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Abstract

We investigate two-sided bounds for operator norms of random matrices with non-
homogenous independent entries. We formulate a lower bound for Rademacher
matrices and conjecture that it may be reversed up to a universal constant. We
show that our conjecture holds up to log logn factor for randomized n× n circulant
matrices and that the double logarithm may be eliminated under some mild additional
assumptions on the coefficients.
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1 Introduction and main results

Study of random matrices is one of the central issues of probability theory and
its applications. Classical random matrix theory, initially motivated by mathematical
physics, is mostly concerned with the investigation of homogenous matrix ensembles,
possesing a large degree of symmetry [1, 12]. In many applications one needs however
to consider highly non-homogenous random matrices. In such situations one cannot
expect as precise results as for the classical ensembles, nevertheless in recent years
there was made a significant progress in this area and many important estimates were
derived, cf. [2, 13, 14] and references therein.

The aim of this paper is to discuss bounds for the operator norm of non-homogenous
random matrices X = (Xij)i,j≤n with independent entries. It is easy to reduce to the
case of mean zero random matrices, i.e. when Xij are independent centered r.v’s.
The Gaussian case was solved in [8], where it was shown that if Xij ∼ N (0, σ2

ij) are
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Norms of randomized circulant matrices

independent Gaussian r.v’s,

E‖(Xij)‖ ∼ E max
1≤i≤n

√√√√ n∑
j=1

X2
ij + E max

1≤j≤n

√√√√ n∑
i=1

X2
ij

∼ max
i

√√√√ n∑
j=1

σ2
ij + max

j

√√√√ n∑
i=1

σ2
ij + max

1≤k≤n
min

I⊂[n],|I|≤k
max
i,j /∈I

√
log(k + 1)|σij |.

Here and throughout the paper, ‖ · ‖ denotes the operator norm, unless indicated
otherwise. The last estimate above differs slightly from the one formulated in [8], but
it is not hard to see that it is equivalent to it (see the proof of the second bound in
Proposition 4.4 below).

The most interesting case left are Rademacher matrices, i.e. random matrices with
coefficients Xij = aijεij , where εij , 1 ≤ i, j ≤ n are independent symmetric ±1 r.v’s. The
main body of the paper consists of results proved in this setting. A lot of things may be
however done in a bigger generality, as we show in Section 4.

Our first result is the lower bound for the operator norm. For two nonnegative
functions f and g we write f & g (or g . f ), if there exists an absolute constant C such
that Cf ≥ g. Notation f ∼ g means that f & g and g & f . We use C and c to denote
universal constants and their values might be different at each appearance. We write
‖S‖p = (E|S|p)1/p for the Lp-norm of a random variable S. The same notation is used for
the `p-norm of a vector: ‖x‖p = (|x1|p + . . .+ |xd|p)1/p, where x = (x1, . . . , xd) ∈ Rd.
Theorem 1.1. Let (aij)i,j≤n be any real matrix and Xij = aijεij . Then

E‖(Xij)i,j≤n‖ & max
1≤i≤n

 n∑
j=1

EX2
ij

1/2

+ max
1≤j≤n

(
n∑
i=1

EX2
ij

)1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

Xijsitj

∥∥∥∥∥∥
log(k+1)

. (1.1)

Remark. Since ‖N (0, σ2)‖p ∼
√
pσ for p ≥ ln 2, in the Gaussian case we have

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j

σijgijsitj

∥∥∥∥∥∥
p

∼ √pmax
i,j
|σij |.

where gij are i.i.d. N (0, 1) r.v’s. Thus the main result of [8] states that (1.1) may be
reversed if Xij are independent centered Gaussian r.v’s.

Theorem 1.1 and the remark above motivate the following conjecture.

Conjecture 1.2. We have

E‖(aijεij)i,j≤n‖ ∼ max
1≤i≤n

 n∑
j=1

a2ij

1/2

+ max
1≤j≤n

(
n∑
i=1

a2ij

)1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

aijεijsitj

∥∥∥∥∥∥
log(k+1)

.

Seginer [11] proved that

E‖(aijεij)i,j≤n‖ . 4
√

log(n+ 1)

(
max
1≤i≤n

√√√√ n∑
j=1

a2ij + max
1≤j≤n

√√√√ n∑
i=1

a2ij

)
(1.2)

EJP 27 (2022), paper 80.
Page 2/23

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP799
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Norms of randomized circulant matrices

and that one cannot improve the factor log1/4(n + 1). This shows that Conjecture 1.2
holds up to log1/4(n+ 1) factor.

Our main result states that if coefficients (aij) form a circulant matrix then Conjec-
ture 1.2 is satisfied up to log log n factor.

Theorem 1.3. Suppose that (aij)i,j≤n is a circulant matrix, i.e. aij = bi−j mod n for a
deterministic sequence (bi)

n−1
i=0 . Then√√√√n−1∑

j=0

b2j + sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
n∑

i,j=1

aijεijsitj

∥∥∥∥∥∥
log(n+1)

. E‖(aijεij)‖

.
√

log log(n+ 3)

√√√√n−1∑
j=0

b2j + log log(n+ 3) sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
n∑

i,j=1

aijεijsitj

∥∥∥∥∥∥
log(n+1)

.

Moreover, log log factors may be eliminated in the case when bi takes only values 0 and 1

(i.e. when (aij) is an adjacency matrix of a directed circulant graph).

In order to apply such a result it would be nice to have a simple two-sided bound for
the quantity

‖A‖ε,p := sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
n∑

i,j=1

aijεijsitj

∥∥∥∥∥∥
p

. (1.3)

Two-sided bounds for Lp-norms of Rademacher sums were derived in [5] on the base of
tail bounds [10] (see also [6] for a discussion of various equivalent norms):∥∥∥∥∥

n∑
k=1

akεk

∥∥∥∥∥
p

∼
∑
k≤p

a∗k +
√
p

(∑
k>p

(a∗k)2

)1/2

∼ sup

{
n∑
k=1

akbk : ‖b‖∞ ≤ 1, ‖b‖2 ≤
√
p

}
,

where (a∗k)nk=1 denotes the nonincreasing rearrangement of (|ak|)nk=1. It is however
nonobvious how to apply the above bounds to get a simple two-sided estimate for ‖A‖ε,p.
We were able to derive such bound when A is an adjacency matrix of a (directed) graph.

Proposition 1.4. For any E ⊂ [n]× [n] and p ≥ 1 we have

‖1E‖ε,p = sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥ ∑
(i,j)∈E

εijsitj

∥∥∥∥∥
p

∼ max
I⊂E,|I|≤p

‖(1{(i,j)∈I})‖. (1.4)

In the general case, a similar result holds. However, here the upper and lower bounds
are not of the same order.

Proposition 1.5. For any matrix A = (aij)i,j≤n and p ≥ 1,

1

2
max

I⊂[n]×[n],|I|≤p
‖(|aij |1(i,j)∈I)‖ ≤ ‖A‖ε,p .

√
ln(p+ 1) max

I⊂[n]×[n],|I|≤p
‖(|aij |1(i,j)∈I)‖.

We do not know whether the logarithmic factor is necessary.
Organization of the paper. In Section 2 we prove the main results of the paper, i.e.

Theorems 1.1 and 1.3. In Section 3 we study norms ‖A‖ε,p and establish Propositions 1.4
and 1.5. We also provide there estimates for ‖A‖ε,p in the case when A are adjacency
matrices of hypercubes Zd2 and more general discrete tori Zdm. The adjacency matrix of
Zdm is not circulant, however it is very close to have such a property and Corollary 3.5
shows that we may apply previously derived estimates to get two-sided bounds on
E‖(1i∼jεij)i,j∈Zdm‖. In the last section of the paper we extend Theorem 1.1 and Con-
jecture 1.2 to the case of random matrices with independent entries Xij satisfying the
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mild regularity condition ‖Xij‖2p ≤ α‖Xij‖p for p ≥ 2. We show that results of [8] imply
that more general Conjecture 4.3 holds in the case when Xij are mixtures of Gaussian
variables. We also show that to establish formulated conjectures it is enough to prove a
slightly weaker bound (4.4).

2 Proofs of main results

We will frequently compare Lp-norms of real and vector-valued Rademacher sums
S =

∑n
i=1 xiεi, where xi are vectors from a normed space (F, ‖·‖) and εi are independent

symmetric ±1 r.v’s. The classical Khintchine (in the case when coefficients xi are real)
and the Kahane-Khintchine inequalities, cf. [9, Section 4.3], state that for p > q > 0,

‖S‖q ≤ ‖S‖p ≤ Cp,q‖S‖q,

where ‖S‖q = (E‖S‖q)1/q and Cp,q is a constant depending only on p and q. Moreover

for p > q > 1, Cp,q ≤
√

p−1
q−1 , therefore for p ≥ 2, Cp,2 ≤

√
p and for p ≥ 1 + (e − 2)−1,

C2p,p ≤
√
e.

Markov’s inequality yields P(‖S‖ ≥ e‖S‖p) ≤ e−p. Using the Paley-Zygmund inequal-
ity

P
(
Z ≥ 1

2
EZ
)
≥ 1

4

(EZ)2

EZ2
for nonnegative r.v. Z,

one may derive a reverse lower tail bound for ‖S‖ (similar estimates can be found in
[3, 7], we present details for the sake of completeness). For any p ≥ 1 + (e − 2)−1, by
taking Z = ‖S‖p we obtain

P
(
‖S‖ ≥ 1

2
‖S‖p

)
≥ 1

4

(
‖S‖p
‖S‖2p

)2p

≥ 1

4
e−p. (2.1)

2.1 Proof of Theorem 1.1

We start with a simple observation.

Lemma 2.1. For any p ≥ 2,

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
ij

aijεijsitj

∥∥∥∥∥∥
p

≤ sup
‖s‖2≤1,|supp(s)|≤p,
‖t‖2≤1,|supp(t)|≤p

∥∥∥∥∥∥
∑
ij

aijεijsitj

∥∥∥∥∥∥
p

+ max
i

∑
j

a2ij

1/2

+ max
j

(∑
i

a2ij

)1/2

.

Proof. For a vector z ∈ Rn put Ip(z) := {i ≤ n : |zi|2 ≥ p−1}. If ‖z‖2 ≤ 1, then |Ip(z)| ≤ p,
so

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑

i∈Ip(s),j∈Ip(t)

aijεijsitj

∥∥∥∥∥∥
p

≤ sup
‖s‖2≤1,|supp(s)|≤p,
‖t‖2≤1,|supp(t)|≤p

∥∥∥∥∥∥
∑
ij

aijεijsitj

∥∥∥∥∥∥
p

.

The Khintchine inequality yields

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑

i≤n,j /∈Ip(t)

aijεijsitj

∥∥∥∥∥∥
p

≤ sup
‖s‖2,‖t‖2≤1

(
p

∑
i≤n,j /∈Ip(t)

a2ijs
2
i t

2
j

)1/2

≤ sup
‖s‖2≤1

( ∑
i,j≤n

a2ijs
2
i

)1/2
= max

i

∑
j

a2ij

1/2

.
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In a similar way we show that

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑

i/∈Ip(s),j∈Ip(t)

aijεijsitj

∥∥∥∥∥∥
p

≤ max
j

(∑
i

a2ij

)1/2

.

Proof of Theorem 1.1. The estimate

(
E‖(Xij)‖2

)1/2 ≥ max

{
max
i

∑
j

EX2
ij

1/2

,max
j

(∑
i

EX2
ij

)1/2}
(2.2)

is trivial. Moreover, by the Khintchine-Kahane inequality, E‖(aijεij)‖ ∼ (E‖(aijεij)‖2)1/2.
To establish the last term in the lower bound let us fix 1 ≤ k ≤ n. We need to show

that

γ := min
I⊂[n],|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

Xijsitj

∥∥∥∥∥∥
log(k+1)

≤ CE‖(Xij)‖.

Observe that by the Khintchine inequality

γ ≤ C
√

log(k + 1) sup
‖s‖2,‖t‖2≤1

∑
ij

s2i t
2
ja

2
ij

1/2

= C
√

log(k + 1) max
ij
|aij |

≤ C
√

log(k + 1)E‖(Xij)‖,

so we may consider only k large, in particular we may assume that 2 log(k + 1) ≤
√
k and

1
2 log(k + 1) > 1 + (e− 2)−1.

If

γ ≤ 2

(
max
i

(∑
j

a2ij

)1/2

+ max
j

(∑
i

a2ij

)1/2)
the estimate follows from the trivial bound (2.2). In the opposite case for any |I| ≤ k by
Lemma 2.1 (applied to

∑
i,j /∈I instead of

∑
i,j) there exists a set J of cardinality at most

2 log(k + 1) ≤
√
k disjoint from I and unit vectors t, s such that∥∥∥∥∥∥

∑
i,j∈J

Xijtisj

∥∥∥∥∥∥
log(k+1)

≥ 1

2
γ.

Thus we may inductively construct disjoint sets Il and unit vectors s(l), t(l), 1 ≤ l ≤
√
k

such that

‖Sl‖log(k+1) ≥
1

2
γ, where Sl :=

∑
i,j∈Il

s
(l)
i t

(l)
j Xij .

Let p = 1
2 log(k + 1). Then p ≥ 1 + (e − 2)−1 and by the Khintchine inequality

‖S‖2p ≤
√
e‖S‖p. Thus the lower tail bound for Rademacher sums (2.1) yields

P
(
|Sl| ≥

1

4
√
e
γ
)
≥ P

(
|Sl| ≥

1

2
√
e
‖Sl‖log(k+1)

)
≥ P

(
|Sl| ≥

1

2
‖Sl‖ 1

2 log(k+1)

)
≥ c√

k
. (2.3)

Hence we have

E‖(Xij)‖ ≥
1

4
γP
(

max
l≤
√
k
|Sl| ≥

1

4
γ
)

=
1

4
γ

1−
∏
l≤
√
k

P
(
|Sl| <

1

4
γ
)

≥ 1

4
γ

(
1−

(
1− c√

k

)√k)
≥ 1

4
(1− e−c)γ,
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where the consecutive steps follow by Chebyshev’s inequality, independence of the r.v’s
Sl, the tail bound (2.3) and the inequality 1− y ≤ e−y.

2.2 Proof of Theorem 1.3

Let 1 ≤ p1 ≤ . . . ≤ pd ≤ n/2 be fixed natural numbers. Consider a circulant graph
G = (V,E) where V = [n] and (i, j) ∈ E if and only if i − j = ±pk mod n for some
1 ≤ k ≤ d. Although G is an undirected graph, we treat it as a directed graph for
notational simplicity. It is a regular graph of degree 2d or 2d − 1, when pd 6= n/2 or
pd = n/2 respectively. Therefore it has either |E| = 2dn or (2d − 1)n (directed) edges.
The matrix (1E(i, j))i,j≤n is the adjacency matrix of G. For simplicity of notation we will
denote it by 1E . If I ⊂ V , then we will also write just I for a subgraph (I, (I×I)∩E) ⊂ G.

For fixed k ∈ [n] we introduce the following two subsets of [n]:

Uk = {l ∈ [n] : l = k +
∑
i∈I

pi mod n for some ∅ ⊆ I ⊆ [d]},

Dk = {l ∈ [n] : l = k −
∑
i∈I

pi mod n for some ∅ ⊆ I ⊆ [d]}.

Note that the cardinalities of Uk and Dk do not depend on k and they are both equal
m ≤ 2d. Observe also that for any l ∈ Dk, there are at least d distinct elements of Dk

connected to l with an edge. Moreover i ∈ Dk if and only if k ∈ Ui, hence any i ∈ [n]

belongs to exactly m of the sets Dk, k ∈ [n].
There is a significant similarity between Uk, Dk (as subgraphs ofG) and the hypercube

Zd2. If
∑
i∈I pi 6=

∑
j∈J pj mod n whenever I, J ⊆ [n] and I 6= J , then maps 1I 7→

k±
∑
i∈I pi mod n are isomorphisms between Zd2 and Uk or Dk respectively. Otherwise,

the maps are not injective and two vertices of Zd2 may be pasted into one vertex of Uk or
Dk, which inherits neighbours of both. Nevertheless, the degree of a vertex in Uk or Dk

never exceeds its degree in G, which is at most 2d. Due to this structural similarity, we
will refer to Uk and Dk as ‘the upper cube’ and ‘the lower cube’ at k respectively.

For a fixed sequence k1, . . . , ks ∈ [n] we define the modified, disjoint version of the
lower cubes:

I1 = Dk1 , Il = Dkl \ (
⋃
r<l

Dkr ), l = 2, . . . , s.

We are going to show that k1, . . . , ks can be chosen in such way that |Il|
|Dkl |

= |Il|
m ≥ 7

8

for any l, while at least 1
32 of the edges from E connects vertices belonging to some

Il, 1 ≤ l ≤ s.
Lemma 2.2. Fix a number c ∈ (0, 1) and a set J ⊂ [n] of cardinality |J | ≤ cn. Then there
is k ∈ [n] such that |Dk \ J | ≥ (1− c)m.

Proof. Recall that any i ∈ [n] belongs to exactly m of the sets Dk, k ∈ [n]. Therefore

(1− c)n ≤ |[n] \ J | =
∑

i∈[n]\J

n∑
k=1

1

m
1Dk(i) =

1

m

n∑
k=1

∑
i∈[n]\J

1Dk(i) =
1

m

n∑
k=1

|Dk \ J |.

Lemma 2.3. There are s ≥ n
8m and k1, . . . , ks ∈ [n] such that |Il| ≥ 7

8m for l = 1, . . . , s.
Moreover, ∣∣∣∣∣

s⋃
l=1

(Il × Il) ∩ E

∣∣∣∣∣ ≥ dn

16
.

Proof. Let s := d n8me. We construct inductively k1, . . . , ks. For k1 we choose arbitrary
element of [n]. Assume that k1, . . . , kr are chosen and r < n

8m . Then the set J =
⋃
l≤rDkl

EJP 27 (2022), paper 80.
Page 6/23

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP799
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Norms of randomized circulant matrices

has at most rm < 1
8n elements. Therefore, by Lemma 2.2, there is kr+1 ∈ [n] such that

Dkr+1
\ J has at least 7

8m elements.
Notice that since Il ⊆ Dkl , we have |Dkl \ Il| = |Dkl | − |Il| ≤ 1

8m. Recalling that
|Dkl | = m and each vertex has degree at most 2d, we have

|(Il × Il) ∩ E| ≥ |(Dkl ×Dkl) ∩ E| − |([n]× (Dkl \ Il)) ∩ E| − |((Dkl \ Il)× [n]) ∩ E|

≥ dm− 2d
m

8
− 2d

m

8
=
dm

2
.

Since Il, 1 ≤ l ≤ s are disjoint and s > n
8m , we obtain the result.

It follows that the graph G contains a subgraph G′ = (V,E′) which consists of s
mutually unconnected parts (Il, (Il × Il)∩E), l = 1, . . . , s having at most 2d vertices each,
and it contains at least 3% of the edges from E. In other words, the incidence matrix
I ′ of the graph G′ is a block diagonal matrix (possibly after permutation of rows and
columns), which cuts out at least 3% of ones from 1E . We are going to further improve
this result. In what follows we write (aij) ≤ (bij) if aij ≤ bij for any i, j.

Lemma 2.4. There are block diagonal matrices B1, . . . , BN , N <∞, with blocks of size
at most 2d, such that Bk is an incidence matrix of a graph (V,Ek), Ek ⊂ E, k = 1, . . . , N

and
1

32
1E ≤

1

N

N∑
k=1

Bk.

Proof. We set N = n and as Bk, k = 1, . . . , n we take the adjacency matrix of the
subgraph

⋃
l≤s(Il, (Il × Il) ∩ E) ⊂ G, with coordinates shifted cyclically k times. In the

whole proof, if we write ‘+’, we mean addition mod n. In particular, here for X ⊂ N
and y ∈ Z we write X + y = {x+ y mod n : x ∈ X}.

We start with deriving the following estimate

A :=
1

n

n∑
k=1

1((Dl+k)×(Dl+k))∩E ≥
m

2n
1E for any l ∈ [n]. (2.4)

To this aim observe first that Dl + k = Dl+k. Hence we have

A =
1

n

n∑
k=1

1(Dl+k×Dl+k)∩E =
1

n

n∑
k=1

1(Dk×Dk)∩E .

Let us fix r ∈ [d], i ∈ [n]. Let k ∈ [n] satisfy i ∈ Dk. By the definition of the lower cubes,
there is J ⊆ [d] such that i = k−

∑
j∈J pj . If r ∈ J , then i+ pr = k−

∑
j∈J\{r} pj ∈ Dk, so

(i, i+ pr) ∈ Dk ×Dk. Otherwise i = k + pr −
∑
j∈J∪{r} pj and i+ pr = k + pr −

∑
j∈J pj ,

so (i, i+ pr) ∈ Dk+pr ×Dk+pr . Since |{k ∈ [n] : i ∈ Dk}| = m we get

A =
1

2n

n∑
k=1

(1(Dk×Dk)∩E + 1(Dk+pr×Dk+pr )∩E) ≥ m

2n
1(i,i+pr).

In a similar way we show that A ≥ m
2n1(i,i−pr) for any r ∈ [d], i ∈ [n] and (2.4) easily

follows.
Since i ∈ J + k if and only if k ∈ i− J and |i− J | = |J | we have

1

n

n∑
k=1

1((J+k)×[n])∩E =
|J |
n
1E for any J ⊂ [n]. (2.5)

Now fix l ∈ [n] and I ⊂ Dl such that |Dl \ I| ≤ cm. Then

1((I+k)×(I+k))∩E ≥ 1((Dl+k)×(Dl+k))∩E − 1((Dl\I+k)×[n])∩E − 1([n]×(Dl\I+k))∩E ,
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hence (2.4) and (2.5) imply that

1

n

n∑
k=1

1((I+k)×(I+k))∩E ≥
m(1− 4c)

2n
1E . (2.6)

Let us take k1, . . . , ks as in Lemma 2.3 and set

Bk :=

s∑
l=1

1((Il+k)×(Il+k))∩E .

Then, since |Dkl \ Il| ≤ 1
8m and s ≥ n

8m , estimate (2.6) implies that

1

n

n∑
k=1

Bk ≥ s
m(1− 4/8)

2n
1E ≥

1

32
1E .

In the next lemma we prove a useful norm estimate for block diagonal matrices with
blocks of fixed size. We are going to use the Hadamard product: C = A ·B if cij = aijbij .
By ε = (εij) we denote a matrix with independent symmetric ±1 entries (its size may
change from line to line). Recall definition (1.3) of the norm ‖A‖ε,p.
Lemma 2.5. Assume that A is a block diagonal matrix of size n×n, n ≥ 2, with matrices
A1, . . . , Am on the diagonal. Then
(i) for any p ≥ 1,

‖A‖ε,p = max
l≤m
‖Al‖ε,p,

(ii) for any m ≤ n,

E‖ε ·A‖ ≤ C max
l≤m

(
E‖ε ·Al‖+ ‖Al‖ε,log(n+1)

)
≤ C

(
max
l≤m

E‖ε ·Al‖+ ‖A‖ε,log(n+1)

)
.

Proof. The proof of (i) is an easy exercise. For (ii) we set p = log(n+ 1) and observe that

E‖ε ·A‖ = Emax
l≤m
‖ε ·Al‖ ≤

(
Emax
l≤m
‖ε ·Al‖p

)1/p

≤

(
m∑
l=1

E‖ε ·Al‖p
)1/p

≤ m1/p max
l≤p

(E‖ε ·Al‖p)1/p ≤ emax
l≤m

(E‖ε ·Al‖p)1/p.

A well known result for Bernoulli processes (cf. [3] or more general bound [7,
Theorem 1.1]) states that(

E sup
t∈T

∣∣∣∣∣∑
i

tiεi

∣∣∣∣∣
p)1/p

≤ C

E sup
t∈T

∣∣∣∣∣∑
i

tiεi

∣∣∣∣∣+ sup
t∈T

(
E

∣∣∣∣∣∑
i

tiεi

∣∣∣∣∣
p)1/p


for some constant C. Therefore

(E‖ε ·Al‖p)1/p ≤ C
(
E‖ε ·Al‖+ C‖Al‖ε,log(n+1)

)
and the second part of the assertion easily follows.

Estimation of the operator norm E‖ε ·Al‖ is basically as difficult as Theorem 1.3 itself.
A comparison between Bernoulli and Gaussian processes gives an upper bound of the
form

E sup
t∈T

∣∣∣∣∣∑
i

tiεi

∣∣∣∣∣ ≤ CE sup
t∈T

∣∣∣∣∣∑
i

tigi

∣∣∣∣∣ , (2.7)

EJP 27 (2022), paper 80.
Page 8/23

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP799
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Norms of randomized circulant matrices

where gi are independent standard Gaussian random variables. This bound is far
from optimal in general. However, under some specific assumptions on the matrix Al,
it becomes a sufficient tool for our considerations. Recall that two-sided bound for
E‖(aijgij)‖ was obtained in [8]. In particular, it holds that if (aij) is an n× n matrix and
|aij | ≤ 1, then

E‖(aijgij)‖ ≤ C

max
i

√∑
j

a2ij + max
j

√∑
i

a2ij +
√

log(n)

 . (2.8)

Corollary 2.6. Let A = (aij)i,j≤n be a matrix of size n×n and d ≤ n/2 a natural number.
Assume that
(i) There are natural numbers 1 ≤ p1 ≤ . . . ≤ pd ≤ n/2 such that if aij 6= 0, then
i− j = ±pk mod n for some 1 ≤ k ≤ d,
(ii) |aij | ≤ 1 for any i, j.
Then

E‖ε ·A‖ ≤ C(
√
d+ ‖A‖ε,log(n+1)).

Proof. Assume that Bk = (bij(k)), k = 1, . . . , N are the block diagonal matrices given by
Lemma 2.4. Then we have

E‖ε ·A‖ = E‖ε ·A · 1E‖ ≤ E
∥∥∥∥ε ·A · 32

N

N∑
k=1

Bk

∥∥∥∥ ≤ 32

N

N∑
k=1

E‖ε ·A ·Bk‖

≤ 32 max
k≤N

E‖ε ·A ·Bk‖,

where the first inequality follows by Lemma 2.4, since, by the contraction principle [9,
Theorem 4.4], E‖(εijcij)‖ ≤ E‖(εijdij)‖ if |cij | ≤ |dij | for all i, j.

Each of the matrices ε ·A ·Bk is block diagonal, with blocks of size at most 2d. Let
I1(k), . . . , Im(k) ⊂ [n] be such that the diagonal blocks are of the form (aijbij(k)εij)i,j∈Il(k).
The blocks have coefficients of absolute value at most 1 and in any row at most 2d of
them are nonzero. Hence, using (2.7) and (2.8) applied to the matrix (aijbij(k)εij)i,j∈Il(k)
with |Il(k)| ≤ 2d, we obtain

E‖(aijbij(k)εij)i,j∈Il(k)‖ ≤ C
√
d, k = 1, . . . , N, l = 1, . . . ,m.

Therefore, by Lemma 2.5,

E‖ε ·A ·Bk‖ ≤ C(
√
d+ ‖A ·Bk‖ε,log(n+1)).

Since Bk has 0-1 entries, it holds that ‖A ·Bk‖ε,log(n+1) ≤ ‖A‖ε,log(n+1) and we finish the
proof.

Remark. If we fix δ ∈ (0, 1), then the upper bound in Theorem 1.3, without log log terms
and with a constant depending on δ, follows from Corollary 2.6 under the assumption
that either aij = 0 or δ ≤ |aij | ≤ 1 for any i, j.

Corollary 2.6 not only proves Theorem 1.3 in this special 0-1 (or a bit wider) case.
In general situation, the proof relies on dividing the matrix (aij) into parts, where
all nonzero coordinates differ at most by a constant factor. Then again Corollary 2.6
provides the crucial estimate.

Proof of Theorem 1.3. The lower bound can be deduced from Theorem 1.1. To this aim
it is sufficient to show that

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j

aijεijsitj

∥∥∥∥∥∥
log(n+1)

≤ C min
I⊂[n],|I|≤n/4

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j 6∈I

aijεijsitj

∥∥∥∥∥∥
log(n/4+1)

,
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since the term on the right hand side is trivially bounded by the third term on the
right hand side of (1.1). We denote by s̄, t̄ unit vectors realizing the supremum in the
Rademacher norm:

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j

aijεijsitj

∥∥∥∥∥∥
log(n+1)

=

∥∥∥∥∥∥
∑
i,j

aijεij s̄it̄j

∥∥∥∥∥∥
log(n+1)

.

Such pair (s̄, t̄) is not unique. Observe that circulant matrices have the following shift
invariance property (equality is meant in law)∑

i,j

aijεijsitj
d
=
∑
i,j

aijεijsi+ktj+k, k = 1, . . . , n; s, t ∈ Rn. (2.9)

Here and in the whole proof addition inside indices is mod n.
Fix arbitrary subset I ⊂ [n] with |I| ≤ n/4. For any pair (i, j) ∈ [n]× [n] we have

|{k : i+ k ∈ I ∨ j + k ∈ I}| ≤
∑
l∈I

(|{k : i+ k = l}|+ |{k : j + k = l}|) = 2|I| ≤ n

2
.

Hence i, j 6∈ I − k for at least n/2 distinct values of k. It follows that∣∣aijsitj∣∣ ≤ ∣∣∣∣ 2n
n∑
k=1

aijsitj1{i,j 6∈I−k}

∣∣∣∣
and the following estimate holds:∥∥∥∥∥∥

∑
i,j

aijεij s̄it̄j

∥∥∥∥∥∥
log(n+1)

≤ 2

n

∥∥∥∥∥∥
n∑
k=1

∑
i,j

aijεij s̄it̄j1{i,j 6∈I−k}

∥∥∥∥∥∥
log(n+1)

≤ 2

n

n∑
k=1

∥∥∥∥∥∥
∑

i,j 6∈I−k

aijεij s̄it̄j

∥∥∥∥∥∥
log(n+1)

≤ 2 max
1≤k≤n

∥∥∥∥∥∥
∑

i,j 6∈I−k

aijεij s̄it̄j

∥∥∥∥∥∥
log(n+1)

≤ C sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j 6∈I

aijεijsitj

∥∥∥∥∥∥
log(n/4+1)

,

where the last inequality follows from (2.9) and the Khintchine inequality. This proves
the lower bound.

Now we will show the upper bound. Since the problem is homogenous, we may
assume that maxi,j |aij | = 1. Let A(k) = (a

(k)
ij ) for 0 ≤ k ≤ k0 := blog log(n+ 3)c, where

a
(k)
ij = b

(k)
i−j := bi−j1e−k<|bi−j |≤e−k+1 , k = 1, . . . , k0,

a
(0)
ij = b

(0)
i−j := bi−j1|bi−j |≤e−k0 .

Clearly A(k) are n× n circulant matrices, (aij) =
∑
k A

(k) and for any i, j there is at most

one k such that a(k)ij 6= 0. Applying (2.7) and (2.8) to the matrix ek0A(0) we obtain

E‖ε ·A(0)‖ ≤ C

max
i

√∑
j

(a
(0)
ij )2 + max

j

√∑
i

(a
(0)
ij )2 + e−k0

√
log(n)


≤ C

max
i

√∑
j

a2ij + max
j

√∑
i

a2ij

 = 2C

√∑
j

b2j .
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For k ≥ 1 we assume that dk is the degree of A(k). Then Corollary 2.6 applied to the
matrix ek−1A(k) gives

E‖ε ·A(k)‖ ≤ C(e−k+1
√
dk + ‖A(k)‖ε,log(n+1))

≤ C

e√∑
j

(b
(k)
j )2 + ‖A(k)‖ε,log(n+1)

 . (2.10)

It is not hard to see that ‖A(k)‖ε,log(n+1) ≤ ‖(aij)‖ε,log(n+1). Moreover, by the Cauchy-
Schwartz inequality, for any i we have

log log(n+3)∑
k=1

√∑
j

(b
(k)
j )2 ≤

√
log log(n+ 3)

√∑
j

b2j .

Now the triangle inequality yields

E‖(aijεij)‖ ≤
log log(n+3)∑

k=0

E‖ε ·A(k)‖

≤ C
√∑

j

b2j + C

log log(n+3)∑
k=1

√∑
j

(b
(k)
j )2 + ‖A(k)‖ε,log(n+1)


≤ C

√log log(n+ 3)

√∑
j

b2j + log log(n+ 3)‖(aij)‖ε,log(n+1)

 .

Remark. The crucial observation in the proof of Theorem 1.3 was that for a (directed)
circulant graph (V,E) of degree d there exists matrices B1, . . . , BN such that 1E ≤
1
N

∑N
k=1Bk and Bk are adjacency matrices of graphs with components of cardinality at

most exponential in d. We do not know how broad is the class of graphs of degree d with
such property.

3 Estimates for Rademacher norms

In this section we will show estimates for the quantity

‖(aij)‖ε,p = sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∑
i,j

aijεijsitj

∥∥∥∥∥
p

and apply them in few concrete situations.
We begin with the proof of Proposition 1.4, which gives two-sided bound for ‖A‖ε,p in

the case of 0-1 matrices.

Proof of Proposition 1.4. To get the lower estimate let us fix I ⊂ E of cardinality at most
p. Then for s, t ∈ Rn we have∥∥∥∥∥ ∑

(i,j)∈I

εijsitj

∥∥∥∥∥
p

≥
∑

(i,j)∈I

|si||tj |P
(
∀(i,j)∈I εij = sgn(tisj)

)1/p ≥ 1

2

∑
(i,j)∈I

|si||tj |.

Taking the supremum over s, t ∈ Sn−1 we get ‖1E‖ε,p ≥ 1
2‖1I‖.

To establish the reverse estimate define

M := max
I⊂E,|I|≤p

‖(1{(i,j)∈I})‖.
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Bounding the operator norm of a matrix by its Hilbert-Schmidt norm we get ‖1I‖ ≤
√
|I|,

so that M ≤ √p. We will also assume that p ≥ 2 is an integer (since we may change p to
max{2, dpe} ≤ 2p – observe that the RHS of (1.4) is sublinear with respect to p).

To show the upper bound in (1.4) it is enough to prove that∑
(i,j)∈E

min
{
s2i t

2
j ,
M2

p2

}
≤ C1

M2

p
for ‖s‖2, ‖t‖2 ≤ 1. (3.1)

Indeed, suppose that (3.1) holds. Let us fix s, t with ‖s‖2, ‖t‖2 ≤ 1 and define I :=

{(i, j) ∈ E : |sitj | ≥M/p}. Then by (3.1) we have |I| ≤ C1p, so we may decompose I into
sets I1, I2, . . . IdC1e of cardinality at most p each and get∥∥∥∥∥ ∑

(i,j)∈I

εijsitj

∥∥∥∥∥
p

≤
∑

(i,j)∈I

|sitj | ≤
dC1e∑
l=1

‖1Il‖ ≤ dC1eM.

On the other hand the Khintchine inequality yields∥∥∥∥∥ ∑
(i,j)∈E\I

εijsitj

∥∥∥∥∥
p

≤ √p

( ∑
(i,j)∈E\I

s2i t
2
j

)1/2

≤ √p

( ∑
(i,j)∈E

min
{
s2i t

2
j ,
M2

p2

})1/2

≤
√
C1M.

Thus by the triangle inequality,

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥ ∑
(i,j)∈E

εijsitj

∥∥∥∥∥
p

≤ (dC1e+
√
C1)M.

Let us now make two simple observations on the cardinality of intersection of the set
E with rectangles. To make the notation more concise set r := p2/M2 ≥ p.

i) Every rectangleR = J1×J2 such that |J1||J2| < r contains at most (|J1||J2|)1/2M < p

edges from E. Indeed, if we take s := |J1|−1/21J1 and t := |J2|−1/21J2 and take I ⊂ E ∩R
such that |I| = min{p, |E ∩R|} we get

M ≥ ‖(1{(i,j)∈I})‖ ≥
∑

(i,j)∈I

|tisj | = (|J1||J2|)−1/2|I|.

This shows that |I| ≤ (|J1||J2|)1/2M < r1/2M = p so |I| = |E ∩R| ≤ (|J1||J2|)1/2M .
ii) Every rectangle R = J1 × J2 ⊂ V × V such that |J1||J2| ≥ r contains at most

8p|J1||J2|/r = 8M2|J1||J2|/p edges from E. Indeed we may decompose R into a union of
k ≤ 8|J1||J2|/r rectangles of area smaller than r and use i). (To see such decomposition
we consider a few cases. Case |J1| = 1 is pretty obvious. If |J2| < r we find 2 ≤ l ≤ |J1|
such that |J1||J2|/l < r ≤ |J1||J2|/(l − 1) and partition J1 into at most 2l ≤ 4(l − 1) ≤
4|J1||J2|/r sets of cardinatlity at most |J1|/l. Finally if |J2| > r and |J1| ≥ 2, we may
decompose J2 into at most 2|J2|/r sets of cardinality smaller than r and use the method
of further decomposition described in the previous step).

Since it is only a matter of permutation of rows and columns of the matrix 1E (recall
that we do not assume any symmetry) to establish (3.1) we may assume without loss of
generality that |s1| ≥ |s2| ≥ . . . ≥ |sn| and |t1| ≥ |t2| ≥ . . . ≥ |tn|. We also put tk = sk = 0

for k > n. Let Dk := {2k, 2k + 1, . . . , 2k+1 − 1}. Then by the monotonicity assumption and
above observations,∑

(i,j)∈E

min
{
s2i t

2
j ,
M2

p2

}
≤
∑
k,l≥0

min
{
s22kt

2
2l ,

1

r

}
|E ∩ (Dk ×Dl)|

≤
∑

k+l<log2 r

M2
k+l
2 min

{
s22kt

2
2l ,

1

r

}
+

∑
k+l≥log2 r

8
M2

p
2k+l min

{
s22kt

2
2l ,

1

r

}
. (3.2)
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Observe that by monotonicity of (sk) we have

∑
k≥0

2ks22k ≤ 2

s21 +
∑
k≥0

2ks22k+1

 ≤ 2
∑
k≥0

s2k ≤ 2.

In the same way it follows that
∑
k≥0 2kt22k ≤ 2. Therefore

∑
k+l≥log2 r

2k+l min
{
s22kt

2
2l ,

1

r

}
≤
∑
k,l≥0

2k+ls22kt
2
2l =

(∑
k≥0

2ks22k

)(∑
l≥0

2lt22l

)
≤ 4. (3.3)

Now we will estimate the second term in (3.2). To this aim fix x > 0 and define

l(k) = lx(k) := max{l ≥ 0: s22kt
2
2l ≥ x} for k ∈ A(x) := {k ≥ 0: s22kt1

2 ≥ x},
k(l) = kx(l) := max{k ≥ 0: l(k) = l} for l ∈ B(x) := {l(k) : k ∈ A(x)}.

Note that the function k = k(l) is strictly decreasing on B(x). We have

∑
k,l≥0

2
k+l
2 1{s2

2k
t2
2l
≥x} ≤

∑
k∈A(x)

2
k
2

l(k)∑
l=0

2
l
2 ≤

∑
k∈A(x)

2
k
2

√
2√

2− 1
2
l(k)
2

=

√
2√

2− 1

∑
l∈B(x)

2
l
2

∑
k : l(k)=l

2
k
2 ≤

( √
2√

2− 1

)2 ∑
l∈B(x)

2
k(l)+l

2

≤
( √

2√
2− 1

)2 ∑
l∈B(x)

2
k(l)+l

2
|s2k(l)t2l |√

x

≤ 1√
x

( √
2√

2− 1

)2( ∑
l∈B(x)

2k(l)s22k(l)
)1/2( ∑

l∈B(x)

2ls22l
)1/2

≤ 1√
x

( √
2√

2− 1

)2(∑
k≥0

2ks22k
)1/2(∑

l≥0

2ls22l
)1/2

≤ 2√
x

( √
2√

2− 1

)2
.

Finally observe that

min
{
a,

1

r

}
≤
∞∑
u=0

1

2ur
1{a≥(2ur)−1} for a ≥ 0,

so ∑
k,l≥0

2
k+l
2 min

{
s22kt

2
2l ,

1

r

}
≤
∞∑
u=0

1

2ur

∑
k,l≥0

2
k+l
2 1{s2

2k
t2
2l
≥(2ur)−1}

≤
∞∑
u=0

1

2ur
2(2ur)1/2

( √
2√

2− 1

)2
= 2
( √

2√
2− 1

)3
r−1/2 = 2

( √
2√

2− 1

)3M
p
. (3.4)

Estimates (3.2)-(3.4) imply (3.1), which completes the proof.

The proof of the upper bound in Proposition 1.4 strongly relies on the assumption
that aij ∈ {0, 1}. In the general case we can prove the same lower bound, but the upper
estimate that we provide is significantly weaker.
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Proof of Proposition 1.5. The lower estimate follows by the same argument as in Propo-
sition 1.4.

To get the reverse bound set

M := max
I⊂[n]×[n],|I|≤p

‖(|aij |1{(i,j)∈I})‖.

By the Khintchine inequality we have∥∥∥(aij1{|aij |≤M/
√
p})
∥∥∥
ε,p
≤ √p sup

‖s‖2≤1,‖t‖2≤1

√∑
ij

a2ij1{|aij |≤M/
√
p}s

2
i t

2
j

=
√
pmax

ij
|aij |1{|aij |≤M/

√
p} ≤M,

so it is enough to estimate ‖Ã‖ε,p, where ãij = aij1{|aij |>M/
√
p}. Observe that

M ≥ max
J⊂[n],|J|≤p

max

{
max
i

√∑
j∈J

a2ij ,max
j

√∑
i∈J

a2ij

}
,

so in each row and column there are at most p nonzero elements of matrix Ã and the
length of each row and column of Ã is at most M . Thus by Lemma 2.1 we have that

‖Ã‖ε,p ≤ 2M+ sup
‖s‖2≤1,|supp(s)|≤p,
‖t‖2≤1,|supp(t)|≤p

∥∥∥∥∥∥
∑
ij

ãijεijsitj

∥∥∥∥∥∥
p

≤ 2M+ sup
‖s‖2≤1,|supp(s)|≤p,
‖t‖2≤1,|supp(t)|≤p

∥∥∥∥∥∥
∑
ij

aijεijsitj

∥∥∥∥∥∥
p

.

To estimate the latter quantity take vectors s, t ∈ Sn−1 with support at most p and define

Ik := {(i, j) ∈ [n]× [n] : |aijsitj | ≥ 2−k}, k0 := sup{k : |Ik| ≤ p}.

Then |Ik0 | ≤ p and∥∥∥∥∥ ∑
(i,j)∈Ik0

aijεijsitj

∥∥∥∥∥
p

≤
∑

(i,j)∈Ik0

|aij ||si||tj | ≤ ‖(|aij |1{(i,j)∈Ik0})‖ ≤M.

Taking Ĩ ⊂ Ik0+1 of cardinality bpc ≥ p/2 we see that

M ≥
∑
i,j∈Ĩ

|aijsitj | ≥ 2−1−k0bpc ≥ 2−2−k0p. (3.5)

By the Khintchine inequality we have∥∥∥∥∥ ∑
(i,j)/∈Ik0

aijεijsitj

∥∥∥∥∥
p

≤ √p

( ∑
(i,j)/∈Ik0

a2ijs
2
i t

2
j

)1/2

.

Let (i, j) ∈ [n]× [n] be such that 21−l > |aijsitj | ≥ 2−l for some l > k0. Then

a2ijs
2
i t

2
j ≤ 22−2l = 3

∑
k≥l

2−2k = 3

∞∑
k=k0+1

2−2k1{(i,j)∈Ik},

therefore∥∥∥∥∥ ∑
(i,j)/∈Ik0

aijεijsitj

∥∥∥∥∥
p

≤ √p

(∑
i,j

3

∞∑
k=k0+1

2−2k1(i,j)∈Ik

)1/2

=
√

3p

( ∞∑
k=k0+1

2−2k|Ik|

)1/2

.
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Obviously |Ik| ≤ |supp(s)||supp(t)| ≤ p2, so using (3.5) we obtain

p
∑

k≥k0+ 1
2 log2 p

2−2k|Ik| ≤ p3
∑

k≥k0+ 1
2 log2 p

2−2k ≤ p221−2k0 ≤ 25M2.

Let us take k > k0, then we may partition [n] into disjoint sets J1, . . . , Jnk such that

p ≤ |Ik ∩ (Jl × [n])| ≤ p+ |supp(t)| ≤ 2p, l = 1, . . . , nk − 1, |Ik ∩ (Jnk × [n])| ≤ 2p.

Observe that p(nk − 1) ≤ |Ik| so nk ≤ |Ik|/p+ 1 ≤ 2|Ik|/p. We have

2−k|Ik| ≤
∑

(i,j)∈Ik

|aijsitj | ≤
nk∑
l=1

∑
(i,j)∈Ik∩(Jl×[n])

|aijsitj | =
nk∑
l=1

∑
i∈Jl

|si|
∑
j∈[n]

1{(i,j)∈Ik}|aijtj |

≤
nk∑
l=1

‖(si)i∈Jl‖2‖(|aij |1(i,j)∈Ik∩(Jl×[n]))‖ ≤ 2M
√
nk‖s‖2 ≤ 2

√
2M
√
|Ik|/p.

Thus p2−2k|Ik| ≤ 8M2 and

p
∑

k0<k<k0+
1
2 log2 p

2−2k|Ik| ≤ 4M2 log2 p.

Propositions 1.4 and 1.5 provide bounds for ‖A‖ε,p, however they involve suprema
of operator norms that are quite hard to estimate. In the sequel we will discuss more
conrete estimates, concentrating on the case when A is the adjacency matrix of d-
dimensional hypercube or more general d-dimensional discrete tori.

In the case when A = 1E is the adjacency matrix of a graph G = (V,E) we will denote
‖1E‖ε,p by Nε,p(G), i.e.

Nε,p(G) := sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥ ∑
i,j∈V

1i∼jεijsitj

∥∥∥∥∥
p

,

where i ∼ j means that (i, j) ∈ E.
The next simple lemma presents general bounds that work well for small values of p.

Lemma 3.1. Let G be a graph of maximum vertex degree d. Then Nε,p(G) ≤ min{d,√p}
for any p ≥ 1 and

√
p/8 ≤ Nε,p(G) ≤ √p for 1 ≤ p ≤ d.

Proof. We have∥∥∥∥∥ ∑
i,j∈V

1i∼jεijsitj

∥∥∥∥∥
p

≤
∑
i∼j
|si||tj | ≤

∑
i∼j

1

2
(s2i + t2j ) ≤

d

2
(‖s‖22 + ‖t‖22).

Moreover, by the Khintchine inequality,∥∥∥∥∥ ∑
i,j∈V

1i∼jεijsitj

∥∥∥∥∥
p

≤ √p

(∑
i∼j

s2i t
2
j

)1/2

≤ √p‖s‖2‖t‖2.

Hence the bound Nε,p(G) ≤ min{d,√p} easily follows.
To obtain the last part of the assertion let us fix 1 ≤ p ≤ d, choose a vertex i0 of

degree d and let J be a set consisting of bpc of neighbours of i0. Set s := 1{i0} and
t := |J |−1/21J . Then

Nε,p(G) ≥

∥∥∥∥∥ ∑
i,j∈V

1i∼jεijsitj

∥∥∥∥∥
p

= |J |−1/2
∥∥∥∥∥∑
j∈J

εi0j

∥∥∥∥∥
p

≥ |J |1/2P(εi0j = 1 for j ∈ J)1/p

≥ 1

2
|J |1/2 ≥ 1

2
√

2
p1/2.
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The next lemma gives bounds on Nε,p(G) in terms of expansion and sparsity parame-
ters of G.

Lemma 3.2. Let p ≥ 1 and G = (V,E) be any graph. Then

Nε,p & sup
∅6=I,J⊂V

min{p, |E ∩ (I × J)|}√
|I||J |

. (3.6)

Moreover, if G has maximum vertex degree d, then

Nε,p .
√
d

(
sup
∅6=I⊂V

min{p, |E ∩ (I × I)|}
|I|

)1/2

. (3.7)

Proof. To show the lower bound let us fix ∅ 6= I, J ⊂ V and choose E1 ⊂ E ∩ (I × J)

such that p ≥ |E1| ≥ 1
2 min{p, |E ∩ (I × J)|}. Let s = |I|−1/21I and t = |J |−1/21J . Then by

Proposition 1.4

Nε,p(G) & ‖(1{(i,j)∈E1})‖ ≥
∑

(i,j)∈E1

sitj =
|E1|√
|I||J |

≥ 1

2

min{p, |E ∩ (I × J)|}√
|I||J |

and we get (3.6).
Now we will prove the upper bound. To this aim define

M := sup
∅6=I⊂V

min{p, |E ∩ (I × I)|}
|I|

.

By Proposition 1.4 to establish (3.7) it is enough to show that

sup
E1⊂E,|E1|≤p

sup
‖s‖2,‖t‖2≤1

∑
(i,j)∈E1

|sitj | .
√
dM. (3.8)

Let us fix E1 ⊂ E of cardinality at most p and vectors s, t with ‖s‖2 ≤ 1 and ‖t‖2 ≤ 1.
Set

Ik(u) := {i ∈ V : 2−k < |ui| ≤ 21−k}, u ∈ {s, t}, k = 1, 2, . . . .

Then ∑
(i,j)∈E1

|sitj | ≤
∞∑

k,l=1

21−k21−l|E1 ∩ (Ik(s)× Il(t))|.

Observe that

|E1 ∩ (Ik(s)× Il(t))| ≤ |E1 ∩ ((Ik(s) ∪ Il(t))× (Ik(s) ∪ Il(t)))| ≤M |Ik(s) ∪ Il(t)|.

We also have

|E1 ∩ (Ik(s)× Il(t))| ≤ |E ∩ (Ik(s)× Il(t))| ≤ min{d|Ik(s)|, d|Il(t)|}.

Therefore∑
(i,j)∈E1

|sitj | ≤ 4

∞∑
k,l=1

2−k−l(min{M |Ik(s)|, d|Il(t)|}+ min{d|Ik(s)|,M |Il(t)|}).

We have
∞∑

k,l=1

2−k−l min{M |Ik(s)|, d|Il(t)|}

≤M
∞∑
k=1

2−k|Ik(s)|
∑

l : 2−l≤2−k
√
d/M

2−l + d

∞∑
l=1

2−l|Il(t)|
∑

k : 2−k<2−l
√
M/d

2−k

≤M
∞∑
k=1

21−2k|Ik(s)|
√
d/M + d

∞∑
l=1

21−2l|Il(t)|
√
M/d ≤ 2

√
dM(‖s‖22 + ‖t‖22) ≤ 4

√
dM.
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In a similar way we show that

∞∑
k,l=1

2−k−l min{M |Il(t)|, d|Ik(s)|} ≤ 4
√
dM

and (3.8) easily follows.

The next proposition shows how to apply previous general bounds to the case of the
Hamming hypercube.

Proposition 3.3. Let G = (V,E) be the Hamming hypercube V = Zd2 = {0, 1}d. Then
Nε,p(G) ∼ √p for 2 ≤ p ≤ d, Nε,p(G) ∼ d for p ≥ d2d and√

d
ln p

ln( edln p )
. Nε,p(G) .

√
d ln p for max{d, 2} ≤ p ≤ d2d. (3.9)

Proof. If p ≥ |E| = d2d then (3.6) applied with I = J = V shows that Nε,p(E) & |E|/|V | =
d. Since Nε,p(G) ≤ d by Lemma 3.1 we get the first part of the assertion.

To see the lower estimate in (3.9) define, for 0 ≤ l ≤ n, Vl as the set of all vertices
from V with exactly l coordinates equal to 1. Then al := |Vl| =

(
d
l

)
. There are exactly kak

edges in Vk × Vk−1, so for 1 ≤ k ≤ d/2 such that p ≥ kak we have by (3.6)

Nε,p(G) & ka
−1/2
k−1 a

1/2
k =

√
(d− k + 1)k ∼

√
dk.

We have kak = k
(
d
k

)
≤ (2ed/k)k, hence the condition p ≥ kak holds (recall that d ≤ p ≤

d2d) for k of the order ln p/ ln(ed/ ln p) and the lower bound in (3.9) follows.
To get the upper bound we will use the second part of Lemma 3.2. Harper’s edge-

isoperimetric inequality on the hypercube [4] states that for any set I ⊂ V with cardinality
at most 2k, |E ∩ (I × I)| ≤ k2k. So for p ≥ 2,

sup
∅6=I⊂V

min{p, |E ∩ (I × I)|}
|I|

≤ 1 + sup
∅6=I⊂V,|I|≤p

|E ∩ (I × I)|
|I|

. ln p

and (3.7) yields the upper bound in (3.9).

We may easily extend bounds from the previous proposition to the case Zdm, due to
the following simple lemma.

Lemma 3.4. For any p ≥ 1 and positive integers k, d we have

Nε,p(Z
d
2) ≤ Nε,p(Zd2k) ≤ 2Nε,p(Z

d
2), Nε,p(Z

d
2) ≤ Nε,p(Zd2k+1) ≤ 3Nε,p(Z

d
2).

Proof. Lower bounds follow from the fact that Zd2 is a subgraph of Zdm for any m ≥ 2.
To show the upper bound, we first consider the caseZd2k. Then there are two partitions

of Z2k = {1, . . . , 2k} into pairs: I1,l := {2l − 1, 2l}, 1 ≤ l ≤ k and I2,l = {2l, 2l + 1},
1 ≤ l ≤ k (we identify m + 1 with 1). For a fixed i = (i1, i2, . . . , id) ∈ {1, 2}d we may
treat Ii,l = Ii1,l1 × Ii2,l2 × · · · × Iid,ld , l = (l1, . . . , ld) ∈ {1, . . . , k}d as disjoint subgraphs
of Zd2k isomorphic to Zd2. Let Ei denote edges of Zd2k joining vertices from Ii,l for some
l ∈ {1, . . . , k}d and let Ai be the adjacency matrix of ({1, . . . ,m}d, Ei). Then Ai is a block-
diagonal matrix with kd-blocks such that each block Ai,l is isomorphic to the adjacency
matrix of Zd2. Thus part (i) of Lemma 2.5 yields

‖Ai‖ε,p = max
l
‖Ai,l‖ε,p = Nε,p(Z

d
2).

Observe that every edge of Zd2k belongs to exactly 2d−1 sets Ei (if vertices of this edge
differ at the cooordinate k, there is only one way to choose ik and all other ij j 6= k
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may be chosen in an arbitrary way). Hence we have A = 21−d
∑

iAi (where A is the
adjacency matrix of Zd2k) and

Nε,p(Z
d
2k) = ‖A‖ε,p ≤ 21−d

∑
i

‖Ai‖ε,p = 21−d2dNε,p(Z
d
2) = 2Nε,p(Z

d
2).

In the case Zd2k+1 we proceed in a similar way, but we consider 3 types of disjoint
families of pairs I1 = {{2l − 1, 2l}, 1 ≤ l ≤ k}, I2 = {{2l, 2l + 1}, 1 ≤ l ≤ k} and
I3 = {{2k + 1, 1}}.

Corollary 3.5. Let d,m ≥ 2 and G be the torus Zdm. Then

E‖(1i∼jεij)i,j∈Zdm‖ ∼
√
d+Nε,d logm(Zd2). (3.10)

In particular for 2 ≤ m ≤ ed we have√
d log(d logm)/ log(ed/ log(d logm)) ≤ E‖(1i∼jεij)i,j∈Zdm‖ .

√
d log(d logm).

Proof. We may identify {1, . . . ,m}d with {1, . . . ,md} by (i1, . . . , id)→
∑d
k=1 ikm

k−1. After
such identification the graph Zdm becomes a subgraph of a circulant graph on n = md

vertices defined via 4d bands corresponding to ±mk−1, ±(m− 1)mk−1, k = 1, . . . , d. Thus
by Corollary 2.6 we have

E‖(1i∼jεij)i,j∈Zdm‖ .
√

4d+Nε,d logm(Zdm) ∼
√
d+Nε,d logm(Zd2),

where the last equivalence holds by Lemma 3.4.
For m = 2, 3 by Lemma 3.1 we have Nd logm(Zd2) ∼

√
d . E‖(1i∼jεij)i,j∈Zdm‖ which

shows the lower bound in (3.10) for such m. For m ≥ 4 observe that Zdm contains at least
(bm/2c)d ≥ md/3 := k disjoint copies of Zd2. Thus Theorem 1.1 yields that for such m

E‖(1i∼jεij)i,j∈Zdm‖ &
√
d+Nε,log(k+1)(Z

d
2) ∼

√
d+Nε,d logm(Zd2).

The last part of the assertion follows by (3.10) and Proposition 3.3.

4 Extensions

In this section we will consider a more general class of random matrices with entries
satisfying the condition

‖Xij‖2p ≤ α‖Xij‖p for all i, j ≤ n and p ≥ 1, (4.1)

where α ≥ 1 is a fixed constant. We may generalize to this case the bound from
Theorem 1.1.

Theorem 4.1. Let (Xij)i,j≤n be independent, mean zero r.v’s satisfying condition (4.1).
Then

E‖(Xij)‖ &α max
1≤i≤n

 n∑
j=1

EX2
ij

1/2

+ max
1≤j≤n

(
n∑
i=1

EX2
ij

)1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

Xijsitj

∥∥∥∥∥∥
log(k+1)

. (4.2)

In order to show this result we need the following generalization of Lemma 2.1.

EJP 27 (2022), paper 80.
Page 18/23

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP799
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Norms of randomized circulant matrices

Lemma 4.2. Let β := max{1/2, log2 α}, then for any p ≥ 2,

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
ij

Xijsitj

∥∥∥∥∥∥
p

≤ sup
‖s‖2≤1,|supp(s)|≤p2β ,
‖t‖2≤1,|supp(t)|≤p2β

∥∥∥∥∥∥
∑
ij

Xijsitj

∥∥∥∥∥∥
p

+ C(α)

(
max
i

∑
j

EX2
ij

1/2

+ max
j

∑
j

EX2
ij

1/2)
.

Proof. We proceed in the similar way as in the proof of Lemma 2.1. We change p−1 to
p−2β in the definition of sets Ik(z) and use the following extension of the Khintchine
inequality (cf. Lemma 4.1 in [7])∥∥∥∥∥∥

∑
i,j

uijXij

∥∥∥∥∥∥
p

≤ C(α)
(p
q

)β ∥∥∥∥∥∥
∑
i,j

uijXij

∥∥∥∥∥∥
q

for p ≥ q ≥ 2. (4.3)

Proof of Theorem 4.1. The proof of Theorem 1.1 works here with the following modifica-
tions:

• The constants depend on α;

• We use the generalized Khintchine-Kahane inequality: E‖(Xij)‖ ∼α (E‖(Xij)‖2)1/2

(cf. [7]);

• Instead of the Khintchine inequality we apply (4.3);

• To get P(Sl ≥ c′(α)‖Sl‖log(k+1)) ≥ c′(α)√
k

we use the Paley-Zygmund inequality
and (4.3) as in the proof of (4.6) in [7].

Theorem 4.1 motivates the following generalization of Conjecture 1.2.

Conjecture 4.3. Let (Xij)i,j≤n be independent, mean zero r.v’s satisfying condition (4.1).
Then

E‖(Xij)‖ ∼α max
i

∑
j

EX2
ij

1/2

+ max
j

(∑
i

EX2
ij

)1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

Xijsitj

∥∥∥∥∥∥
log(k+1)

.

The operator norm is trivially bigger than maximum length of columns/rows. In [8] it
was shown that in the case when Xij are mixtures of Gaussian r’v’s then this bound may
be reversed in expectation:

E‖(Xij)‖ ∼ Emax
i

√∑
j

X2
ij + Emax

j

√∑
i

X2
ij .

The proposition below implies in particular that Conjecture 4.3 holds for mixtures of
Gaussian variables.

Proposition 4.4. Let (Xij)i,j≤n be independent, mean zero r.v’s satisfying condition (4.1).
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Then

Emax
i

√∑
j

X2
ij .α max

i

∑
j

EX2
ij

1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖t‖2≤1

max
i/∈I

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
log(k+1)

.α max
i

∑
j

EX2
ij

1/2

+ max
j

(∑
i

EX2
ij

)1/2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖t‖2≤1

max
i/∈I

∥∥∥∥∥∥
∑
j /∈I

Xijtj

∥∥∥∥∥∥
log(k+1)

.

Proof. Let

γ := max
1≤k≤n

min
I⊂[n],|I|≤k

sup
‖t‖2≤1

max
i/∈I

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
log(k+1)

.

Let us put rows/columns of X in such a way that for 1 ≤ l ≤ log n,

sup
‖t‖2≤1

max
i≥2l+1

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
l

≤ γ.

The weak-strong concentration result [7] shows that

max
2l+1≤i≤2l+2

∥∥∥∥∥∥
√∑

j

X2
ij

∥∥∥∥∥∥
l

≤α max
i

∑
j

EX2
ij

1/2

+ sup
‖t‖2≤1

max
2l+1≤i≤2l+2

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
l

.

Finally it is not hard to observe that

Emax
i≥4

√∑
j

X2
ij . max

l≥1
max

2l+1≤i≤2l+2

∥∥∥∥∥∥
√∑

j

X2
ij

∥∥∥∥∥∥
l

.

To see the last estimate in the assertion let us fix 1 ≤ k ≤ n and choose Ik ⊂ [n] such
that |Ik| ≤ k and

min
I⊂[n],|I|≤k

sup
‖t‖2≤1

max
i/∈I

∥∥∥∥∥∥
∑
j /∈I

Xijtj

∥∥∥∥∥∥
log(k+1)

= sup
‖t‖2≤1

max
i/∈Ik

∥∥∥∥∥∥
∑
j /∈Ik

Xijtj

∥∥∥∥∥∥
log(k+1)

.

For any j ∈ Ik let I(j) be the subset of [n] containing indices of (k − 1) largest elements
of the sequence (EX2

ij)i∈[n]. Put Ĩk = Ik ∪
⋃
j∈Ik I(j). Then |Ĩk| ≤ k2 and by (4.3)

γ ≤ max
1≤k≤n

sup
‖t‖2≤1

max
i/∈Ĩk

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
log(k2+1)

≤ C(α) max
1≤k≤n

sup
‖t‖2≤1

max
i/∈Ĩk

∥∥∥∥∥∥
∑
j

Xijtj

∥∥∥∥∥∥
log(k+1)

.

We have

sup
‖t‖2≤1

max
i/∈Ĩk

∥∥∥∥∥∥
∑
j /∈Ik

Xijtj

∥∥∥∥∥∥
log(k+1)

≤ sup
‖t‖2≤1

max
i/∈Ik

∥∥∥∥∥∥
∑
j /∈Ik

Xijtj

∥∥∥∥∥∥
log(k+1)
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and, applying again (4.3),

sup
‖t‖2≤1

max
i/∈Ĩk

∥∥∥∥∥∥
∑
j∈Ik

Xijtj

∥∥∥∥∥∥
log(k+1)

≤ C(α) logβ(k + 1) sup
‖t‖2≤1

max
i/∈Ĩk

∥∥∥∥∥∥
∑
j∈Ik

Xijtj

∥∥∥∥∥∥
2

= C(α) logβ(k + 1) max
i/∈Ĩk

max
j∈Ik

(EX2
ij)

1/2

≤ C(α) logβ(k + 1) max
j∈Ik

max
i/∈I(j)

(EX2
ij)

1/2

≤ C(α) logβ(k + 1)
1√
k

max
j∈Ik

(∑
i

EX2
ij

)1/2
≤ C ′(α) max

j

(∑
i

EX2
ij

)1/2
.

Remark 4.5. The decomposition/permutation trick of [8] shows that in order to show
the upper part of Conjecture 4.3 it is enough to prove that

E‖(Xij)i,j≤n‖ .α max
i

∑
j

EX2
ij

1/2

+ max
j

(∑
i

EX2
ij

)1/2

+ sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j

Xijsitj

∥∥∥∥∥∥
log(n+1)

. (4.4)

Sketch of the proof. The standard argument (cf. proof of [8, Corollary 4.1]) shows that
we may consider symmetric matrices X = (Xij), i.e. the case when Xij = Xji and
(Xij)i≥j are independent mean zero r.v’s satisfying condition (4.1). We assume that (4.4)
holds for any square submatrix of X and we will show that

E‖(Xij)‖ .α a+ γ,

where

a := max
i

∑
j

EX2
ij

1/2

, γ := max
k≥1

min
|I|≤k

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I

Xijsitj

∥∥∥∥∥∥
log(k+1)

.

Observe that for p ≥ 2, ‖Xij‖p ≤ αplog2 α‖Xij‖2 ≤ αpβ‖Xij‖2, where β = max{1/2, log2 α}.
Thus the proof of the upper bound in [8, Theorem 4.4] shows that

E‖(Xij)i,j‖ .α a+ max
i

logβ(i) max
j
‖Xij‖2. (4.5)

Now we construct a permutation (i1, . . . , in) of indices {1, . . . , n} in a similar way as

in the proof of [8, Theorem 3.9]. We set N0 = 1 and Nk = 22
k

for k ≥ 1. We choose
I1 = {i1, . . . , iN1} in such a way that

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑
i,j /∈I1

Xijsitj

∥∥∥∥∥∥
log(N1+1)

≤ γ.

Suppose that we have selected Ik = {i1, . . . , iNk}. Then first among the remaining indices
we choose NkNk−1 indices i that contain the Nk−1 largest L2-norms ‖Xij‖2 of each
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column j ∈ Ik. Finally among remaining indices we choose Nk+1 −Nk −NkNk−1 ≥ Nk
indices i in such a way that Ik+1 = {i1, . . . , iNk+1

} satisfies

sup
‖s‖2,‖t‖2≤1

∥∥∥∥∥∥
∑

i,j /∈Ik+1

Xijsitj

∥∥∥∥∥∥
log(Nk+1)

≤ γ.

The above construction implies in particular that

‖Xij‖2 ≤ aN−1/2k−1 = a2−2
k−2

when j ≤ Nk and i ≥Mk := Nk +NkNk−1. (4.6)

We set

E1 := [1,M1]2 ∪
⋃
k≥1

[N2k,M2k+1], E2 :=
⋃
k≥1

[N2k−1,M2k] \ E1, E3 := [1, n]2 \ (E1 ∪ E2)

and write X = U + V +W , where

Uij := Xij1{(i,j)∈E1}, Vij := Xij1{(i,j)∈E2}, Wij := Xij1{(i,j)∈E3}.

Matrix U is block diagonal with the first block U1 = (Xij)i,j∈J1 of dimension |J1| = M1

and blocks Uk = (Xij)i,j∈Jk for k ≥ 2 of dimension |Jk| = M2k−1 −N2k−2 + 1. We have

(E‖U1‖2)1/2 ≤
( ∑
i,j∈[1,M1]

EX2
ij

)1/2
≤M1/2

1 a

and for k = 2, 3, . . .(
E‖Uk‖2

k
)2−k

∼α E‖Uk‖+ sup
‖s‖2,‖t‖2≤1

∥∥∥ ∑
i,j∈Jk

Xijsitj

∥∥∥
2k

.α a+ sup
‖s‖2,‖t‖2≤1

∥∥∥ ∑
i,j /∈I2k−3

Xijsitj

∥∥∥
2k

.α a+ γ,

where the first equivalence follows by comparison of weak and strong moments [7,
Theorem 1.1] and the last one by the construction of Ik. Therefore

E‖U‖ = E sup
k≥1
‖Uk‖ . sup

k≥1

(
E‖Uk‖2

k
)1/2k

.α a+ γ.

In a similar way we show that E‖V ‖ ≤ a + γ. Finally observe that if (i, j) ∈ E3 and
Mk ≤ i < Nk+1 then either j ≤ Nk or j ≥ Mk+1 and if Nk+1 ≤ i < Mk+1 then j ≤ Nk or
j ≥Mk+2. In all this cases ‖Xij‖2 ≤ a2−2

k−2

by (4.6). Thus (4.5) yields

E‖W‖ .α a+ sup
k

logβ(Mk+1) max
Mk≤i<Mk+1

max
j
‖Xij‖2 .α a+ sup

k
2kβa2−2

k−2

.α a.
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