S) and

MX(S) .r,λ n
1/q′ ∼λ bX(Bn

q ).

Proof. Since q′ ∈ (1, 2], condition (10) yields ‖Xi‖q′ ∼λ ‖Xi‖2q′ ∼λ ‖Xi‖2 = 1 and hence

(E‖X‖2q
′

q′ )1/(2q
′) ∼λ (E‖X‖q

′

q′)
1/q′ . Therefore

bX(Bn
q ) = E sup

t∈Bn
q

〈t,X〉 = E‖X‖q′ ∼λ
(
E‖X‖q

′

q′
)1/q′ ∼λ n1/q′ .

Hölder’s inequality implies Bn
q ⊂ n1/2−1/qBn

2 = n1/q
′−1/2Bn

2 and the assertion easily
follows from Proposition 13.
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Now let us consider the case of linear transformation of `nq -ball, i.e. T = ABn
q . Next

simple lemma shows how to estimate bX(T ).

Lemma 17. Let X = (X1, . . . , Xn), where Xi are independent mean zero and variance
one r.v’s satisfying 4 + δ condition (10). Then for any n× n matrix A and 2 ≤ q ≤ ∞ we
have

bX(ABn
q ) = bATX(Bn

q ) ∼λ
( n∑
i=1

|Aei|q
′
)1/q′

.

Proof. Observe that

sup
t∈ABn

q

〈X, t〉 = sup
t∈Bn

q

〈ATX, t〉 =
( n∑
i=1

|〈ATX, ei〉|q
′
)1/q′

=
( n∑
i=1

|〈X,Aei〉|q
′
)1/q′

.

Condition (10) (see Lemma 9) implies that

‖〈X,Aei〉‖2q′ ∼λ ‖〈X,Aei〉‖q′ ∼λ ‖〈X,Aei〉‖2 = |Aei|.

Hence ‖ supt∈ABn
q
〈X, t〉‖2q′ ∼λ ‖ supt∈ABn

q
〈X, t〉‖q′ and

bX(ABn
q ) =

∥∥∥ sup
t∈ABn

q

〈X, t〉
∥∥∥
1
∼λ
∥∥∥ sup
t∈ABn

q

〈X, t〉
∥∥∥
q′
∼λ
( n∑
i=1

|Aei|q
′
)1/q′

.

As in the proof of Proposition 16 we may include linear image of Bn
q into ellipsoid with

the comparable bX -bound and deduce from Theorem 15 the following more general result.

Theorem 18. Let X1, . . . , Xn be independent centered r.v’s satisfying condition (10) and
let T = ABn

q for some 2 ≤ q ≤ ∞ and an n× n matrix A. Then there exists S ⊂ Rn such
that |S| ≤ 10n2, T ⊂ conv(S) and

MX(S) .r,λ bX(T ).

Proof. Since it is only a matter of scaling we may and will assume that EX2
i = 1 for all i.

By Lemma 17 it is enough to show that

MX(S) .r,λ

( n∑
i=1

|Aei|q
′
)1/q′

.

By homogenity we may assume that
∑n

i=1 |Aei|q
′

= 1. Case q = 2 was treated in Theorem
15, so we may assume that q > 2, i.e. q′ < 2. Moreover, we may assume that Aei 6= 0 for
all i.

16



Let λi := |Aei|1−q
′/2. Observe that if t ∈ Bn

q then by Hölder’s inequality

n∑
i=1

|λiti|2 ≤
( n∑
i=1

|ti|q
)2/q( n∑

i=1

|λi|2q/(q−2)
)(q−2)/q

=
( n∑
i=1

|ti|q
)2/q( n∑

i=1

|Aei|q
′
)(q−2)/q

≤ 1.

This shows that D−1Bn
q ⊂ Bn

2 , where D := diag(d1, . . . , dn) and di := |Aei|q
′/2−1. Hence

ABn
q ⊂ ADBn

2 and

bX(ADBn
2 ) ∼λ

( n∑
i=1

|ADei|2
)1/2

=
( n∑
i=1

|Aei|q
′
)1/2

= 1.

We get the assertion applying Theorem 15 for the ellipsoid ADBn
2 .

6 Concluding remarks and open questions

We have shown that the main question has the affirmative answer in the case T is an
ellipsoid (or more general linear image of `nq -ball, 2 ≤ q ≤ n) if Xi are independent mean
zero r.v’s satisfying the 4 + δ moment condition (10). The following questions are up to
our best knowledge open.

• Does (4) holds for T = Bn
q , 1 < q < 2 and Xi satisfying 4 + δ moment condition?

• John’s theorem states that for any convex symmetric set T in Rn there exists an
ellipsoid E such that E ⊂ T ⊂

√
nE . Hence Theorem 15 implies that under 4 + δ

condition (10) one may find finite set S such that T ⊂ conv(S ∪ −S) and MX(S) ≤
C(r, λ)

√
nbX(T ). We do not whether one may improve upon

√
n factor for general

sets T .

• Are there heavy-tailed random variables Xi such that (4) holds for arbitrary set T
(for heavy-tailed r.v’s approach via chaining functionals described in Subsection 2.1
fails to work)?

• Let Xi be heavy-tailed symmetric Weibull r.v’s (i.e. symmetric variables with tails
exp(−tr), 0 < r < 1). Bogucki [2] was able to obtain two-sided bounds for bX(T ) with
the use of random permutations (which may be eliminated if T is permutationally
invariant). We do not know if the convex hull method works in this case.
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