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Abstract. We derive sharp comparison inequalities between weak and strong mo-
ments of random vectors in arbitrary finite dimensional Banach space. As an applica-
tion, we show that the p-summing constant of any finite dimensional Banach space is
upper bounded, up to a universal constant, by the p-summing constant of the Hilbert
space of the same dimension. We also apply our result to the concentration of measure
theory for log-concave random vectors in Euclidean spaces.
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1. Introduction

The study of moments of random variables is an essential issue of probability theory,
one of the reasons being the fact that tail estimates for random variables are related to
bounds for their moments via the Markov inequality. In probabilistic convex geometry
and concentration of measure theory one is often interested in bounding pth moments
of random vectors. To be more precise, the pth strong moment of a random vector
X in Rn with respect to a given norm structure (Rn, ‖ · ‖) is defined as Mp(X) =
(E‖X‖p)1/p. Another related quantity is the so-called weak pth moment defined as
σp(X) = sup‖t‖∗≤1(E| 〈t,X〉 |p)1/p, where ‖ · ‖∗ denotes the dual norm. Weak moments
are usually much easier to compute or estimate, and so comparison inequalities between
weak and strong moments are of interest in convex geometry, see e.g. [6].

Clearly the strong moment always dominates the weak moment. In this article we
derive a sharp (up to a universal constant) reverse bound.

Theorem 1. For any n-dimensional random vector X and any nonempty set T in Rn

we have

(1)

(
E sup

t∈T
|〈t,X〉|p

)1/p

≤ 2
√
e

√
n+ p

p
sup
t∈T

(E|〈t,X〉|p)1/p for p ≥ 2.

In particular, for any normed space (Rn, ‖ · ‖) we have

(E‖X‖p)1/p ≤ 2
√
e

√
n+ p

p
sup
‖t‖∗≤1

(E|〈t,X〉|p)1/p for p ≥ 2.
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To see that (1) is optimal up to a universal constant it suffices to take any rotation-
ally invariant random vector X and T to be a centered Euclidean ball. In this case

Mp(X)/σp(X) = (E|U1|p)−1/p ∼
√

n+p
p

, where U1 is the first coordinate of a random

vector uniformly distributed on the unit sphere in Rn.
Obtaining upper bounds for strong moments in terms of weak moments turns out to

be very challenging. As an example let us mention the Paouris inequality Mp(X) ≤
C(M1(X) + σp(X)) valid for the standard Euclidean norm and arbitrary log-concave
random vector X in Rn, see [19] and [1] (see also [15] for an extension of this result to
a larger class of norms). Here and in the sequel C denotes an absolute constant, whose
value may change at each occurrence. Usually, to derive such bounds one applies the
concentration of measure theory [17] or the chaining method [23]. What is crucial in
these reasonings is the regularity of the random vector X and/or the special form of
the norm. Our proof uses a totally different linear algebra method of Hadamard powers
inspired by the proof of the so-called Welch bound (see [24]) given in [7].

We now use our result to derive bounds on p-summing norms of operators between
Banach spaces. The theory of absolutely summing operators is an important part of the
modern Banach space theory and found numerous powerful applications in harmonic
analysis, approximation theory, probability theory and operator theory [8]. Recall that
a linear operator Φ between Banach spaces F1 and F2 is p-summing if there exists a
constant α <∞, such that for all x1, . . . xm ∈ F1 one has(

m∑
i=1

‖Φxi‖p
)1/p

≤ α sup
x∗∈F ∗

1 ,‖x∗‖≤1

(
m∑
i=1

|x∗(xi)|p
)1/p

.

The smallest constant α in the above inequality is called the p-summing norm of Φ and
will be denoted by πp(Φ). For a Banach space F by the p-summing constant πp(F ) of
F we mean the p-summing constant of the identity map of F . It is well known that
πp(F ) < ∞ if and only if F is finite dimensional. Moreover π2(F ) =

√
dimF (see [10,

Theorem 16.12.3]). The p-summing constants of certain finite dimensional spaces were
computed by Gordon in [11]. In particular he showed that

πp(`
n
2 ) = (E|U1|p)−1/p ∼

√
n+ p

p
.

An immediate consequence of our main result is that, up to a universal constant, Hilbert
spaces have the largest p-summing constant among all Banach spaces of fixed dimension.

Corollary 2. For any finite dimensional Banach space F and p ≥ 2 we have

πp(F ) ≤ 2
√
e

√
dimF + p

p
≤ Cπp(`

dimF
2 ).

Indeed, it suffices to apply Theorem 1 for random vectors uniformly distributed on
finite subsets of F and T the unit ball in F ∗. We ask the following question.

Question. Is it true that for any finite dimensional Banach space F and p ≥ 2 we
have πp(F ) ≤ πp(`

dimF
2 )? Equivalently, is it true that the best constant in Theorem 1

is equal to (E|U1|p)−1/p?
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Using the ideal properties of p-summing operators (see [8]) we get a bound for p-
summing constants of finite rank operators.

Corollary 3. Let Φ be a finite rank linear operator between Banach spaces F1 and F2.
Then the p-summing constant of Φ satisfies

πp(Φ) ≤ 2
√
e

√
rk(Φ) + p

p
‖Φ‖.

For the proof it suffices to consider the decomposition Φ = i ◦ I ◦ Φ̃ where Φ̃ is Φ
considered as an operator between F1 and Φ(F1), I is the identity map on Φ(F1) and
i is the embedding of Φ(F1) into F2. The ideal property gives πp(Φ) ≤ ‖i‖πp(I)‖Φ̃‖,
which combined with Corollary 2 gives the desired bound.

Inequality (1) has been conjectured (with a universal constant in place of 2
√
e) in

the language of the so-called Zp bodies by the first named author in [13] (see Problem 1
therein), where certain special cases have been studied. Inequality (1) arose as a result
of investigating optimal concentration of measure inequalities. The discussion of this
application will be given is Section 3. Section 2 is devoted to the proof of Theorem 1.

2. Proof of the main result

We shall need the following lemma, which can be found in [2], Lemma 9.2 (see also
[20] for a version for Gram matrices).

Lemma 4. Suppose A = (aij) is a k × l matrix of rank at most n. Let m be a positive
integer. Then the Hadamard power A◦m = (amij ) has rank at most

(
n+m−1

m

)
.

Proof. Since the space spanned by the column vectors of A has dimension at most n,
there exist vectors v(1), . . . , v(n) in Rk such that every column a = (a1, . . . , ak) of A can
be written as a linear combination of these vectors, that is a =

∑n
s=1 v

(s)λs for some

real numbers λs. Restricting this equality to the ith coordinate gives ai =
∑n

s=1 v
(s)
i λs.

If we now raise this equality to the mth power, we obtain

ami =
n∑

s1,s2,...,sm=1

v
(s1)
i v

(s2)
i · . . . · v(sm)

i λs1λs2 · . . . · λsm .

Thus, every column am of A◦m can be written as a linear combination of the vectors

(v
(s1)
i v

(s2)
i · . . . · v(sm)

i )i=1,...,k. Since these vectors are invariant under permuting the
numbers si, we can assume that 1 ≤ s1 ≤ s2 ≤ . . . ≤ sm ≤ n. The number of such
sequences is precisely

(
n+m−1

m

)
. �

Corollary 5. Let k, l,m and n be positive integers. For any vectors t1, . . . , tk and
x1, . . . , xl in Rn there exist vectors t̃1, . . . , t̃k and x̃1, . . . , x̃l in RN with N =

(
n+m−1

m

)
such that 〈ti, xj〉m =

〈
t̃i, x̃j

〉
for all 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Proof. The k× l matrix A = (〈ti, xj〉) is of the form A = TX where T is a k×n matrix
whose ith row is the vector ti and X is a n× l matrix whose jth column is the vector
xj. Thus A is a matrix of a composition of two linear maps Rl → Rn and Rn → Rk

and thus has rank at most n. According to Lemma 4 the rank of A◦m = (〈ti, xj〉m) is
3
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at most N . From the rank factorization theorem the matrix A◦m can be written as a
product T̃ X̃, where T̃ is a k×N matrix and X̃ is a N × l matrix. It suffices to take t̃i
to be ith row of T̃ and x̃j to be the jth column of X̃. �

We now consider the case p = 2 of Theorem 1.

Lemma 6. For any n-dimensional random vector X and any nonempty set T in Rn

we have

E sup
t∈T
|〈t,X〉|2 ≤ n sup

t∈T
E|〈t,X〉|2.

Proof. By an approximation argument without loss of generality we may assume that
X is bounded and has a nondegenerate covariance matrix C. We can also assume that
X is symmetric (if not multiply X by an independent symmetric ±1 random variable).
Let α := supt∈T E|〈t,X〉|2 = supt∈T 〈Ct, t〉. Then

E sup
t∈T
|〈t,X〉|2 ≤ E sup{|〈s,X〉|2 : 〈Cs, s〉 ≤ α}

= E sup{|〈C1/2s, C−1/2X〉|2 : |C1/2s|2 ≤ α} = αE|C−1/2X|2 = αn.

�

The crucial case of Theorem 1 is the case of p being an even integer.

Proposition 7. Suppose m is a positive integer. Then for any n-dimensional random
vector X and any nonempty set T in Rn we have

E sup
t∈T
|〈t,X〉|2m ≤

(
n+m− 1

m

)
sup
t∈T

E|〈t,X〉|2m.

Proof. By an easy approximation argument we can assume that T = {t1, . . . , tk} is a
finite subset of Rn and X is uniformly distributed on a finite number of points x1, . . . , xl
in Rn. In this case the above inequality reads

(2)
l∑

j=1

sup
1≤i≤k

| 〈ti, xj〉 |2m ≤
(
n+m− 1

m

)
sup
1≤i≤k

l∑
j=1

| 〈ti, xj〉 |2m.

From Corollary 5 there exist vectors t̃1, . . . , t̃k and x̃1, . . . , x̃l in RN with N =
(
n+m−1

m

)
such that 〈ti, xj〉m =

〈
t̃i, x̃j

〉
for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. From Lemma 6 used

to the set T ′ = {t̃1, . . . , t̃k} ⊂ RN and a random variable X ′ uniformly distributed in
{x̃1, . . . , x̃l} ⊂ RN we have

l∑
j=1

sup
1≤i≤k

|
〈
t̃i, x̃j

〉
|2 ≤ N sup

1≤i≤k

l∑
j=1

|
〈
t̃i, x̃j

〉
|2.

This is precisely (2). �

Our next lemma shows that the best constant Cn,p in the inequality (1) is a monotone
function of p.

4
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Lemma 8. Let p > 0 and let Cn,p be the best constant such that for any n-dimensional
random vector X and any nonempty set T in Rn we have

(3)

(
E sup

t∈T
|〈t,X〉|p

)1/p

≤ Cn,p sup
t∈T

(E|〈t,X〉|p)1/p .

Then the function p→ Cn,p is non-increasing.

Proof. Suppose 0 < p < q and let µX be the law of X. By rescaling X one can assume
that E supt∈T | 〈t,X〉 |q−p = 1. This allows us to define a new random vector Y whose
law µY is given by

µY (A) =

∫
A

sup
t∈T
| 〈t, x〉 |q−pdµX(x).

Thus, by Hölder’s inequality

E sup
t∈T
| 〈t,X〉 |q = E sup

t∈T
| 〈t, Y 〉 |p ≤ Cp

n,p sup
t∈T

E| 〈t, Y 〉 |p

= Cp
n,p sup

t∈T
E
[
| 〈t,X〉 |p sup

s∈T
| 〈s,X〉 |q−p

]
≤ Cp

n,p sup
t∈T

(E| 〈t,X〉 |q)
p
q

(
E sup

s∈T
| 〈s,X〉 |q

) q−p
q

.

Rearranging gives the inequality

(E sup
t∈T
| 〈t,X〉 |q)1/q ≤ Cn,p sup

t∈T
(E| 〈t,X〉 |q)1/q

and thus Cn,q ≤ Cn,p. �

We are now ready to give a proof of the main result.

Proof of Theorem 1. Let m be a positive integer such that 2m ≤ p < 2m + 2. By
Lemma 8 and Proposition 7 we get that the best constant Cn,p in (3) satisfies

C2
n,p ≤ C2

n,2m ≤
(
n+m− 1

m

)1/m

≤ e(n+m− 1)

m
≤ e

n+ p/2

p/4
≤ 4e

n+ p

p
.

�

3. Optimal concentration of measure

Let us notice that by homogeneity one can always assume that the supremum on the
right hand side of (1) is one. Then by enlarging the set T we may assume that T is the
set of all vectors t satisfying E| 〈t,X〉 |p ≤ 1. Thus, inequality (1) may be equivalently
stated as

(4)
(
E‖X‖pZp(X)

)1/p
≤ 2
√
e

√
n+ p

p
,

where

‖s‖Zp(X) := sup{|〈t, s〉| : E|〈t,X〉|p ≤ 1}.
5
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This has been conjectured (with a universal constant in place of 2
√
e) by the first named

author in [13] (see Problem 1 therein), where the result in the case of unconditional
random vectors was obtained. Thus Theorem 1 positively resolves this conjecture.

The motivation behind inequality (4) was the study of the concentration of measure
phenomenon. Let ν be a symmetric exponential measure with parameter 1, i.e. the
measure on the real line with the density 1

2
e−|x|. Talagrand [22] showed that the product

measure νn satisfies the following two-sided concentration inequality

νn(A) ≥ 1

2
=⇒ 1− νn(A+ C

√
pBn

2 + CpBn
1 ) ≤ e−p(1− νn(A)), p > 0.

This is a remarkably strong concentration result implying, for example, the celebrated
concentration of measure phenomenon for the canonical Gaussian measure γn on Rn:

γn(A) ≥ 1

2
=⇒ 1− γn(A+ C

√
pBn

2 ) ≤ e−p(1− γn(A)), p > 0,

discovered (in the sharp isoperimetric form) by Sudakov and Tsirelson in [21], and
independently by Borell in [4].

It is not hard to check that Zp(ν
n) ∼ √pBn

2 + pBn
1 and Zp(γn) ∼ √pBn

2 for p ≥ 2,
where for a probability measure µ on Rn and a random vector X distributed according
to µ we set

Zp(µ) = Zp(X) = {t ∈ Rn : ‖t‖Zp(X) ≤ 1}.
In the context of convex geometry it is natural to ask if similar inequalities hold for
other log-concave measures, namely measures with densities of the form e−V , where
V : Rn → (−∞,∞] is convex. An easy observation from [16] shows that if µ is
a symmetric log-concave probability measure and K is a convex set such that for any
halfspace A satisfying µ(A) ≥ 1

2
we have µ(A+K) ≥ 1− 1

2
e−p, then necesarily K ⊃ 1

C
Zp.

This motivates the following definition proposed in [16].

Definition 9. We say that a measure µ satisfies the optimal concentration inequality
with constant β ( CI(β) in short) if for any Borel set A we have

µ(A) ≥ 1

2
=⇒ 1− µ(A+ βZp(µ)) ≤ e−p(1− µ(A)), p ≥ 2.

All centered product log-concave measures satisfy the optimal concentration inequality
with a universal constant β ([16]). A natural conjecture (discussed in [16, 14]) states
that this is true also for nonproduct measures. However, one has to mention that it
would imply (see Corollary 3.14. in [16]) the celebrated KLS conjecture (proposed in
[12] as a tool for proving efficiency of certain Metropolis type algorithms for computing
volumes of convex sets) on the boundedness of the Cheeger constant for isotropic log-
concave measures . It was shown in [14] that every log-concave measure on Rn satisfies
CI(c

√
n) with a universal constant c. The following corollary improves upon this bound.

Corollary 10. Every centered log-concave probability measure on Rn satisfies the op-
timal concentration inequality with constant β ≤ Cn5/12.

Proof. We follow the ideas expained after the proof of Proposition 7 in [14], but instead
of Eldan’s bound on the Cheeger constant [9] we use the recent result of Lee and
Vempala [18].

6
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Since the concentration inequality is invariant with respect to linear transformations
we may assume that µ is isotropic. Then in particular Zp(µ) ⊃ Z2(µ) = Bn

2 .
By Proposition 2.7 in [16] CI(β) may be equivalently stated as

µ(A+ βZp(µ)) ≥ min

{
1

2
, epµ(A)

}
, p ≥ 2.

To show the above bound with β = Cn5/12 we consider two cases.
i) If 2 ≤ p ≤ n1/6 then

µ(A+ Cn5/12Zp(µ)) ≥ µ(A+ Cn1/4pBn
2 ) ≥ min

{
1

2
, epµ(A)

}
,

where the last inequality follows by the Lee-Vempala [18] Cn1/4 bound on the Cheeger
constant.

ii) If p ≥ max{2, n1/6} then observe first that inequality (4) yields

µ

(
2e3/2

√
n+ p

p
Zp(µ)

)
≥ 1− e−p.

Therefore Lemma 9 in [14] gives

µ(A+ Cn5/12Zp(µ)) ≥ µ

(
A+ 18e3/2

√
n+ p

p
Zp(µ)

)
≥ min

{
1

2
, epµ(A)

}
.

�

In general one cannot reverse bound (4) for 2� p� n. Indeed, let e1, . . . , en be the
canonical basis of Rn and P(X = ±ei) = 1/(2n) for 1 ≤ i ≤ n. Then for s, t ∈ Rn,

E|〈t,X〉|p =
1

n

n∑
i=1

|ti|p, ‖s‖Zp(X) = n1/p

(
n∑

i=1

|si|q
)1/q

,

where q denotes the Hölder dual to p. Thus for 2� p� n,(
E‖X‖pZp(X)

)1/p
= n1/p �

√
n+ p

p
.

Corollary 6 in [13] states that for unconditional log-concave vectors in Rn and 2 ≤ p ≤ n
we have

1

C

√
n

p
≤ E‖X‖Zp(X) ≤

(
E‖X‖

√
np

Zp(X)

)1/√np
≤ C

√
n

p
.

We do not know whether such bounds hold without unconditionality assumptions. We
are only able to show the following weaker lower bound. Recall that the isotropic
constant of a centered logconcave vector X with density g is defined as

LX := (sup
x
g(x))1/n(det Cov(X))1/(2n).

It is known that for all log-concave vectors one has LX ≥ 1/C. The famous open
conjecture, due to Bourgain [5], states that LX ≤ C (see [3, 6] for more details and
discussions of known upper bounds).

7
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Proposition 11. For any centered log-concave n-dimensional random vector with non-
degenerate covariance matrix we have

E‖X‖Zp(X) ≥
1

CLX

√
n

p
for 1 ≤ p ≤ n,

where LX is the isotropic constant of X.

Proof. Since the assertion is linearly invariant we may and will assume that X is
isotropic, i.e. it has the identity covariance matrix. The density of X is then bounded
by Ln

X , hence

P
(
‖X‖Zp(X) ≤ t

√
n/p
)

= P
(
X ∈ t

√
n/pZp(X)

)
≤ Ln

Xvol
(
t
√
n/pZp(X)

)
≤ (C1tLX)n,

where the last estimate follows by the Paouris [19] bound on the volume of Zp-bodies
(see also [6, Theorem 5.1.17]).

Thus

E‖X‖Zp(X) ≥
1

2C1LX

√
n

p
P
(
‖X‖Zp(X) >

1

2C1LX

√
n

p

)
≥ 1

4C1LX

√
n

p
.

�

In the last years it was showed that various constants related to the n-dimensional
log-concave measures (isotropic constant, Cheeger constant, thin-shell constant) are
bounded by Cn1/4. We think that the same should be true for the CI constant.

Acknowledgments. The authors are very grateful to the anonymous referee for com-
municating the reference to Lemma 4.
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