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Abstract

We derive moment and tail estimates for Gaussian chaoses of arbitrary order with
values in Banach spaces. We formulate a conjecture regarding two-sided estimates
and show that it holds in a certain class of Banach spaces including Lq spaces. As a
corollary we obtain two-sided bounds for moments of chaoses with values in Lq spaces
based on exponential random variables.
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1 Introduction

Multivariate polynomials in Gaussian variables have been extensively studied at
least since the work of Wiener in the 1930s. They have found numerous applications
in the theory of stochastic integration and Malliavin calculus [12, 22, 23], functional
analysis [11], limit theory for U -statistics [9] or long-range dependent processes [29],
random graph theory [12], and more recently computer science [7, 14, 19, 24]. While
early results considered mostly polynomials with real coefficients, their vector-valued
counterparts also appear naturally, e.g., in the context of stochastic integration in Banach
spaces [20], in the study of weak limits of U-processes [9], as tools in characterization of
various geometric properties of Banach spaces [11, 25, 26] or in the analysis of empirical
covariance operators [1, 30]. Apart from applications, the theory of Gaussian polynomials
has been studied for its rich intrinsic structure, with interesting interplay of analytic,
probabilistic, algebraic and combinatorial phenomena, leading to many challenging
problems. For a comprehensive presentation of diverse aspects of the theory we refer to
the monographs [9, 11, 12, 17].
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Moments of Gaussian chaoses in Banach spacess

An important aspect of the study of Gaussian polynomials is the order of their tail
decay and growth of moments. In the real valued case the first estimates concerning
this question, related to the hypercontractivity of the Ornstein-Uhlenbeck semigroup,
were obtained by Nelson [21]. For homogeneous tetrahedral (i.e., affine in each variable)
forms of arbitrary fixed degree two-sided estimates on the tails and moments were
obtained in [15] (in particular generalizing the well-known Hanson-Wright inequality
for quadratic forms). In [4] it was shown that the results of [15] in fact allow to obtain
such estimates for all polynomials of degree bounded from above. Two-sided estimates
for polynomials with values in a Banach space have been obtained independently by
Borell [6], Ledoux [16], Arcones-Giné [5]. They are expressed in terms of suprema of
certain empirical processes (see formula (1.5) below), which in general may be difficult
to estimate (even in the real valued case).

In a recent paper [2] we considered Gaussian quadratic forms with coefficients in
a Banach space and obtained upper bounds on their tails and moments, expressed in
terms of quantities which are easier to deal with. In the real valued case our estimates
reduce to the Hanson-Wright inequality, and for a large class of Banach-spaces (related
to Pisier’s Gaussian property α and containing all type 2 spaces) they may be reversed.
In particular for Lq spaces with 1 ≤ q <∞ they yield two-sided estimates expressed in
terms of deterministic quantities. In the present work we generalize these estimates to
polynomials of arbitrary degree.

Before presenting our main theorems (which requires an introduction of a rather
involved notation) let us describe the setting and discuss in more detail some of the
results mentioned above.

To this aim consider a Banach space (F, ‖·‖). A (homogeneous, tetrahedral) F -valued
Gaussian chaos of order d is a random variable defined as

S =
∑

1≤i1<i2...<id≤n

ai1,...,idgi1 · · · gid , (1.1)

where ai1,...,id ∈ F and g1, . . . , gn are i.i.d. standard Gaussian variables. As explained
above the goal of this paper is to derive estimates on moments (defined as ‖S‖p :=

(E ‖S‖p)1/p) and tails of S, more precisely to establish upper bounds which for some
classes of Banach spaces, including Lq spaces, can be reversed (up to constants depend-
ing only on d and the Banach space, but not on n or ai1,...,id). We restrict to random
variables of the form (1.1), however it turns out that estimates on their moments will
in fact allow to deduce moment and tail bounds for arbitrary polynomials in Gaussian
random variables as well as for homogeneous tetrahedral polynomials in i.i.d. symmetric
exponential random variables. In the sequel we will focus on decoupled chaoses

S′ =

n∑
i1,...,id=1

ai1,...,idg
(1)
i1
· · · g(d)

id
, (1.2)

where (g
(k)
i )i,k≥1 are independent N (0, 1) random variables – under natural symmetry

assumptions, moments and tails of S, S′ are comparable up to constants depending only
on d (cf. Theorem A.9 in the Appendix). Moreover, as we will see in Proposition 2.11,
estimating moments of general polynomials in i.i.d. standard Gaussian variables can be
reduced to estimating moments of variables of the form (1.2).

For d = 1 and any p ≥ 1 one has the following well-known estimate (cf. Lemma A.5)∥∥∥∥∥
n∑
i=1

aigi

∥∥∥∥∥
p

=

(
E

∥∥∥∥∥
n∑
i=1

aigi

∥∥∥∥∥
p)1/p

∼ E

∥∥∥∥∥
n∑
i=1

aigi

∥∥∥∥∥+
√
p sup
x∈Bn

2

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ , (1.3)

where, Bn2 is the unit standard Euclidean ball in Rn and ∼ stands for a comparison up to
universal multiplicative constants.
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Moments of Gaussian chaoses in Banach spacess

An iteration of the above inequality yields for chaoses of order 2,∥∥∥∥∥∥
n∑

i,j=1

aijgig
′
j

∥∥∥∥∥∥
p

∼E

∥∥∥∥∥∥
n∑

i,j=1

aijgig
′
j

∥∥∥∥∥∥+
√
pE sup

x∈Bn
2

∥∥∥∥∥∥
n∑

i,j=1

aijgixj

∥∥∥∥∥∥+

∥∥∥∥∥∥
n∑

i,j=1

aijxigj

∥∥∥∥∥∥


+ p sup
x,y∈Bn

2

∥∥∥∥∥∥
n∑

i,j=1

aijxiyj

∥∥∥∥∥∥ , (1.4)

where in the above formula and in the whole paper, (g′j)j≥1 is an independent copy
of (gi)i≥1.

For chaoses of higher order one gets an estimate∥∥∥∥∥∥
n∑

i1,...,id=1

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

∼d
∑
J⊂[d]

pd/2E sup

∥∥∥∥∥∥
n∑

i1,...,id=1

ai1,...,id
∏
j∈J

x
(j)
ij

∏
j∈[d]\J

g
(j)
ij

∥∥∥∥∥∥ ,
(1.5)

where the supremum is taken over x(1), . . . , x(n) from the Euclidean unit ball and ∼a
stands for comparison up to constants depending only on the parameter a. To the best
of our knowledge the above inequality was for the first time established in [6] and
subsequently reproved in various context by several authors [5, 16, 17].

The estimate (1.5) gives precise dependence on p, but unfortunately is expressed in
terms of expected suprema of certain stochastic processes, which are hard to estimate.
In many situations this precludes effective applications. Let us note that even for
d = 1, the estimate (1.3) involves the expectation of a norm of a Gaussian random
vector. Estimating such a quantity in general Banach spaces is a difficult task, which
requires investigating the geometry of the unit ball of the dual of F (as described by the
celebrated majorizing measure theorem due to Fernique and Talagrand). Therefore, in
general one cannot hope to get rid of certain expectations in the estimates for moments.
Nevertheless, in some classes of Banach spaces (such as, e.g., Hilbert spaces, or more
generally type 2 spaces) expectations of Gaussian chaoses can be easily estimated. The
difficult part (also for d = 2 and mentioned class of Banach spaces) is to estimate the
terms in (1.4) and (1.5) which involve additional suprema over products of unit balls.

Even for d = 2 and a Hilbert space, the term E supx∈Bn
2

∥∥∥∑i,j aijgixj

∥∥∥ can be equivalently

rewritten as the expected operator norm of a certain random matrix. Such quantities
are known to be hard to estimate. Therefore, it is natural to seek inequalities which
are expressed in terms of deterministic quantities and expectations of some F -valued
polynomial chaoses, but do not involve expectations of additional suprema of such
polynomials. This was the motivation behind the article [2], concerning the case d = 2

and containing the following bound, valid for p ≥ 1 ([2, Theorem 4]),∥∥∥∥∥∥
n∑

i,j=1

aijgig
′
j

∥∥∥∥∥∥
p

≤C

(
E

∥∥∥∥∥∥
n∑

i,j=1

aijgig
′
j

∥∥∥∥∥∥+ E

∥∥∥∥∥∥
n∑

i,j=1

aijgij

∥∥∥∥∥∥
+ p1/2 sup

x∈Bn
2

E

∥∥∥∥∥∥
n∑

i,j=1

aijgixj

∥∥∥∥∥∥+ p1/2 sup
x∈Bn2

2

∥∥∥∥∥∥
n∑

i,j=1

aijxij

∥∥∥∥∥∥
+ p sup

x,y∈Bn
2

∥∥∥∥∥∥
n∑

i,j=1

aijxiyj

∥∥∥∥∥∥
)
, (1.6)

where (with a slight abuse of notation) we denote Bn
2

2 = {(xij)ni,j=1 :
∑n
i,j=1 x

2
ij ≤ 1}.
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Moments of Gaussian chaoses in Banach spacess

Let us point out that even though the inequalities we have presented so far as well as
those we are about to discuss in the subsequent part of the article are formulated for
general, possibly infinite dimensional, Banach spaces, the random variables involved take
values in finite dimensional subspaces spanned by the coefficients of the polynomials
in question. Therefore, as long as the constants in the inequalities are universal or do
not depend on the particular subspace but just on some numerical characteristic of the
space (e.g., the type constant), there is no loss in generality in assuming that the space
F is finite dimensional. In particular one can always assume without loss of generality
that F as a linear space equals Rm for some positive integer m. This phenomenon is
well known in the local theory of Banach spaces.

It can be shown that in general inequality (1.6) cannot be reversed. However, it
turns out to be two-sided in a certain class of Banach spaces containing Lq spaces (see
Section 2.1 below). This observation gives rise to the question of obtaining similar results
for arbitrary d. Building on ideas and techniques developed in [15] we are able to give an
answer to it. In our main result, Theorem 2.1, we provide an upper bound on moments
of decoupled chaoses of order d, which generalizes (1.6). We also obtain lower bounds,
which we conjecture to be in fact two-sided (see Conjecture 2.2), and in Section 2.1 we
identify a large class of Banach spaces for which our upper and lower bounds do match.

Let us briefly comment on the proof of Theorem 2.1. The lower bound for moments
relies on a rather straightforward reduction to the real-valued case, treated in [15].
The much more involved proof of the upper bound is based on an inductive approach.
The inequality (1.6) serves as the base of induction, while (1.3) allows to reduce the
induction step to an estimate of an expectation of a supremum of a certain canonical
Gaussian process, which turns out to be the heart of the problem. In order to obtain
such an estimate we apply a variant of the chaining method (see the monograph [28]),
which requires bounds on the entropy numbers for the indexing set of the process in
its intrinsic metric. In our case this metric is given via a norm on a tensor product of
F ∗ and several Euclidean spaces, whereas the indexing set is a Carthesian product of
the corresponding unit balls. The bounds on entropy numbers are obtained by a variant
of the volumetric argument as well as Sudakov and dual Sudakov minoration leading
to expectations of suprema of other Gaussian processes, which can be estimated by
using the induction hypotheses. This approach in a sense parallels the one used in [15]
for the real-valued case, with (1.6) replacing the classical Hanson-Wright inequality,
however it presents some additional difficulties related to the geometry of the unit ball
in the space F ∗. Let us also remark that this approach cannot be used to pass from
d = 1, i.e., the inequality (1.3), to d = 2, i.e., the inequality (1.6) (see Remark 3.7). While
the proof of (1.6) presented in [2] relies on a similar set of tools (chaining arguments,
Gaussian concentration) some of the technical estimates of entropy numbers are obtained
differently than in the induction step d→ d+ 1 for d ≥ 2.

The paper is organized as follows. In the next section we set up the notation and
formulate the main results, in particular the pivotal bound for moments of homogeneous
tetrahedral Gaussian chaoses in an arbitrary Banach space (Theorem 2.1). We also
present its consequences: tail and moment estimates for arbitrary Gaussian polynomials,
two-sided bounds in special classes of Banach spaces, inequalities for tetrahedral homo-
geneous forms in i.i.d. symmetric exponential variables. In Section 3, in Theorem 3.1, we
formulate a key inequality for the supremum of a certain Gaussian processes and derive
certain entropy bounds to be used in its proof, presented in Section 4. In Section 5 we
use Theorem 3.1 to prove Theorem 2.1 from which we deduce all the remaining claims of
Section 2. The Appendix contains certain basic facts concerning Gaussian processes and
Gaussian polynomials used in the proofs. At the end of the article we provide a glossary
explaining the notation.
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2 Notation and main results

In this section we introduce the most basic notation used in the article and formulate
our main results. Since some additional notation will be introduced as the proofs develop,
for the reader’s convenience at the end of the article we include a glossary of the most
important symbols appearing in the text.

We write [n] for the set {1, . . . , n}. Throughout the article C (resp. C(α)) will denote
an absolute constant (resp. a constant which may depend on α) which may differ at each
occurrence. By A we typically denote a finite multi-indexed matrix (ai1,...,id)1≤i1,...,id≤n
of order d with values in a Banach space (F, ‖·‖). If i = (i1, . . . , id), i1, . . . , id ∈ [n] and
I ⊂ [d], then we define iI := (ij)j∈I . To simplify the notation we will also often treat
iI as a stand-alone multi-index, with the meaning that each ij , j ∈ I runs trough [n].
We will also often suppress the range of summation. Unless stated otherwise the sums∑

i or
∑
i1,...,id

should be understood as summation over i1, . . . , id ∈ [n], whereas
∑
iI

should be understood as summation over ij1 , . . . , ijk ∈ [n] where I = {i1, . . . , jk}. The
parameter d will not be stated explicitly but will be clear from the context. In particular
when we write x = (xiI )iI , it is implicitly assumed that the multi-index iI ranges over

ij1 , . . . , ijk ∈ [n] where I = {i1, . . . , jk} and x ∈ Rn|I| .
For instance, for d = 3, I = {2, 3},

∑
i

aixiI =

n∑
i1,i2,i3=1

ai1i2i3xi2i3 ,
∑
iI

x2
iI =

n∑
i2,i3=1

x2
i2i3 .

We note that all the multi-linear forms we consider are given by finite sums. Standard
arguments allow to extend our inequalities to the case of infinite multiple series, but we
do not pursue this direction.

In what follows we will often identify the space (Rn)⊗d of d-indexed matrices with

the space Rn
d

. In particular Bn
d

2 will stand for the unit Euclidean ball in (Rn)⊗d, i.e.,

Bn
d

2 = {(bi)i∈[n]d ∈ Rn
d

:
∑

i b
2
i ≤ 1}.

If I is a finite set then |I| stands for its cardinality and by P(I) we denote the family
of (unordered) partitions of I into nonempty, pairwise disjoint sets. Note that if I = ∅
then P(I) consists only of the empty partition ∅.

With a slight abuse of notation we write (P,P ′) ∈ P(I) if P ∪P ′ ∈ P(I) and P ∩P ′ = ∅.
Let P = {I1, . . . , Ik}, P ′ = {J1, . . . , Jm} be such that (P,P ′) ∈ P([d]).Then we define

‖A‖P′ | P := sup

E
∥∥∥∥∥∥
∑

i1,...,id

ai1,...,id

k∏
r=1

x
(r)
iIr

m∏
l=1

g
(l)
iJl

∥∥∥∥∥∥
∣∣∣ ∀r≤k∑

iIr

(
x

(r)
iIr

)2

≤ 1

 , (2.1)

|||A|||P := sup

E
∥∥∥∥∥∥
∑

i1,...,id

ai1,...,id

k∏
r=1

x
(r)
iIr

∏
l∈[d]\(

⋃
P)

g
(l)
il

∥∥∥∥∥∥
∣∣∣ ∀r≤k∑

iIr

(
x

(r)
iIr

)2

≤ 1

 , (2.2)

where G(l) = (g
(l)
iIl

)iIl , l = 1, . . . ,m are independent arrays of i.i.d. standard Gaussian
variables .

We do not exclude the situation that P ′ or P is an empty partition. If P ′ = ∅, then
‖A‖P′ | P = |||A|||P is defined in non-probabilistic terms. Another case when ‖A‖P′ | P =

|||A|||P is when P ′ consists of singletons only.

In particular for d = 3 we have (note that to shorten the notation we suppress
some brackets and write e.g. |||A|||{2},{3} and ‖A‖{1} | {2},{3}, instead of |||A|||{{2},{3}} and
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‖A‖{{1}} | {{2},{3}})

‖A‖∅ | {1,2,3} = |||A|||{1,2,3} = sup∑
i,j,k x

2
ijk≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxijk

∥∥∥∥∥∥ ,
‖A‖∅ | {1,3},{2} = |||A|||{1,3},{2} = sup∑

i,k x
2
ik≤1,

∑
j y

2
j≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxikyj

∥∥∥∥∥∥ .
‖A‖∅ | {1},{2},{3} = |||A|||{1},{2},{3} = sup∑

i x
2
i≤1,

∑
j y

2
j≤1,

∑
k z

2
k≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxiyjzk

∥∥∥∥∥∥ .
‖A‖{1,2},{3} | ∅ = E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
ij g

(2)
k

∥∥∥∥∥∥ ,
‖A‖{1} | {2},{3} = |||A|||{2},{3} = sup∑

j x
2
j≤1,

∑
y2k≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkgixjyk

∥∥∥∥∥∥ ,
‖A‖{1},{2},{3} | ∅ = |||A|||∅ = E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i g

(2)
j g

(3)
k

∥∥∥∥∥∥ ,
‖A‖{1},{3} | {2} = |||A|||{2} = sup∑

j x
2
j≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i xjg

(2)
k

∥∥∥∥∥∥ .
The main result is the following moment estimate of the variable S′.

Theorem 2.1. Assume that A = (ai1,...,id)i1,...,id is a finite matrix with values in a Banach
space (F, ‖·‖). Then for any p ≥ 1,

1

C(d)

∑
J⊂[d]

∑
P∈P(J)

p|P|/2|||A|||P ≤

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

≤ C(d)
∑

(P,P′)∈P([d])

p|P|/2 ‖A‖P′ | P . (2.3)

The lower bound in (2.3) motivates the following conjecture (we leave it to the reader
to verify that in general Banach spaces it is impossible to reverse the upper bound even
for d = 2).

Conjecture 2.2. Under the assumption of Theorem 2.1 we have∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

≤ C(d)
∑
J⊂[d]

∑
P∈P(J)

p|P|/2|||A|||P . (2.4)

Example 2.3. In particular for d = 3, Theorem 2.1 yields for symmetric matrices

1

C
S1 ≤

∥∥∥∥∥∥
∑
ijk

aijkg
(1)
i g

(2)
j g

(3)
k

∥∥∥∥∥∥
p

≤ C(S1 + S2),
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where (we recall) C is a numerical constant and

S1 := E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i g

(2)
j g

(3)
k

∥∥∥∥∥∥+ p1/2

 sup
‖x‖2≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i g

(2)
j xk

∥∥∥∥∥∥
+ sup
‖x‖2≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i xjk

∥∥∥∥∥∥+ sup
‖x‖2≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxijk

∥∥∥∥∥∥


+ p

 sup
‖x‖2,‖y‖2≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
i xjyk

∥∥∥∥∥∥+ sup
‖x‖2,‖y‖2≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxijyk

∥∥∥∥∥∥


+ p3/2 sup
‖x‖2,‖y‖2,‖z‖2≤1

∥∥∥∥∥∥
∑
i,j,k

aijkxiyjzk

∥∥∥∥∥∥ ,
S2 := E

∥∥∥∥∥∥
∑
ijk

aijkg
(1)
ijk

∥∥∥∥∥∥+ E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
ij g

(2)
k

∥∥∥∥∥∥+ p1/2 sup
‖x‖2≤1

E

∥∥∥∥∥∥
∑
i,j,k

aijkg
(1)
ij xk

∥∥∥∥∥∥ .
Remark 2.4. Unfortunately we are able to show (2.4) only for d = 2 and with an
additional factor ln p (cf. [2]). It is likely that by a modification of our proof one can show
(2.4) for arbitrary d with an additional factor (ln p)C(d).

By a standard application of Chebyshev’s and Paley-Zygmund inequalities, Theo-
rem 2.1 can be expressed in terms of tails.

Theorem 2.5. Under the assumptions of Theorem 2.1 the following two inequalities
hold. For any t > C(d)

∑
P′∈P([d]) ‖A‖P′|∅,

P

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥ ≥ t
 ≤ 2 exp

− 1

C(d)
min

(P,P′)∈P([d])
|P|>0

(
t

‖A‖P′ | P

)2/|P|
 ,

and for any t ≥ 0,

P

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥ ≥ 1

C(d)
E

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥+ t


≥ 1

C(d)
exp

(
−C(d) min

∅6=J⊂[d]
min
P∈P(J)

(
t

|||A|||P

)2/|P|
)
.

In view of (1.5) and [15] it is clear that to prove Theorem 2.1 one needs to estimate
suprema of some Gaussian processes. The next statement is the key element of the proof
of the upper bound in (2.3).

Theorem 2.6. Under the assumptions of Theorem 2.1 we have for any p ≥ 1,

E sup
(x(2),...,x(d))∈(Bn

2 )d−1

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idgi1

d∏
k=2

x
(k)
ik

∥∥∥∥∥∥ ≤ C(d)
∑

(P,P′)∈P([d])

p
|P|+1−d

2 ‖A‖P′ | P .

(2.5)

We postpone proofs of the above results until Section 5 and discuss now some of their
consequences.
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2.1 Two-sided estimates in special classes of Banach spaces

We start by introducing a class of Banach spaces for which the estimate (2.3) is
two-sided. To this end we restrict our attention to Banach spaces (F, ‖·‖) which satisfy
the following condition: there exists a constant K = K(F ) such that for any n ∈ N and
any matrix (bij)i,j≤n with values in F ,

E

∥∥∥∥∥∥
∑
ij

bijgi,j

∥∥∥∥∥∥ ≤ KE
∥∥∥∥∥∥
∑
i,j

bijgig
′
j

∥∥∥∥∥∥ . (2.6)

This property appears in the literature under the name Gaussian property (α+)
(see [20]) and is closely related to Pisier’s contraction property [25]. It has found
applications, e.g., in the theory of stochastic integration in Banach spaces. We refer to
[11, Chapter 7] for a thorough discussion and examples, mentioning only that (2.6) holds
for Banach spaces of type 2, and for Banach lattices (2.6) is equivalent to finite cotype.

Remark 2.7. By considering n = 1 it is easy to see that K ≥
√
π/2 > 1.

A simple inductive argument and (2.6) yield that for any d, n ∈ N and any F -valued
matrix (bi1,...,id)i1,...,id≤n,

E

∥∥∥∥∥∑
i

bigi

∥∥∥∥∥ ≤ Kd−1E

∥∥∥∥∥∑
i

big
(1)
i1
· · · g(d)

id

∥∥∥∥∥ , (2.7)

where we recall that i = (i1, . . . , id) and each i1, . . . , id runs trough [n]. It turns out that
under the condition (2.6) our bound (2.3) is actually two-sided.

Proposition 2.8. Assume that (F, ‖·‖) satisfies (2.6) and (P,P ′) ∈ P([d]). Then

‖A‖P′ | P ≤ K
|
⋃
P′|−|P′||||A|||P .

Proof. Let P ′ = (J1, . . . , Jk), P = (I1, . . . , Im). Then |
⋃
P ′| − |P ′| =

∑k
l=1(|Jl| − 1). The

proof is by induction on s := |{l : |Jl| ≥ 2}|. If s = 0 the assertion follows by the
definition of |||A|||P . Assume that the statement holds for s and |{l : |Jl| ≥ 2}| = s + 1.
Without loss of generality |J1| ≥ 2. Combining Fubini’s Theorem with (2.7) we obtain

‖A‖P′ | P = sup

E(G(2),...,G(m))EG
(1)

∥∥∥∥∥∑
i

ai

m∏
r=1

x
(r)
iIr
g

(1)
iJ1

k∏
r=2

g
(r)
iJr

∥∥∥∥∥ ∣∣∣∀r≤m∑
iIr

(
x

(r)
iIr

)2

≤ 1


≤ K |J1|−1 sup

E(G(2),...,G(m))EG̃

∥∥∥∥∥∥
∑
i

ai

m∏
r=1

x
(r)
iIr

∏
j∈J1

g̃
(j)
ij

k∏
r=2

g
(r)
iJr

∥∥∥∥∥∥
∣∣∣∀r≤m∑

iIr

(
x

(r)
iIr

)2

≤ 1


≤ K |

⋃
P′|−|P′||||A|||P ,

where G(l) = (g
(l)
iIl

)iIl , G̃ = (g̃
(j)
ij

)j∈J1,iJ1
are independent families of i.i.d. N (0, 1) random

variables and in the last inequality we used (conditionally) the induction assumption.

The following corollary is an obvious consequence of Proposition 2.8 and Theo-
rems 2.1, 2.5.

Corollary 2.9. For any Banach space (F, ‖·‖) satisfying (2.6) we have for p ≥ 1,∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

≤ C(d)Kd−1
∑
I⊂[d]

∑
P∈P(I)

p|P|/2|||A|||P ,
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and for t > C(d)Kd−1E

∥∥∥∑i aig
(1)
i1
· · · g(d)

id

∥∥∥,
P

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥ ≥ t
 ≤ 2 exp

(
− 1

C(d)
K2−2dη(t)

)
,

where

η(t) := min
∅6=I⊂[d]

min
P∈P(I)

(
t

|||A|||P

)2/|P|

.

Thanks to infinite divisibility of Gaussian variables, the above corollary can be in fact
generalized to arbitrary polynomials in Gaussian variables, as stated in the following
theorem.

Theorem 2.10. Let F be a Banach space. If G is a standard Gaussian vector in Rn and
f : Rn → F is a polynomial of degree D, then for all p ≥ 2,

‖f(G)− Ef(G)‖p

≥ 1

C(D)

(
E‖f(G)− Ef(G)‖+

∑
1≤d≤D

∑
∅6=I⊂[d]

∑
P∈P(I)

p
|P|
2 |||E∇df(G)|||P

)
(2.8)

and for all t > 0,

P
(
‖f(G)− Ef(G)‖ ≥ 1

C(D)
(E‖f(G)− Ef(G)‖+ t)

)
≥ 1

C(D)
exp

(
− C(D)ηf (t)

)
,

(2.9)

where

ηf (t) = min
1≤d≤D

min
∅6=I⊂[d]

min
P∈P(I)

( t

|||E∇df(G)|||P

)2/|P|
.

Moreover, if F satisfies (2.6), then for all p ≥ 1,

‖f(G)− Ef(G)‖p

≤ C(D)KD−1
(
E‖f(G)− Ef(G)‖+

∑
1≤d≤D

∑
∅6=I⊂[d]

∑
P∈P(I)

p
|P|
2 |||E∇df(G)|||P

)
(2.10)

and for all t ≥ C(D)KD−1E‖f(G)− Ef(G)‖,

P
(
‖f(G)− Ef(G)‖ ≥ t)

)
≤ 2 exp

(
− C(D)−1K2−2Dηf (t)

)
. (2.11)

The above theorem is an easy consequence of results for homogeneous decoupled
chaoses and the following proposition, the proof of which (as well as the proof of the
theorem) will be presented in Section 5.

Proposition 2.11. Let F be a Banach space, G a standard Gaussian vector in Rn and
f : Rn → F be a polynomial of degree D. Then for p ≥ 1,

‖f(G)− Ef(G)‖p ∼D
D∑
d=1

∥∥∥ n∑
i1,...,id=1

a
(d)
i1,...,id

g
(1)
i1
· · · g(d)

id

∥∥∥
p
,

where the d-indexed F -valued matrices Ad = (a
(d)
i1,...,id

)i1,...,id≤n are defined as Ad =

E∇df(G).
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Remark 2.12. Let us stress that Proposition 2.11 as well as inequalities (2.8) and (2.9)
of Theorem 2.10 hold in arbitrary Banach spaces. The assumption (2.6) is needed
for inequalities (2.10) and (2.11). A positive answer to Conjecture 2.2 would allow to
eliminate this assumption and remove the constant K from the inequalities.

2.2 Lq spaces

It turns out that Lq spaces satisfy (2.6) and as a result upper and lower bounds in
(2.3) are comparable. Moreover, as is shown in Lemma 2.14 below, in this case one may
express all the parameters without any expectations. For the sake of brevity, we will
focus on moment estimates, clearly tail bounds follow from them by standard arguments
(cf. the proof of Theorem 2.5).

Proposition 2.13. For q ≥ 1 the space Lq(V, µ) satisfies (2.6) with K = C
√
q.

Proof. From [11, Theorem 7.1.20] it follows that if F is of type 2 with constant T2, then
it satisfies (2.6) with K = T2, while it is well known that the type 2 constant of Lq(V, µ)

is of order
√
q.

For a multi-indexed matrix A of order d with values in Lq(V, µ) and J ⊂ [d], P =

(I1, . . . , Ik) ∈ P([J ]) we define

|||A|||Lq,P = sup


∥∥∥∥∥∥∥
√√√√√∑
i[d]\J

(∑
iJ

ai

k∏
r=1

x
(r)
iIr

)2
∥∥∥∥∥∥∥
Lq

∣∣∣ ∀r≤k∑
iIr

(
x

(r)
iIr

)2

≤ 1

 .

For J = [d] and P ∈ P([d]) we obviously have |||A|||Lq,P = |||A|||P . The following lemma
asserts that for general J the corresponding two norms are comparable.

Lemma 2.14. For any J ( [d], P = (I1, . . . , Ik) ∈ P(J) and any multi-indexed matrix A
of order d with values in Lq(V, µ) we have

C(d)−1q
1−d+|J|

2 |||A|||Lq,P ≤ |||A|||P ≤ C(d)q
d−|J|

2 |||A|||Lq,P .

Proof. By Jensen’s inequality and Corollary A.7 we get

|||A|||P ≤ sup


∫

V

E

∣∣∣∣∣∣
∑
i

ai(v)
∏

j∈[d]\J

g
(j)
ij

k∏
r=1

x
(r)
iIr

∣∣∣∣∣∣
q

dµ(v)

1/q ∣∣∣ ∀r≤k∑
iIr

(
x

(r)
iIr

)2

≤ 1


≤ C(d)q

d−|J|
2 sup


∥∥∥∥∥∥∥
√√√√√∑
i[d]\J

(∑
iJ

ai

k∏
r=1

x
(r)
iIr

)2
∥∥∥∥∥∥∥
Lq

∣∣∣ ∀r≤k∑
iIr

(
x

(r)
iIr

)2

≤ 1

 .

On the other hand Theorem A.1 (applied with p = 1) and Corollary A.7 yield

|||A|||P ≥
q
|J|−d

2

C(d)
sup


E

∥∥∥∥∥∥
∑
i

ai
∏

j∈[d]\J

g
(j)
ij

k∏
r=1

x
(r)
iIr

∥∥∥∥∥∥
q

Lq


1/q ∣∣∣ ∀r≤k∑

iIr

(
x

(r)
iIr

)2

≤ 1


≥ q

1−d+|J|
2

C(d)
sup


∥∥∥∥∥∥∥
√√√√√∑
i[d]\J

(∑
iJ

ai

k∏
r=1

x
(r)
iIr

)2
∥∥∥∥∥∥∥
Lq

∣∣∣ ∀r≤k∑
iIr

(
x

(r)
iIr

)2

≤ 1

 .
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Theorem 2.15. Let q ≥ 1 and let A = (ai1,...,id)i1,...,id be a multi-indexed matrix with
values in Lq(V, µ). Then for any p ≥ 1 we have

1

C(d)
q

1−d
2

∑
J⊂[d]

∑
P∈P([J])

p
|P|
2 |||A|||Lq,P ≤

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

≤ C(d)qd−
1
2

∑
J⊂[d]

∑
P∈P([J])

p
|P|
2 |||A|||Lq,P .

Proof. This is an obvious consequence of Theorem 2.1, Corollary 2.9, Proposition 2.13
and Lemma 2.14.

Using Proposition 2.11 we can extend the above result to general polynomials.

Theorem 2.16. Let G be a standard Gaussian vector in Rn and let f : Rn → Lq(V, µ)

(q ≥ 1) be a polynomial of degree D. Then for p ≥ 1, we have

1

C(D)

D∑
d=1

q
1−d
2

∑
J⊂[d]

∑
P∈P([J])

p
|P|
2 |||E∇df(G)|||Lq,P ≤ ‖f(G)− Ef(G)‖p

≤ C(D)

D∑
d=1

qd−
1
2

∑
J⊂[d]

∑
P∈P([J])

p
|P|
2 |||E∇df(G)|||Lq,P .

Example 2.17. Consider a general polynomial of degree 3, i.e.,

f(G) =

n∑
i,j,k=1

aijkgigjgk +

n∑
i,j=1

bijgigj +

n∑
i=1

cigi + d,

where the coefficients aijk, bij , ci, d take values in a Banach space and the matrices
(aijk)ijk, (bij)ij are symmetric. Then one checks that

E∇f(G) =
(
ci + 3

n∑
j=1

aijj

)n
i=1

,

E∇2f(G) = 2(bij)
n
i,j=1,

E∇3f(G) = ∇3f(G) = 6(aijk)ni,j,k=1.

2.3 Exponential variables

Theorem 2.15 together with Lemma A.8 allows us to obtain inequalities for chaoses
based on i.i.d standard symmetric exponential random variables (i.e., variables with
density 2−1 exp(−|t|)) which are denoted by (E

(i)
j )i,j∈N below. Similarly as in the previous

section we concentrate only on the moment estimates.

Proposition 2.18. Let A = (ai1,...,id)i1,...,id be a matrix with values in Lq(V, µ). Then for
any p ≥ 1, q ≥ 2 we have∥∥∥∥∥∑

i

ai

d∏
k=1

E
(k)
ik

∥∥∥∥∥
p

∼d,q
∑
I⊂[d]

∑
J⊂[d]\I

∑
P∈P([d]\(I∪J))

p|I|+|P|/2 max
iI
|||(ai1,...,id)iIc |||Lq,P .

One can take C−1(d)q1/2−d in the lower bound and C(d)q2d−1/2 in the upper bound.
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Example 2.19. If d = 2 then Proposition 2.18 reads for a symmetric matrix A = (aij)ij
as∥∥∥∥∥∥

∑
ij

aijE
(1)
i E

(2)
j

∥∥∥∥∥∥
p

∼qp2 max
i,j
‖aij‖Lq

+ p3/2 max
i

sup
x∈Bn

2

∥∥∥∥∥∥
∑
j

aijxj

∥∥∥∥∥∥
Lq

+ p

 max
x,y∈Bn

2

∥∥∥∥∥∥
∑
ij

aijxiyj

∥∥∥∥∥∥
Lq

+ max
i

∥∥∥∥∥∥
√∑

j

a2
ij

∥∥∥∥∥∥
Lq



+ p1/2

 sup
x∈Bn

2

∥∥∥∥∥∥∥∥
√√√√√∑

i

∑
j

aijxj

2
∥∥∥∥∥∥∥∥
Lq

+ sup
x∈Bn2

2

∥∥∥∥∥∥
∑
i,j

aijxij

∥∥∥∥∥∥
Lq


+

∥∥∥∥∥∥
√∑

ij

a2
ij

∥∥∥∥∥∥
Lq

.

The proof of Proposition 2.18 is postponed until Section 5.

3 Reformulation of Theorem 2.6 and entropy estimates

Let us rewrite Theorem 2.6 in a different language. As explained in the introduction,
since the variables we consider take values in the finite dimensional subspace spanned by
the coefficients ai, we may assume without loss of generality that F = Rm for some finite
m and ai1,...,id = (ai1,...,id,id+1

)id+1≤m. For this reason from now on the multi-index i will
take values in [n]d × [m] and all summations over i should be understood as summations
over this set. Accordingly, the matrix A will be treated as a (d+ 1)-indexed matrix with
real coefficients. Let T = BF∗ be the unit ball in the dual space F ∗ (where duality is
realized on Rm through the standard inner product). In the sequel we will therefore
assume that T is a fixed nonempty symmetric bounded subset of Rm.

In this setup we have

E sup
(x(2),...,x(d))∈(Bn

2 )d−1

∥∥∥∥∥∑
i

aigi1

d∏
k=2

x
(k)
ik

∥∥∥∥∥ = E sup
(x(2),...,x(d))∈(Bn

2 )d−1

sup
t∈T

∑
i

aigi1

d∏
k=2

x
(k)
ik
tid+1

,

‖A‖P′ | P = sup

E sup
t∈T

∑
i

ai

r∏
k=1

x
(k)
iIk

s∏
l=1

g
(l)
iJl
tid+1

∣∣∣ ∀k=1,...,r

∑
iIj

(
x

(k)
iIk

)2

= 1

 ,

(3.1)

where P = (I1, . . . , Ir),P ′ = (J1, . . . , Js), (P ′,P) ∈ P([d]).
To make the notation more compact we define

sk(A) =
∑

(P,P′)∈P([d])

|P|=k

‖A‖P′ | P .

The next statement is a reformulation of Theorem 2.6 in the introduced setup. The proof
of it will be presented in Section 4.

Theorem 3.1. For any p ≥ 1 we have

E sup
(x(2),...,x(d),t)∈(Bn

2 )d−1×T

∑
i

aigi1

d∏
k=2

x
(k)
ik
tid+1

≤ C(d)

d∑
k=0

p
k+1−d

2 sk(A). (3.2)
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To estimate the supremum of a centered Gaussian process (Gv)v∈V one needs to
study the distance on V given by d(v, v′) := (E|Gv−Gv′ |2)1/2 (we refer to the monograph
[28] for an extensive presentation of chaining techniques related to estimates of suprema
of stochastic processes). In the case of the Gaussian process from (3.2) this distance is
defined on (Bn2 )d−1 × T ⊂ Rn(d−1) ×Rm by the formula

ρA((x(2), . . . , x(d), t), (y(2), . . . , y(d), t′))

:=

∑
i1

 ∑
i2,...,id+1

ai1,...,id+1

(
d∏
k=2

x
(k)
ik
tid+1

−
d∏
k=2

y
(k)
ik
t′id+1

)2


1/2

= αA

((
d⊗
k=2

x(k)

)
⊗ t−

(
d⊗
k=2

y(k)

)
⊗ t′

)
, (3.3)

where
(⊗d

k=2 x
(k)
)
⊗ t = (x

(2)
i2
· · ·x(d)

id
tid+1

)i2,...,id+1
∈ Rnd−1m and αA is a norm defined

on (Rn)⊗(d−1) ⊗Rm ' Rnd−1m given by

αA (x) :=

√√√√√∑
i1

 ∑
i[d+1]\{1}

aixi[d+1]\{1}

2

. (3.4)

We will now provide estimates for the entropy numbers N(U, ρA, ε) for ε > 0 and
U ⊂ (Bn2 )d−1 × T (recall that N(S, ρ, ε) is the minimal number of closed balls with
diameter ε in metric ρ that cover the set S). To this end let us introduce some new
notation. From now on Gn = (g1, . . . , gn) and G(i)

n = (g
(i)
1 , . . . , g

(i)
n ) stand for independent

standard Gaussian vectors in Rn. For s > 0, U = {(x(2), . . . , x(d), t) ∈ U} ⊂ (Rn)
d−1 × T

we set

WU
d (αA, s) :=

d−1∑
k=1

sk
∑

I⊂{2,...,d}:|I|=k

WU
I (αA), (3.5)

where

WU
I (αA) := sup

(x(2),...,x(d),t)∈U
EαA

((
d⊗
k=2

(
x(k)(1− 1I(k)) +G(k)1I(k)

))
⊗ t

)
.

We define a norm βA on (Rn)⊗(d−1) ' Rnd−1

by (recall that we assume symmetry of
the set T )

βA (y) := E sup
t∈T

∑
i

aigi1yi[d]\{1}tid+1
= E sup

t∈T

∣∣∣∣∣∑
i

aigi1yi[d]\{1}tid+1

∣∣∣∣∣ . (3.6)

Following (3.5) we denote

V Ud (βA, s) :=

d−1∑
k=0

sk+1
∑

I⊂{2,...,d}:|I|=k

V UI (βA), (3.7)

where

V UI (βA) := sup
(x(2),...,x(d),t)∈U

EβA

(
d⊗
k=2

(
x(k)(1− 1I(k)) +G(k)1I(k)

))
.
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Let us note that V UI (βA) depends on the set U only through its projection on the first
d− 1 coordinates.

We have

V Ud (βA, s) ≥ s · V U∅ (βA) = s · sup
(x(2),...,x(d),t)∈U

βA

(
d⊗
k=2

x(k)

)
. (3.8)

Observe that by the classical Sudakov minoration (see Theorem A.2), for any x(k) ∈ Rn,
k = 2, . . . , d there exists T⊗ x(k),ε ⊂ T such that |T⊗ x(k),ε| ≤ exp(Cε−2) and

∀t∈T∃t′∈T⊗
x(k),ε

αA

(
d⊗
k=2

x(k) ⊗ (t− t′)

)
≤ εβA

(
d⊗
k=2

x(k)

)
.

We define a measure µdε,T on R(d−1)n × T by the formula

µdε,T (C) :=

∫
R(d−1)n

∑
t∈T⊗

x(k),ε

1C
(
(x(2), . . . , x(d), t)

)
dγ(d−1)n,ε((x

(k))k=2,...,d),

where γn,t is the distribution of tGn = t(g1, . . . , gn). Clearly,

µdε,T ((Rd−1)n × T ) ≤ exp(Cε−2). (3.9)

To bound N(U, ρA, ε) for ε > 0 and U ⊂ (Bn2 )d−1 × T we need two lemmas.

Lemma 3.2 ([15, Lemma 2]). For any x = (x(1), . . . , x(d)) ∈ (Bn2 )d, norm α′ on Rn
d

and
ε > 0 we have

γdn,ε (Bα′(x, r(4ε, α
′))) ≥ 2−d exp(−dε−2/2),

where

Bα′(x, r(ε, α
′)) =

{
y = (y(1), . . . , y(d)) ∈ (Rn)d | α′

(
d⊗
k=1

x(k) −
d⊗
k=1

y(k)

)
≤ r(ε, α′)

}

and

r(ε, α′) =

d∑
k=1

εk
∑

I⊂[d]: |I|=k

Eα′

(
d⊗
k=1

(
x(k)(1− 1k∈I) +G(k)1k∈I

))
.

Lemma 3.3. For any (x, t) = (x(2), . . . , x(d), t) ∈ (Bn2 )
d−1 × T and ε > 0 we have

µdε,T

(
B
(

(x, t), ρA,W
{(x,t)}
d (αA, 8ε) + V

{(x,t)}
d (βA, 8ε)

))
≥ cd exp

(
−C(d)ε−2

)
.

Proof. Fix (x, t) ∈ (Bn2 )
d−1 × T , ε > 0 and consider

U =

{
(y(2), . . . , y(d)) ∈ R(d−1)n : αA

((
d⊗
k=2

x(k) −
d⊗
k=2

y(k)

)
⊗ t

)

+ εβA

(
d⊗
k=2

x(k) −
d⊗
k=2

y(k)

)
≤W {(x,t)}d (αA, 4ε) + V

{(x,t)}
d (βA, 4ε)

}
.

For any (y(2), . . . , y(d)) ∈ U there exists t′ ∈ T⊗ y(k),ε such that

αA

(
d⊗
k=2

y(k) ⊗ (t− t′)

)
≤ εβA

(
d⊗
k=2

y(k)

)
.
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By the triangle inequality,

αA

(
d⊗
k=2

x(k) ⊗ t−
d⊗
k=2

y(k) ⊗ t′
)

≤ αA

((
d⊗
k=2

x(k) −
d⊗
k=2

y(k)

)
⊗ t

)
+ αA

(
d⊗
k=2

y(k) ⊗ (t− t′)

)

≤ αA

((
d⊗
k=2

x(k) −
d⊗
k=2

y(k)

)
⊗ t

)
+ εβA

(
d⊗
k=2

x(k) −
d⊗
k=2

y(k)

)
+ εβA

(
d⊗
k=2

x(k)

)
≤W {(x,t)}d (αA, 4ε) + 2V

{(x,t)}
d (βA, 4ε) ≤W {(x,t)}d (αA, 8ε) + V

{(x,t)}
d (βA, 8ε),

where in the third inequality we used (3.8). Thus,

µdε,T

(
B
(

(x, t), ρA,W
{(x,t)}
d (αA, 8ε) + V

{(x,t)}
d (βA, 8ε)

))
≥ γ(d−1)n,ε(U) ≥ cd exp(−C(d)ε−2),

where the last inequality follows by Lemma 3.2 applied to the norm αA(·⊗ t) + εβA(·).

Corollary 3.4. Let U ⊂ (Bn2 )d−1 × T . Then for any ε > 0,

N
(
U, ρA,W

U
d (αA, ε) + V Ud (βA, ε)

)
≤ exp(C(d)ε−2) (3.10)

and for any δ > 0,√
logN(U, ρA, δ)

≤ C(d)


d−1∑
k=1

 ∑
I⊂{2,...,d}
|I|=k

WU
I (αA)


1
k

δ−
1
k +

d−1∑
k=0

 ∑
I⊂{2,...,d}
|I|=k

V UI (βA)


1

k+1

δ−
1

k+1

 . (3.11)

Proof. It suffices to show (3.10), since it easily implies (3.11). Consider first ε ≤ 8.
Obviously, WU

d (αA, ε)+V Ud (βA, ε) ≥ sup(x,t)∈U (W
{(x,t)}
d (αA, ε)+V

{(x,t)}
d (βA, ε)). Therefore,

by Lemma 3.3 (applied with ε/16) we have for any (x, t) ∈ U ,

µdε,T
(
B
(
(x, t), ρA,W

U
d (αA, ε/2) + V Ud (βA, ε/2)

))
≥ C(d)−1 exp

(
−C(d)ε−2

)
. (3.12)

Suppose that there exist (x1, t1), . . . , (xN , tN ) ∈ U such that

ρA((xi, ti), (xj , tj)) > WU
d (αA, ε) + V Ud (βA, ε) ≥ 2WU

d (αA, ε/2) + 2V Ud (βA, ε/2) for i 6= j.

Then the sets B
(
(xi, ti), ρA,WU

d (αA, ε/2) + V Ud (βA, ε/2)
)

are disjoint, so by (3.9) and
(3.12), we obtain N ≤ C(d) exp(C(d)ε−2) ≤ exp(C(d)ε−2).

If ε ≥ 8 then (3.8) gives

WU
d (αA, ε) + V Ud (βA, ε) ≥ 8 sup

(x(2),...,x(d),t)∈U
E

∣∣∣∣∣∑
i

aigi1

d∏
k=2

x
(k)
ik
tid+1

∣∣∣∣∣
=

√
128

π
sup

(x(2),...,x(d),t)∈U

∑
i1

 ∑
i2,...,id+1

ai

d∏
k=2

x
(k)
ik
tid+1

2


1/2

≥ diam (U, ρA) .

So, N(U, ρA,W
U
d (αA, ε) + V Ud (βA, ε)) = 1 ≤ exp(ε−2).
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Remark 3.5. The classical Dudley’s bound on suprema of Gaussian processes (see e.g.,
[9, Corollary 5.1.6]) gives

E sup
(x(2),...,x(d),t)∈(Bn

2 )d−1×T

∑
i

aigi1

d∏
k=2

x
(k)
ik
tid+1

≤ C
∫ ∆

0

√
logN((Bn2 )d−1 × T , ρA, δ)dδ,

where ∆ is equal to the diameter of the set (Bn2 )d−1 × T in the metric ρA. Unfortunately
the entropy bound derived in Corollary 3.4 involves a nonintegrable term δ−1. The
remaining part of the proof of Theorem 3.1 is devoted to improving on Dudley’s bound.

For x, y ∈ (Rn)d−1 we define a norm α̂A on (Rn)d−1 = R(d−1)n by the formula

α̂A(x(2), . . . , x(d)) :=

d∑
j=2

∑
(P,P′)∈P([d]\{j})

|P|=d−2

∥∥∥∥∥∥
∑
ij

aix
(j)
ij

∥∥∥∥∥∥
P′ | P

=

d∑
j=2

∑
P∈P([d]\{j})
|P|=d−2

∥∥∥∥∥∥
∑
ij

aix
(j)
ij

∥∥∥∥∥∥
∅ | P

+

d∑
j=2

d∑
j 6=k=1

∑
P∈P([d]\{j,k})
|P|=d−2

∥∥∥∥∥∥
∑
ij

aix
(j)
ij

∥∥∥∥∥∥
{k} | P

.

Proposition 3.6. For any d ≥ 3, ε > 0 and U ⊂ (Bn2 )d−1 × T ,

N

(
U, ρA,

d−2∑
k=0

εd−ksk(A) + ε sup
(x(2),...,x(d),t)∈U

α̂A(x(2), . . . , x(d))

)
≤ exp(C(d)ε−2).

Proof. We will estimate the quantities WU
d (αA, ε) and V Ud (βA, ε) appearing in Corol-

lary 3.4.
Since U ⊂ (Bn2 )d−1 × T , Jensen’s inequality yields for I ⊂ {2, . . . , d},

WU
I (αA) = sup

(x(2),...,x(d),t)∈U
EαA

((
d⊗
k=2

(
x(k)(1− 1I(k)) +G(k)1I(k)

))
⊗ t

)

≤ sup
(x(2),...,x(d),t)∈U

√√√√√E∑
i1

 ∑
i2,...,id+1

ai
∏
k∈I

g
(k)
ik

∏
k∈[d]\(I∪{1})

x
(k)
ik
tid+1

2

= sup
(x(2),...,x(d),t)∈U

√√√√√ ∑
iI∪{1}

 ∑
i[d+1]\(I∪{1})

ai
∏

k∈[d]\(I∪{1})

x
(k)
ik
tid+1

2

≤ ‖A‖∅ | I∪{1},{k}:k∈[d]\(I∪{1}) ≤ sd−|I|(A). (3.13)

By estimating a little more accurately in the second inequality in (3.13) we obtain for
2 ≤ j ≤ d,

WU
{j}(αA)

≤ sup
(x(2),...,x(d),t)∈U

∑
2≤l≤d
l 6=j

sup
(y(2),...,y(d))∈(Bn

2 )d−1

√√√√√√√∑
i1,ij

 ∑
i[d+1]\{1,j}

aix
(l)
il

∏
2≤k≤d
k 6=j,l

y
(k)
ik
tid+1


2

≤ sup
(x(2),...,x(d),t)∈U

d∑
l=2

∑
P∈P([d]\{l})
|P|=d−2

∥∥∥∥∥∑
il

aix
(l)
il

∥∥∥∥∥
∅ | P

. (3.14)

EJP 26 (2021), paper 11.
Page 16/36

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP567
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Moments of Gaussian chaoses in Banach spacess

Observe that (3.14) is not true for d = 2 (cf. Remark 3.7).
Let us now pass to the quantity V Ud (βA, ε). The definition of V UI and the inclusion

U ⊂ (Bn2 )d−1 × T yield

V UI (βA) ≤ ‖A‖{1}{i}: i∈I | {k}:k∈[d]\(I∪{1}) ≤ sd−|I|−1(A) for I 6= ∅ (3.15)

and

V U∅ (βA) ≤ sup
(x(2),...,x(d),t)∈U

d∑
l=2

sup
(y(2),...,y(d))∈(Bn

2 )d−1

E sup
t′∈T

∑
i

aigi1x
(l)
il

∏
2≤k≤d
k 6=l

y
(k)
ik
t′id+1

≤ sup
(x(2),...,x(d),t)∈U

d∑
l=2

∥∥∥∥∥∥
∑
ij

aix
(l)
il

∥∥∥∥∥∥
{1} | {k}: k∈[d]\{1,l}

. (3.16)

Inequalities (3.13)–(3.16) imply that

WU
d (αA, ε) + V Ud (βA, ε)

=
d−1∑
k=2

εk
∑

I⊂{2,...,d}:|I|=k

WU
I (αA) +

d−1∑
k=1

εk+1
∑

I⊂{2,...,d}:|I|=k

V UI (βA)

+ ε

 d∑
j=2

WU
{j}(αA) + V U∅ (βA)



≤ C(d)

d−2∑
k=0

εd−ksk(A) + dε sup
(x(2),...,x(d),t)∈U

 d∑
l=2

∑
(P,P′)∈P([d]\{l})

|P|=d−2

∥∥∥∥∥∑
il

aix
(l)
il

∥∥∥∥∥
P′ | P

 .

Hence the assertion is a simple consequence of Corollary 3.4.

Remark 3.7. Proposition 3.6 is not true for d = 2. The problem arises in (3.14) – for
d = 2 there does not exist P ∈ P([d] \ {l}) such that |P| = d− 2. This is the main reason
why proofs for chaoses of order d = 2 (cf. [2]) have a different nature than for higher
order chaoses.

4 Proof of Theorem 3.1

We will prove Theorem 3.1 by induction on d (recall that the matrix A has order d+ 1).
To this end we need to amplify the induction hypothesis. For U ⊂ (Rn)d−1 × Rm we
define

FA(U) = E sup
(x(2),...,x(d),t)∈U

∑
i1,...,id+1

ai1,...,id+1
gi1

d∏
k=2

x
(k)
ik
tid+1

.

Theorem 4.1. For any U ⊂ (Bn2 )d−1 × T and any p ≥ 1

FA(U) ≤ C(d)

(
√
p∆A(U) +

d−1∑
k=0

p
k+1−d

2 sk(A)

)
, (4.1)

where

∆A(U) = sup
(x(2),...,x(d),t),(y(2),...,y(d),t′)∈U

ρA((x(2), . . . , x(d), t), (y(2), . . . , y(d), t′))

= diam(A, ρA).
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Clearly it is enough to prove Theorem 4.1 for finite sets U . Observe that

∆A((Bn2 )d−1 × T ) ≤ 2 ‖A‖∅ | {j}:j∈[d] = 2sd(A),

thus Theorem 4.1 implies Theorem 3.1. We will prove (4.1) by induction on d, but first
we will show several consequences of the theorem. In the next three lemmas, we shall
assume that Theorem 4.1 (and thus also Theorem 3.1) holds for all matrices of order
smaller than d+ 1.

Lemma 4.2. Let p ≥ 1, l ≥ 0 and d ≥ 3. Then

N

(
(Bn2 )d−1, ρ̂A, 2

−l
d−1∑
k=0

p
k+1−d

2 sk(A)

)
≤ exp(C(d)22lp),

where ρ̂A is the distance on (Rn)d−1 corresponding to the norm α̂A.

Proof. Note that

Eα̂A

(
G(2), . . . , G(d)

)
=

d∑
j=2

∑
(P,P′)∈P([d]\{j})

|P|=d−2

E

∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
P′ | P

. (4.2)

Up to a permutation of the indexes we have two possibilities∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
P′ | P

=


∥∥∥∑ij

aigij

∥∥∥
∅ | {1,2},{{l}: 3≤l≤d, l 6=j}

or∥∥∥∑ij
aigij

∥∥∥
{1} | {l}:2≤l≤d, l 6=j

.
(4.3)

First assume that
∥∥∥∑ij

aigij

∥∥∥
P′ | P

=
∥∥∥∑ij

aigij

∥∥∥
∅ | {1,2},{{l}: 3≤l≤d, l 6=j}

. In this case

∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
∅ | {1,2},{{l}: 3≤l≤d, l 6=j}

=

∥∥∥∥∥∑
i1

bi1,...,idgi1

∥∥∥∥∥
∅ | {2},...,{d−1}

for an appropriately chosen matrix B = (bi1,...,id) (we treat a pair of indices {1, 2} as
a single index and renumber the indices in such a way that j, {1, 2} and d + 1 would
become 1, 2 and d respectively).

Clearly,∑
(P′,P)∈P([d−1])

|P|=k

‖B‖P′ | P =
∑

(P′,P)∈C
|P|=k

‖A‖P′ | P ≤
∑

(P′,P)∈P([d])
|P|=k

‖A‖P′ | P = sk(A), (4.4)

where C ⊂ P([d]) is the set of partitions which do not separate 1 and 2.

Thus, Theorem 3.1 applied to the matrix B of order d yields

E

∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
∅ | {1,2},{{l}: 3≤l≤d, l 6=j}

= E

∥∥∥∥∥∑
i1

bi1,...,idgi1

∥∥∥∥∥
∅ | {2},...,{d−1}

≤ C(d)
∑

(P′,P)∈P([d−1])

p
|P|+2−d

2 ‖B‖P′ | P ≤ C(d)

d−1∑
k=0

p
k+2−d

2 sk(A). (4.5)
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Now assume that
∥∥∥∑ij

aigij

∥∥∥
P′ | P

=
∥∥∥∑ij

aigij

∥∥∥
{1} | {l}:2≤l≤d, l 6=j

and observe that

E

∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
{1} | {l}:2≤l≤d, l 6=j

= Eg sup
x(l)∈Bn

2 , 2≤l≤d, l 6=j
Eg
′
sup
t∈T

∑
i

aig
′
i1gij

∏
2≤l≤d, l 6=j

x
(l)
il
tid+1

= E sup
x(l)∈Bn

2 , 2≤l≤d, l 6=j
sup
m∈M

∑
i

aigij
∏

2≤l≤d, l 6=j

x
(l)
il
mi1,id+1

= E sup
x(l)∈Bn

2 , 2≤l≤d−1

sup
m∈M̃

∑
i1,...,id

di1,...,idgi1

d−1∏
l=2

x
(l)
il
mid ,

where D = (di1,...,id)i1,...,id is an appropriately chosen matrix of order d, the symmetric
setM⊂ Rn ⊗Rm satisfies

E sup
t∈T

∑
i,j

bi,jgitj = sup
m∈M

∑
i,j

bi,jmi,j for any matrix (bi,j)i≤n,j≤m,

and M̃ corresponds toM under a natural identification of Rn ⊗Rm with Rnm.
Applying Theorem 3.1 to the matrix D of order d gives

E

∥∥∥∥∥∥
∑
ij

aigij

∥∥∥∥∥∥
{1} | {l}:2≤l≤d, l 6=j

= E sup
x(l)∈Bn

2 , 2≤l≤d−1

sup
m∈M̃

∑
i1,...,id

di1,...,idgi1

d−1∏
l=2

x
(l)
il
mid

≤ C(d)
∑

(P′,P)∈P([d−1])

p
|P|+2−d

2 ‖D‖M̃P′ | P

≤ C(d)
∑

(P′,P)∈P([d])

p
|P|+2−d

2 ‖A‖P′ | P

= C(d)

d−1∑
k=0

p
k+2−d

2 sk(A), (4.6)

where ‖D‖M̃P′ | P is defined in the same manner as ‖A‖P′ | P (see (3.1)) but the supremum

is taken over the set M̃ instead of T . The second inequality in (4.6) can be justified
analogously as (4.4).

Combining (4.2), (4.3), (4.5), (4.6) and the dual Sudakov inequality (Theorem A.3,
note that (Bn2 )d−1 ⊆

√
d− 1B

n(d−1)
2 ) we obtain

N

(
(Bn2 )d−1, ρ̂A, t

d−1∑
k=0

p
k+2−d

2 sk(A)

)
≤ N

(
(Bn2 )d−1, ρ̂A, C(d)−1tEα̂A(G(2), . . . , G(n))

)
≤ exp(C(d)t−2).

It is now enough to choose t = (
√
p2l)−1.

From now on for U ⊆ (Rn)d−1 ×Rm we denote

α̂A(U) = sup
(x(2),...,x(d),t)∈U

α̂A

(
x(2), . . . , x(d)

)
.

Lemma 4.3. Suppose that d ≥ 3, y = (y(2), . . . , y(d)) ∈ (Bn2 )d−1 and U ⊂ (Bn2 )d−1 × T .
Then for any p ≥ 1 and l ≥ 0, we can find a decomposition

U =

N⋃
j=1

Uj , N ≤ exp(C(d)22lp)
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such that for each j ≤ N ,

FA((y, 0) + Uj) ≤ FA(Uj) + C(d)

(
α̂A (y) + α̂A(U) + 2−l

d−2∑
k=0

p
k+1−d

2 sk(A)

)
(4.7)

and

∆A(Uj) ≤ 2−lp−1/2α̂A(U) + 2−2l
d−2∑
k=0

p
k−d
2 sk(A). (4.8)

Proof. Fix y ∈ (Bn2 )d−1 and U ⊂ (Bn2 )d−1×T . For I ⊂ {2, . . . , d}, x = (x(2), . . . , x(d), t), x̃ =

(x̃(2), . . . , x̃(d), t′) ∈ (Rn)d−1 ×Rm and S ⊂ (Rn)d−1 ×Rm, we define

ρy,I
A (x, x̃) :=

√√√√√√√∑
i1

 ∑
i2,...,id+1

ai
∏
k∈I

y
(k)
ik

tid+1

∏
2≤j≤d

j /∈I

x
(j)
ij
− t′id+1

∏
2≤j≤d

j /∈I

x̃
(j)
ij




2

,

∆y,I
A (S) := sup

{
ρy,I
A (x, x̃) : x, x̃ ∈ S

}
and

F y,I
A (S) := E sup

(x(2),...,x(d),t)∈S

∑
i

aigi1
∏
k∈I

y
(k)
ik

 ∏
2≤j≤d

j /∈I

x
(j)
ij

 tid+1
.

If I = {2, . . . , d} then for S ⊂ (Bn2 )d−1 × T we have

F
y,{2,...,d}
A (S) ≤ E sup

t∈T

∑
i

aigi1

d∏
k=2

y
(k)
ik
tid+1

≤ sup
(x(2),...,x(d−1))∈(Bn

2 )d−2

E sup
t∈T

∑
i

aigi1

d−1∏
j=2

x
(j)
ij

 y
(d)
id
tid+1

=

∥∥∥∥∥∑
id

aiy
(d)
id

∥∥∥∥∥
{1} | {k} : k=2,...,d−1

≤ α̂A (y) . (4.9)

If ∅ 6= I ( {2, . . . , d} then Theorem 4.1 applied to the matrix

A(y, I) :=

(∑
iI

ai
∏
k∈I

y
(k)
ik

)
i[d+1]\I

of order d− |I|+ 1 < d+ 1 gives for any S ⊂ (Bn2 )d−1 × T and q ≥ 1,

F y,I
A (S) ≤ C(d− |I|)

q1/2∆y,I
A (S) +

d−|I|−1∑
k=0

q
k+1−d+|I|

2 sk(A(y, I))

 .

For any 2 ≤ k ≤ d, y(k) ∈ Bn2 , thus sk(A(y, I)) ≤ sk+|I|(A) for k < d − |I| − 1 and
sd−|I|−1(A(y, I)) ≤ α̂A (y).

Hence,

F y,I
A (S) ≤ C(d− |I|)

(
q1/2∆y,I

A (S) + α̂A (y) +

d−2∑
k=0

q
k+1−d

2 sk(A)

)
. (4.10)
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By the triangle inequality,

FA((y(2), . . . , y(d), 0) + S)− FA(S) ≤
∑

∅6=I⊂{2,...,d}

F y,I
A (S).

Combining (4.9) and (4.10) we obtain for S ⊂ (Bn2 )d−1 × T and q ≥ 1,

FA((y(2), . . . , y(d), 0) + S)

≤ FA(S) + C(d)

α̂A (y) +
∑

∅6=I({2,...,d}

q1/2∆y,I
A (S) +

d−2∑
k=0

q
k+1−d

2 sk(A)

 . (4.11)

Fix I ( {2, . . . , d}, |I| < d − 2 (we do not exclude I = ∅). Taking supremum over
y ∈ (Bn2 )d−1 we conclude that

sup
(x(2),...,x(d),t)∈U

α̂A(y,I)((x
(k))k∈{2,...,d}\I) ≤ sup

(x(2),...,x(d),t)∈U
α̂A(x(2), . . . , x(d)).

Recall also that sk(A(y, I)) ≤ sk+|I|(A), thus we may apply 2d−1 − d times Proposi-

tion 3.6 with ε = 2−lp−1/2 and find a decomposition U =
⋃N1

j=1 U
′
j , N1 ≤ exp(C(d)22lp)

such that for each j and I ⊂ {2, . . . , d} with |I| < d− 2,

∆y,I
A (U ′j) ≤ 2−lp−1/2α̂A (U) + 2−2l

d−2∑
k=0

p
k−d
2 sk(A). (4.12)

If |I| = d− 2 then the distance ρy,IA corresponds to a norm αA(y,I) on Rnm given by

αA(y,I)(x) =

√√√√√∑
i1

 ∑
i2,...,id+1

aixi{j,d+1}

∏
k∈I

y
(k)
ik

2

,

where j is defined by the condition {1, j} = [d] \ I (cf. (3.3), (3.4) and observe that A(y, I)

is an n×m matrix). We define also (as in (3.6))

βA(y,I)(x) = E sup
t∈T

∑
i

aigi1xij
∏
l∈I

y
(l)
il
tid+1

.

Recall the definitions (3.5) and (3.7) and note that (denoting by Ũ the projection of U
onto the j-th and (d+ 1)-th coordinate)

W Ũ
2 (αA(y,I), ε) = ε sup

(x(2),...,x(d),t)∈U
E

√√√√√∑
i1

 ∑
i2,...,id+1

aigij tid+1

∏
k∈I

y
(k)
ik

2

≤ ε sup
(x(2),...,x(d),t)∈U

√√√√√∑
i1,ij

(∑
iI

ai
∏
k∈I

y
(k)
ik
tid+1

)2

≤ εα̂(y), (4.13)

where we again used that yk ∈ Bn2 , U ⊂ (Bn2 )d−1 × T .
We also have

V Ũ{j}(βA(y,I)) = E sup
t∈T

∑
i

aig
(1)
i1
g

(2)
ij

∏
k∈I

y
(k)
ik
tid+1

≤ sd−2(A)
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and

V Ũ∅ (βA(y,I)) = sup
(x(2),...,x(d),t)∈U

E sup
t′∈T

∑
i

aigi1x
(j)
ij

∏
k∈I

y
(k)
ik
t′id+1

≤ α̂(y).

Thus

V Ũ2 (βA(y,I), ε) ≤ εα̂(y) + ε2sd−2(A).

Taking ε = 2−l−1p−1/2 and combining the above estimate with (4.13) and Corollary 3.4
(applied d− 1 times) we obtain a partition U =

⋃N2

j=1 U
′′
j with N2 ≤ exp(C(d)22lp) and

∆y,I
A (U ′′j ) ≤ 2−lp−1/2α̂A(y) + 2−2lp−1sd−2(A) (4.14)

for any I ⊂ {2, . . . , d} with |I| = d− 2 and j ≤ N2.
Intersecting the partition (U ′i)i≤N1

(which fulfills (4.12)) with (U ′′j )j≤N2
we obtain a

partition U =
⋃N
i=1 Ui with N ≤ N1N2 ≤ exp(C(d)22lp) and such that for every i ≤ N

there exist j ≤ N1 and l ≤ N2 such that Ui ⊂ U ′j ∩ U ′′l .
Inequality (4.7) follows by (4.11) with q = 22lp, (4.12) and (4.14). Observe that (4.8)

follows by (4.12) for I = ∅.

Lemma 4.4. Suppose that U is a finite subset of (Bn2 )d−1 × T , with |U | ≥ 2 and U − U ⊂
(Bn2 )d−1 × (T − T ). Then for any p ≥ 1, l ≥ 0 there exist finite sets Ui ⊂ (Bn2 )d−1 × T and
(yi, ti) ∈ U , i = 1, . . . , N such that

(i) 2 ≤ N ≤ exp(C(d)22lp),

(ii) U =
⋃N
i=1((yi, 0) + Ui), (Ui − Ui) ⊂ U − U, |Ui| ≤ |U | − 1,

(iii) ∆A(Ui) ≤ 2−2l
∑d−1
k=0 p

k−d
2 sk(A),

(iv) α̂A (Ui) ≤ 2−l
∑d−1
k=0 p

k+1−d
2 sk(A),

(v) FA((yi, 0) + Ui) ≤ FA(Ui) + C(d)
(
α̂A (U) + 2−l

∑d−1
k=0 p

k+1−d
2 sk(A)

)
.

Proof. By Lemma 4.2 we get

(Bn2 )d−1 =

N1⋃
i=1

Bi, N1 ≤ exp(C(d)22lp),

where the diameter of the sets Bi in the norm α̂ satisfies

diam(Bi, α̂A) ≤ 2−l
d−1∑
k=0

p
k+1−d

2 sk(A).

Let Ui = U ∩ (Bi × T ). Selecting arbitrary (yi, ti) ∈ Ui (we can assume that these sets
are nonempty) and using Lemma 4.3 (with l + 1 instead of l) we decompose Ui − (yi, 0)

into
⋃N2

j=1 Uij in such a way that N2 ≤ exp(C(d)22lp),

FA((yi, 0) + Uij) ≤ FA(Uij) + C(d)

(
α̂A (yi) + α̂A (Ui − (yi, 0)) + 2−l

d−2∑
k=0

p
k+1−d

2 sk(A)

)

≤ FA(Uij) + C(d)

(
α̂A (yi) + diam(Bi, α̂A) + 2−l

d−2∑
k=0

p
k+1−d

2 sk(A)

)

≤ FA(Uij) + C(d)

(
α̂A (U) + 2−l

d−1∑
k=0

p
k+1−d

2 sk(A)

)
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and

∆A(Uij) ≤ 2−l−1p−1/2α̂A (Ui − (yi, 0)) + 2−2l−2
d−2∑
k=0

p
k−d
2 sk(A) ≤ 2−2l

d−1∑
k=0

p
k−d
2 sk(A).

We take the decomposition U =
⋃
i,j((yi, 0) + Uij). We have N = N1N2 ≤ exp(C(d)22lp).

Without loss of generality we can assume N ≥ 2 and |Ui,j | ≤ |U |−1. Obviously, Uij−Uij ⊂
Ui −Ui ⊂ U −U and α̂A (Uij) ≤ α̂A (Ui − (yi, 0)) ≤ 2−l

∑d−1
k=0 p

k+1−d
2 sk(A). A relabeling of

the obtained decomposition concludes the proof.

Proof of Theorem 4.1. In the case of d = 2 Theorem 4.1 is proved in [2] (see Remark 37
therein).

Assuming (4.1) to hold for {2, . . . , d−1}, we will prove it for d ≥ 3. Let U ⊂ (Rn)d−1×T
and let us put ∆0 = ∆A(U), ∆̂0 = α̂A

(
(Bn2 )d−1 × T

)
≤ C(d)sd−1(A),

∆l := 22−2l
d−1∑
k=0

p
k−d
2 sk(A), ∆̂l := 21−l

d−1∑
k=0

p
k+1−d

2 sk(A) for l ≥ 1.

Suppose first that U ⊂ ( 1
2 (Bn2 )d−1)× T and define

cU (r, l) := sup
{
FA(S) : S ⊂ (Bn2 )d−1 × T, S − S ⊂ U − U,

|S| ≤ r,∆A(S) ≤ ∆l, α̂A (S) ≤ ∆̂l

}
.

Note that any subset S ⊂ U satisfies ∆A(S) ≤ ∆0 and α̂A (S) ≤ ∆̂0, therefore,

cU (r, 0) ≥ sup{FA(S) : S ⊂ U, |S| ≤ r}. (4.15)

We will now show that for r ≥ 2,

cU (r, l) ≤ cU (r − 1, l + 1) + C(d)

(
∆̂l + 2l

√
p∆l + 2−l

d−1∑
k=0

p
k+1−d

2 sk(A)

)
. (4.16)

Indeed, let us take S ⊂ (Bn2 )d−1 × T as in the definition of cU (r, l). Then by Lemma 4.4
we may find a decomposition S =

⋃N
i=1((yi, 0) + Si) satisfying (i)–(v) with U , Ui replaced

by S, Si. Hence, by Lemma A.4, we have

FA(S) ≤ C
√

logN∆A(S) + max
i
FA((yi, 0) + Si)

≤ C(d)

(
2l
√
p∆l + α̂A (S) + 2−l

d−1∑
k=0

p
k+1−d

2 sk(A)

)
+ max

i
FA(Si). (4.17)

We have ∆A(Si) ≤ ∆l+1, α̂A (Si) ≤ ∆̂l+1, Si−Si ⊂ S−S ⊂ U −U and |Si| ≤ |S| − 1 ≤
r−1, thus maxi FA(Si) ≤ cU (r−1, l+1) and (4.17) yields (4.16). Since cU (1, l) = 0, (4.16)
yields

cU (r, 0) ≤ C(d)

∞∑
l=0

(
∆̂l + 2l

√
p∆l + 2−l

d−1∑
k=0

p
k+1−d

2 sk(A)

)
.

For U ⊂ ( 1
2 (Bn2 )d−1)× T , we have by (4.15)

FA(U) = sup{FA(S) : S ⊂ U, |S| <∞} ≤ sup
r
cU (r, 0)

≤ C(d)

(
√
p∆A(U) +

d−1∑
k=0

p
k+1−d

2 sk(A)

)
.
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Finally, if U ⊂ (Bn2 )d−1 × T , then U ′ := {(y/2, t) : (y, t) ∈ U} ⊂ ( 1
2 (Bn2 )d−1) × T and

∆A(U ′) = 21−d∆A(U), hence,

FA(U) = 2d−1FA(U ′) ≤ C(d)

(
√
p∆A(U) +

d−1∑
k=0

p
k+1−d

2 sk(A)

)
.

5 Proofs of main results

We return to the notation used Section 2. In particular in this section the multi-index
i takes values in [n]d (instead of [n]d × [m] as we had in the two previous sections) and all
summations over i should be understood as summations over [n]d.

5.1 Proofs of Theorems 2.1 and 2.5

Proof of Theorem 2.1. We start with the lower bound. Fix J ⊂ [d], P ∈ P([d] \ J) and
observe that∥∥∥∥∥∑

i

ai

d∏
k=1

g
(k)
ik

∥∥∥∥∥
p

≥

E(G(j)):j∈J sup
ϕ∈F∗
‖ϕ‖≤1

E(G(j)):j∈[d]\J

∣∣∣∣∣ϕ
(∑

i

ai

d∏
k=1

g
(k)
ik

)∣∣∣∣∣
p


1/p

≥ c(d)

E(G(j)):j∈Jp
p|P|

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

iJ

ai
∏
j∈J

g
(j)
ij


i[d]\J

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

P


1/p

≥ c(d)p
|P|
2 E

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

iJ

ai
∏
j∈J

g
(j)
ij


i[d]\J

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
P

= c(d)p
|P|
2 |||A|||P ,

where F ∗ is the dual space and in the second inequality we used Theorem A.6.
The upper bound will be proved by an induction on d. For d = 2 it is shown in [2].

Suppose that d ≥ 3 and the estimate holds for F -valued matrices of order 2, . . . , d− 1. By
the induction assumption, we have∥∥∥∥∥∑

i

ai

d∏
k=1

g
(k)
ik

∥∥∥∥∥
p

≤ C(d)
∑

(P,P′)∈P([d−1])

p
|P|
2

∥∥∥∥∥∥
∥∥∥∥∥∑
id

aigid

∥∥∥∥∥
P′ | P

∥∥∥∥∥∥
p

. (5.1)

Since ‖·‖P′ | P is a norm Lemma A.5 yields∥∥∥∥∥∥
∥∥∥∥∥∑
id

aigid

∥∥∥∥∥
P′ | P

∥∥∥∥∥∥
p

≤ CE

∥∥∥∥∥∑
id

aigid

∥∥∥∥∥
P′ | P

+ C
√
p ‖A‖P′ | P∪{d} . (5.2)

Choose P = (I1 . . . , Ik),P ′ = (J1, . . . , Jm) and denote J =
⋃
P ′. By the definition of

‖A‖P′ | P we have∥∥∥∥∥∑
id

aigid

∥∥∥∥∥
P′ | P

= sup

E(G(1),...,G(m))

∥∥∥∥∥∑
i

aix
(1)
iI1
· · ·x(k)

iIk

m∏
l=1

g
(l)
iJl
g

(d)
id

∥∥∥∥∥ ∣∣∣ ∀j=1...,k

∑
iIj

(
x

(j)
iIj

)2

= 1


= sup


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i[d]\J

aix
(1)
iI1
· · ·x(k)

iIk
g

(d)
id


iJ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣ ∀j=1...,k

∑
iIj

(
x

(j)
iIj

)2

= 1

 , (5.3)
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where G(l) = (g
(l)
iJl

)iJl
and ||| · ||| is a norm on Fn

|J|
given by

|||(biJ )iJ ||| = E

∥∥∥∥∥∑
iJ

biJ

m∏
l=1

g
(l)
iJl

∥∥∥∥∥ .
Theorem 2.6 implies that

E sup


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i[d]\J

aix
(1)
iI1
· · ·x(k)

iIk
g

(d)
id


iJ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣ ∀j=1...,k

∑
iIj

(
x

(j)
iIj

)2

= 1


≤ C(k)

∑
(R′,R)∈P([d]\J)

p
|R|−k

2 |||Â|||R′ | R = C(k)
∑

(R′,R)∈P([d]\J)

p
|R|−k

2 ‖A‖R′∪P′ | R

≤ C(k)
∑

(R′,R)∈P([d])

p
|R|−k

2 ‖A‖R′ | R ,

where Â := (âi[d]\J )i[d]\J is Fn
|J|

-valued matrix of order d − |J | given by âi[d]\J = (ai)iJ
and |||A|||R′ | R is defined in a similar way as ‖A‖R′ | R but under the expectation occurs
the norm ||| · |||.

The above and (5.3) yield

E

∥∥∥∥∥∑
id

aigid

∥∥∥∥∥
P′ | P

≤ C(k)
∑

(R′,R)∈P([d])

p
|R|−k

2 ‖A‖R′ | R . (5.4)

Since |P| = k the theorem follows from (5.1), (5.2) and (5.4).

Proof of Theorem 2.5. Let S =
∥∥∥∑ aig

(1)
i1
· · · g(d)

id

∥∥∥. Chebyshev’s inequality and Theo-

rem 2.1 yield for p > 0,

P

S ≥ C(d)
∑

(P,P′)∈P([d])

p|P|/2 ‖A‖P′ | P

 ≤ e1−p. (5.5)

Now we substitute

t = C(d)
∑

P′∈P([d])

‖A‖P′ | ∅ + C(d)
∑

(P,P′)∈P([d])
|P|≥1

p|P|/2 ‖A‖P′ | P := t1 + t2

and observe that if t1 < t2 then

p ≥ 1

C(d)
min

(P,P′)∈P([d])
|P|>0

(
t

‖A‖P′ | P

)2/|P|

.

The first inequality of the theorem follows then by adjusting the constants.
On the other hand by the Paley-Zygmund inequality we get for p ≥ 2,

P

S ≥ C−1(d)
∑
J∈[d]

∑
P∈P(J)

p|P|/2|||A|||P

 ≥ P(Sp ≥ 1

2p
ESp

)

≥
(

1− 1

2p

)2
(ESp)2

ES2p
≥ e−C(d)p,

where in the last inequality we used Theorem A.1. The inequality follows by a similar
substitution as for the upper bound.
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5.2 Proof of Proposition 2.11 and Theorem 2.10

Let us first note that Proposition 2.11 reduces (2.8) of Theorem 2.10 to the lower
estimate given in Theorem 2.1, while (2.10) is reduced to Corollary 2.9. The tail bounds
(2.9) and (2.11) can be then obtained by Chebyshev’s and Paley-Zygmund inequalities
as in the proof of Theorem 2.5. The rest of this section will be therefore devoted to the
proof of Proposition 2.11.

The overall strategy of the proof is similar to the one used in [4] to obtain the
real valued case of Theorem 2.10. It relies on a reduction of inequalities for general
polynomials of degree D to estimates for decoupled chaoses of degree d = 1, . . . , D. To
this end we will approximate general polynomials by tetrahedral ones and split the latter
into homogeneous parts of different degrees, which can be decoupled. The splitting may
at first appear crude but it turns out that up to constants depending on D one can in fact
invert the triangle inequality, which is formalized in the following result due to Kwapień
(see [13, Lemma 2]). Recall that a multivariate polynomial is called tetrahedral, if it is
affine in each variable.

Theorem 5.1. If X = (X1, . . . , Xn) where Xi are independent symmetric random vari-
ables, Q is a multivariate tetrahedral polynomial of degree D with coefficients in a
Banach space E and Qd is its homogeneous part of degree d, then for any symmetric
convex function Φ: E → R+ and any d ∈ {0, 1, . . . , D},

EΦ(Qd(X)) ≤ EΦ(CDQ(X)).

It will be convenient to have the polynomial f represented as a combination of
multivariate Hermite polynomials:

f(x1, . . . , xn) =

D∑
d=0

∑
d∈∆n

d

adhd1(x1) · · ·hdn(xn), (5.6)

where

∆n
d = {d = (d1, . . . , dn) : ∀k∈[n] dk ≥ 0 and d1 + · · ·+ dn = d}

and hm(x) = (−1)mex
2/2 dm

dxm e
−x2/2 is the m-th Hermite polynomial. Recall that Hermite

polynomials are orthogonal with respect to the standard Gaussian measure, in particular
if g is a standard Gaussian variable, then for m ≥ 1, Ehm(g) = 0 (we will use this property
several times without explicitly referring to it).

In what follows, we will use the following notation. For a set I, by Ik we will denote
the set of all one-to-one sequences of length k with values in I. For an F -valued d-indexed
matrix A = (ai1,...,id)i1,...,id≤n and x ∈ Rnd ' (Rn)⊗d we will denote

〈A, x〉 =
∑

i1,...,id

ai1,...,idxi1,...,id .

Let (Wt)t∈[0,1] be a standard Brownian motion. Consider standard Gaussian random
variables g = W1 and, for any positive integer N ,

gj,N =
√
N(W j

N
−W j−1

N
), j = 1, . . . , N.

For any d ≥ 0, we have the following representation of hd(g) = hd(W1) as a multiple
stochastic integral (see [12, Example 7.12 and Theorem 3.21]),

hd(g) = d!

∫ 1

0

∫ td

0

· · ·
∫ t2

0

dWt1 · · · dWtd−1
dWtd .
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Approximating the multiple stochastic integral leads to

hd(g) = d! lim
N→∞

N−d/2
∑

1≤j1<···<jd≤N

gj1,N · · · gjd,N

= lim
N→∞

N−d/2
∑
j∈[N ]d

gj1,N · · · gjd,N ,
(5.7)

where the limit is in L2(Ω) (see [12, Theorem 7.3. and formula (7.9)]) and actually the
convergence holds in any Lp (see [12, Theorem 3.50]).

Now, consider n independent copies (W
(i)
t )t∈[0,1] of the Brownian motion (1 ≤ i ≤ n)

together with the corresponding Gaussian random variables: g(i) = W
(i)
1 and, for N ≥ 1,

g
(i)
j,N =

√
N(W

(i)
j
N

−W (i)
j−1
N

), j = 1, . . . , N.

Let also

G(n,N) = (g
(1)
1,N , . . . , g

(1)
N,N , g

(2)
1,N , . . . , g

(2)
N,N , . . . , g

(n)
1,N , . . . , g

(n)
N,N ) = (g

(i)
j,N )(i,j)∈[n]×[N ]

be a Gaussian vector with nN coordinates. We identify here the set [nN ] with [n]× [N ]

via the bijection (i, j) ↔ (i − 1)N + j. We will also identify the sets ([n] × [N ])d and
[n]d × [N ]d in a natural way. For d ≥ 0 and d ∈ ∆n

d , let

Id =
{
i ∈ [n]d : ∀l∈[n] #i−1({l}) = dl

}
,

and define a d-indexed matrix B(N)
d of nd blocks each of size Nd as follows: for i ∈ [n]d

and j ∈ [N ]d,

(
B

(N)
d

)
(i,j)

=


d1!···dn!

d! N−d/2 if i ∈ Id and (i, j) :=
(
(i1, j1), . . . , (id, jd)

)
∈ ([n]× [N ])d,

0 otherwise.

Proof of Proposition 2.11. Assume that f is of the form (5.6), By [4, Lemma 4.3], for any
p > 0, 〈

B
(N)
d , (G(n,N))⊗d

〉 N→∞−→ hd1(g(1)) · · ·hdn(g(n)) in Lp(Ω),

which together with the triangle inequality implies that

lim
N→∞

∥∥∥ D∑
d=1

〈 ∑
d∈∆n

d

adB
(N)
d ,

(
G(n,N)

)⊗d〉∥∥∥
p

=
∥∥f(G)− Ef(G)

∥∥
p

for any p > 0, where G = (g(1), . . . , g(n)) and we interpret multiplication of an element of
F and a real valued d indexed matrix in a natural way. Thus, by Theorem 5.1 and the
triangle inequality we obtain

C−1
D limN→∞

D∑
d=1

∥∥∥〈 ∑
d∈∆n

d

adB
(N)
d ,

(
G(n,N)

)⊗d〉∥∥∥
p

≤ ‖f(G)− Ef(G)‖p

≤ limN→∞

D∑
d=1

∥∥∥〈 ∑
d∈∆n

d

adB
(N)
d ,

(
G(n,N)

)⊗d〉∥∥∥
p

(recall that the matrices B(N)
d have zeros on generalized diagonals and so do their linear

combinations).
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Denote by G(n,N,1), . . . , G(n,N,d) independent copies of G(n,N).
By decoupling inequalities of Theorem A.9 we have∥∥∥〈 ∑

d∈∆n
d

adB
(N)
d ,

(
G(n,N)

)⊗d〉∥∥∥
p
∼d
∥∥∥〈 ∑

d∈∆n
d

adB
(N)
d , G(n,N,1) ⊗ · · · ⊗G(n,N,d)

〉∥∥∥
p
. (5.8)

To finish the proof it is therefore enough to show that for any d ≤ D,

lim
N→∞

∥∥∥〈 ∑
d∈∆n

d

adB
(N)
d , G(n,N,1) ⊗ · · · ⊗ G(n,N,d)

〉∥∥∥
p

=
1

d!
‖〈Ad, G1 ⊗ · · · ⊗ Gd〉‖p, (5.9)

where G1, . . . , GD are independent copies of G (recall that Ad = E∇df(G)).
Fix d ≥ 1. For any d ∈ ∆n

d define a symmetric d-indexed matrix (bd)i∈[n]d as

(bd)i =

{
d1!···dn!

d! if i ∈ Id,

0 otherwise,

and a symmetric d-indexed matrix (B̃
(N)
d )(i,j)∈([n]×[N ])d as

(B̃
(N)
d )(i,j) = N−d/2(bd)i for all i ∈ [n]d and j ∈ [N ]d.

Using the convolution properties of Gaussian distributions one easily obtains∥∥∥〈 ∑
d∈∆n

d

adB̃
(N)
d , G(n,N,1)⊗· · ·⊗G(n,N,d)〉

∥∥∥
p

=
∥∥∥〈 ∑

d∈∆n
d

ad(bd)i∈[n]d , G1⊗· · ·⊗Gd
〉∥∥∥

p
(5.10)

On the other hand, for any d ∈ ∆n
d , the matrices B̃(N)

d and B
(N)
d differ at no more

than |Id| · |([N ]d \ [N ]d)| entries. Thus∥∥∥ad

〈
B̃

(N)
d −B(N)

d , G(n,N,1) ⊗ · · · ⊗G(n,N,d)
〉∥∥∥

p

≤ C(d)p
d
2 ‖ad‖ ·

∥∥∥〈B̃(N)
d −B(N)

d , G(n,N,1) ⊗ · · · ⊗G(n,N,d)
〉∥∥∥

2

≤ C(d)p
d
2 ‖ad‖ ·

√
|Id|
(d1! · · · dn!

d!

)2

N−d
(
Nd − N !

(N − d)!

)
−→ 0

as N →∞, where in the first inequality we used Theorem A.1.
Together with the triangle inequality and (5.10) this gives

lim
N→∞

∥∥∥〈 ∑
d∈∆n

d

adB
(N)
d , G(n,N,1) ⊗ · · · ⊗G(n,N,d)

〉∥∥∥
p

=
∥∥∥〈 ∑

d∈∆n
d

ad(bd)i∈[n]d , G1 ⊗ · · · ⊗Gd
〉∥∥∥

p
. (5.11)

Finally, we have
Ad = E∇df(G) = d!

∑
d∈∆n

d

ad(bd)i∈[n]d . (5.12)

Indeed, using the identity on Hermite polynomials, d
dxhk(x) = khk−1(x) (k ≥ 1), we

obtain E dl

dxlhk(g) = k!1k=l for k, l ≥ 0, and thus, for any d, l ≤ D and d ∈ ∆n
l ,(

E∇dhd1(g(1)) · · ·hdn(g(n))
)
i

= d!(bd)i1d=l for each i ∈ [n]d.

Now (5.12) follows by linearity. Combining it with (5.11) yields (5.9) and ends the
proof.
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5.3 Proof of the bound for chaoses in exponential variables

Proof of Proposition 2.18. Lemma A.8 implies

∥∥∥∥∥∑
i

ai

d∏
k=1

E
(k)
ik

∥∥∥∥∥
p

∼d
∥∥∥∥∥∥
∑

i1,...,i2d

âi1,...,i2d

2d∏
k=1

g
(k)
ik

∥∥∥∥∥∥
p

, (5.13)

where

âi1,...,i2d := ai1,...,id1{i1=id+1,...,id=i2d}.

Let Â = (âi1,...,i2d)i1,...,i2d .

Theorem 2.15 and (5.13) yield

1

C(d)
q1/2−d

∑
J⊂[2d]

∑
P∈P([J])

p
|P|
2 |||Â|||Lq,P ≤

∥∥∥∥∥∑
i

ai

d∏
k=1

E
(k)
ik

∥∥∥∥∥
p

≤ C(d)q2d− 1
2

∑
J⊂[2d]

∑
P∈P([J])

p
|P|
2 |||Â|||Lq,P . (5.14)

We will now express
∑
J⊂[2d]

∑
P∈P([J]) p

|P|
2 |||Â|||Lq,P in terms of the matrix A. To this

end we need to introduce new notation. Consider a finite sequenceM = (J, I1, . . . , Ik)

of subsets of [d], such that J ∪ I1 ∪ . . . ∪ Ik = [d], I1, . . . , Ik 6= ∅ and each number m ∈ [d]

belongs to at most two of the sets J, I1, . . . , Ik. Denote the family of all such sequences
byM([d]). ForM = (J, I1, . . . , Ik) set |M| = k + 1 and

〈A〉Lq,M := sup


∥∥∥∥∥∥∥∥
√√√√√∑

iJ

∑
i[d]\J

ai

k∏
r=1

x
(r)
iIr

2
∥∥∥∥∥∥∥∥
Lq

∣∣∣ ∀r≤k∑
iIr

(
x

(r)
iIr

)2

≤ 1

 ,

where we do not exclude that J = ∅. By a straightforward verification

∑
J⊂[2d]

∑
P∈P([J])

p
|P|
2 |||Â|||Lq,P ∼d

∑
M∈M([d])

p
|M|−1

2 〈A〉Lq,M . (5.15)

To finish the proof it is enough to show that

∑
M∈M([d])

p
|M|−1

2 〈A〉Lq,M ∼
d
∑
M∈C

p
|M|−1

2 〈A〉Lq,M , (5.16)

where

C =

{
M = (J, I1, . . . , Ik) ∈M([d])

∣∣∣ J ∩( k⋃
l=1

Il

)
= ∅,

∀l,m≤k Im ∩ Il 6= ∅ ⇒ (|Il| = |Im| = 1, Il = Im)

}
.

Indeed assume that (5.16) holds and choose M = (J, I1, . . . , Ik) ∈ C. Consider
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I = {i | ∃l<m≤k {i} = Il = Im}. Then J ∩ I = ∅ and we have

〈A〉qLq,M = sup


∫
V

∑
iJ

∑
iJc

ai1,...,id(v)
∏
l∈I

y
(l)
il
x

(l)
il

∏
l≤k

Il∩I=∅

x
(l)
iIl


2

q/2

dµ(v))
∣∣∣

∀1≤l≤k
∑
iIl

(x
(l)
iIl

)2 ≤ 1, ∀l∈I
∑
il

(y
(l)
il

)2 ≤ 1


= max

iI
sup


∫
V

∑
iJ

∑
iJc\I

ai1,...,id(v)
∏
l≤k

Il∩I=∅

x
(l)
iIl


2

q/2

dµ(v)
∣∣∣ ∀ 1≤l≤k

Il∩I=∅

∑
iIl

(x
(l)
iIl

)2 ≤ 1


= max

iI

(
|||(ai1,...,id)iIc |||Lq,{Il : Il∩I=∅}

)q
=: max

iI

(
|||(ai1,...,id)iIc |||Lq,P

)q
, (5.17)

where in the second equality we used the fact that

(y
(l)
il
x

(l)
il

)il ∈ Bn1 = {x ∈ RN :

N∑
i=1

|xi| ≤ 1}

together with convexity and homogeneity of the norm

‖(fiJ )iJ‖Lq(`2) =

∫
X

(∑
iJ

f2
iJ

)q/21/q

.

By combining the above with (5.14)–(5.16) and comparing the exponents of p we
conclude the assertion of the proposition.

The proof is completed by showing that∑
M∈M([d])

p
|M|−1

2 〈A〉Lq,M ≤ C(d)
∑
M∈C

p
|M|−1

2 〈A〉Lq,M

(the other estimate in (5.16) is trivial), which will be done in two steps. Let us fix
M = (J, I1, . . . , Ik) ∈M([d]).

Step 1. Assume first that J ∩ (
⋃k
i=1 Ii) 6= ∅. Without loss of generality we can assume

that 1 ∈ J ∩ I1. Denote Î1 = I1 \ {1} and for any matrix (x
(1)
iI

)iI such that
∑
iI1

(x
(1)
iI1

)2 ≤ 1,

set (bi1)i1 := (
√∑

iI1\{1}
(x

(1)
iI1

)2)i1 . Clearly,

(
b2i1
)
i1
∈ Bn1 and

∑
iI1\{1}

x(1)
iI1

bi1

2

≤ 1.

Observe that for any f1, . . . , fn ∈ Lq(X, dµ) the function

[0,+∞)n 3 t→
∫
V

(∑
i

f2
i (v)ti

)q/2
dµ(v)
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is convex (recall that q ≥ 2). Since Bn1 ∩ [0,∞)n = conv(0, e1, e2, . . . , en), we have

〈A〉qLq,M = sup


∫
V

∑
iJ

b2i1

∑
iJc

ai1,...,id(v)
x

(1)
iI1

bi1

k∏
l=2

x
(l)
iIl

2

q/2

dµ(v)
∣∣∣

∀1≤l≤k
∑
iIl

(x
(l)
iIl

)2 ≤ 1


≤ max

i1
sup


∫
V

 ∑
iJ\{1}

∑
iJc

ai1,...,id(v)
x

(1)
iI1

bi1

k∏
l=2

x
(l)
iIl

2

q/2

dµ(v)
∣∣∣

∀1≤l≤k
∑
iIl

(x
(l)
iIl

)2 ≤ 1


≤ max

i1
sup


∫
V

 ∑
iJ\{1}

(∑
iJc

ai1,...,id(v)yiÎ1

k∏
l=2

x
(l)
iIl

)2
q/2

dµ(v)
∣∣∣

∑
iÎ1

(yiÎ1
)2 ≤ 1, ∀1≤l≤k

∑
iIl

(x
(l)
iIl

)2 ≤ 1

 .

Let

M′ =

{
(J \ {1}, {1}, {1}, Î1, I2, . . . , Ik) if Î1 6= ∅
(J \ {1}, {1}, {1}, I2, . . . , Ik) if Î1 = ∅

By the same argument as was used for the second equality in (5.17) we obtain that the
right-hand side above equals 〈A〉Lq,M′ , which gives

〈A〉Lq,M ≤ 〈A〉Lq,M′ .

Observe that

p(|M|−1)/2 〈A〉Lq,M ≤ p
(|M|−1)/2 〈A〉Lq,M′ ≤ p

(|M′|−1)/2 〈A〉Lq,M′ .

By iterating this argument we obtain that p(|M|−1)/2 〈A〉Lq,M ≤ p
(|M′′|−1)/2 〈A〉Lq,M′′ for

someM′′ = (J ′′, I ′′1 , . . . , I
′′
m) such that J ′′ ∩ (

⋃m
l=1 I

′′
l ) = ∅.

Step 2. Assume that for some l,m ≤ k Il ∩ Im 6= ∅ and |Il| ≥ 2 or |Im| ≥ 2.
Without loss of generality assume that 1 ∈ I1 ∩ I2 and |I1| ≥ 2. Clearly,

〈A〉qLq,M = sup


∫
V

∑
iJ

∑
iJc

ai1,...,id(v)bi1ci1
x

(1)
iI1

bi1

x
(2)
iI2

ci1

k∏
l=3

x
(l)
iIl

2

q/2

dµ(v)
∣∣∣

∀1≤l≤k
∑
iIl

(x
(l)
iIl

)2 ≤ 1

 ,

where (bi1)i1 := (
√∑

iI1\{1}
(x

(1)
iI1

)2)i1 , (ci1)i1 := (
√∑

iI2\{1}
(x

(2)
iI2

)2)i1 ∈ Bn2 . Because

(bi1ci1)i1 ∈ Bn1 ,

∀i1
∑
iI1\{1}

x(1)
iI1

bi1

2

≤ 1,
∑
iI2\{1}

x(2)
iI2

ci1

2

≤ 1,
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and for any (fij)ij in Lq(X, dµ), the function

Rn 3 t→
∫
V

∑
i

∑
j

tjfij(v)

2

q/2

dµ(v)

is convex, we obtain similarly as in Step 1,

p(|M|−1)/2 〈A〉Lq,M ≤ p
(|M|−1)/2 〈A〉Lq,M′ ≤ p

(|M′|−1)/2 〈A〉Lq,M′

where

M′ :=

{
(J, {1}, {1}, I1 \ {1}, I2 \ {1}, I3, . . . , Ik) if I2 \ {1} 6= ∅
(J, {1}, {1}, I1 \ {1}, I3, . . . , Ik) otherwise

.

An iteration of this argument shows that indeed one can assume thatM satisfies the
implication Im ∩ Il 6= ∅ ⇒ (|Il| = |Im| = 1, Il = Im).

Combining Steps 1 and 2 we obtain that for anyM∈M([d]) there existsM′ ∈ C such
that p(|M|−1)/2 〈A〉Lq,M ≤ p

(|M′|−1)/2 〈A〉Lq,M′ which yields (5.16).

A Appendix

In this section we gather technical facts that are used in the proof.

Theorem A.1 (Hypercontractivity of Gaussian chaoses). Let

S = a+
∑
i1

ai1gi1 +
∑
i1,i2

ai1,i2gi1gi2 + . . .+
∑

i1,...,id

ai1,...,idgi1 · · · gid ,

be a non-homogeneous Gaussian chaos of order d with values in a Banach space (F, ‖·‖).
Then for any 1 ≤ p < q <∞, we have

(E ‖S‖q)1/q ≤ C(d)

(
q

p

)d/2
(E ‖S‖p)1/p

.

Proof. It is an immediate consequence of [9, Theorem 3.2.10] and Hölder’s inequality.

Theorem A.2 (Sudakov minoration [27]). For any set T ⊂ Rn and ε > 0 we have

ε
√

lnN(T, d2, ε) ≤ CE sup
t∈T

∑
i

tigi,

where d2 is the Euclidean distance.

Theorem A.3 (Dual Sudakov minoration [17, formula (3.15)]). Let α be a norm on Rn

and ρα(x, y) = α(x− y) for x, y ∈ Rn. Then

ε
√

logN(Bn2 , ρα, ε) ≤ CEα(Gn) for ε > 0.

Lemma A.4 ([15, Lemma 3]). Let (Gt)t∈T be a centered Gaussian process and T =⋃m
l=1 Tl, m ≥ 1. Then

E sup
t∈T

Gt ≤ max
l≤m

E sup
t∈Tl

Gt + C
√

ln(m) sup
t,t′∈T

√
E(Gt −Gt′)2.

Lemma A.5. Let G be a Gaussian variable in a Banach space (F, ‖ · ‖). Then for any
p ≥ 2,

1

C

‖G‖1 +
√
p sup
ϕ∈F∗
‖ϕ‖∗≤1

E|ϕ(G)|

 ≤ ‖G‖p ≤ ‖G‖1 + C
√
p sup
ϕ∈F∗
‖ϕ‖∗≤1

E|ϕ(G)|,

where (F ∗, ‖·‖∗) is the dual space to (F, ‖·‖).
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In particular for a1, . . . , an ∈ F and G =
∑n
i=1 aigi we have∥∥∥∥∥

n∑
i=1

aigi

∥∥∥∥∥
p

∼ E

∥∥∥∥∥∑
i

aigi

∥∥∥∥∥+
√
p sup
x∈Bn

2

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ .
Proof. The first part of the Lemma is [15, Lemma 4]. It implies the second part as
follows. Since ϕ(G) is a one-dimensional Gaussian vector, we have ‖ϕ(G)‖2 ∼ E|ϕ(G)|.
In particular for G =

∑n
i=1 aigi, ai ∈ F we obtain

sup
ϕ∈F∗,‖ϕ‖≤1

E|ϕ(G)| ∼ sup
ϕ∈F∗,‖ϕ‖≤1

‖ϕ(G)‖2 = sup
ϕ∈F∗,‖ϕ‖≤1

(∑
i

ϕ(ai)
2
)1/2

= sup
ϕ∈F∗,‖ϕ‖≤1

sup
x∈Bn

2

∑
i

ϕ(ai)xi = sup
x∈Bn

2

∥∥∥∑
i

aixi

∥∥∥.
Theorem A.6 ([15, Theorem 1]). For any real-valued matrix (ai1,...,id)i1,...,id and p ≥ 2,
we have∥∥∥∥∥∥
∑
i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥∥
p

∼d
∑

P∈P([d])

P=(I1,...,Ik)

p|P |/2 sup

∑
i

ai

k∏
j=1

x
(j)
iIj
| ∀1≤j≤k

∥∥∥(x
(k)
iIj

)iIj

∥∥∥
2
≤ 1

 .

Corollary A.7. Assume that for any i1, . . . , id, ai1,...,id ∈ R. Then for all p ≥ 1

1

C(d)

√
p

√ ∑
i1,...,id

a2
i1,...,id

≤

∥∥∥∥∥∥
∑

i1,...,id

ai1,...,idg
(1)
i1
· · · g(d)

id

∥∥∥∥∥∥
p

≤ C(d)pd/2
√ ∑
i1,...,id

a2
i1,...,id

.

Proof. It is an easy consequence of Theorems A.1 and A.6.

Lemma A.8 ([3, Lemma 9.5]). Let Y (1)
i be independent standard symmetric exponen-

tial variables (variables with density 2−1 exp(−|t|)) and Y
(2)
i = g2

i , Y
(3)
i = gig

′
i, where

gi, g
′
i are i.i.d. N (0, 1) variables and εi – i.i.d. Rademacher variables independent of

(Y (1)), (Y (2)), (Y (3)). Then for any Banach space (F, ‖·‖), any p ≥ 1 and any vectors
v1, . . . , vn ∈ F the quantities(

E

∥∥∥∥∥∑
i

viεiY
(j)
i

∥∥∥∥∥
p)1/p

, j = 1, 2, 3,

are comparable up to universal multiplicative factors.

We remark that the above lemma is formulated in [3] for p = 1 in the real valued
case, however the proof presented there (based on the contraction principle) works for
arbitrary p ≥ 1 and arbitrary Banach spaces.

We will also need decoupling inequalities for tetrahedral homogeneous polynomials.
Such inequalities were introduced for the first time in [18] for real valued multi-linear
forms and since then have been strengthened and generalized by many authors (see the
monograph [9]). The following theorem is a special case of results from [13] (treating
also general tetrahedral polynomials) and [8, 10] (treating general U -statistics).

Theorem A.9. Let X = (X1, . . . , Xn) be a sequence of independent random variables

and let X(l) = (X
(l)
1 , . . . , X

(l)
n ), l = 1, . . . , d, be i.i.d. copies of X. Consider a d-indexed

symmetric matrix (ai1,...,id)ni1,...,id=1, with coefficients from a Banach space F . Assume
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that ai1,...,id = 0 whenever there exist 1 ≤ k < m ≤ d such that ik = im. Then for any
p ≥ 1, ∥∥∥ n∑

i1,...,id=1

ai1,...,idXi1 · · ·Xid

∥∥∥
p
∼d
∥∥∥ n∑
i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∥∥∥
p
.

Moreover, for any t > 0,

C−1
d P

(∥∥∥ n∑
i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∥∥∥ ≥ Cdt)
≤ P

(∥∥∥ n∑
i1,...,id=1

ai1,...,idXi1 · · ·Xid

∥∥∥ ≥ t)
≤ CdP

(∥∥∥ n∑
i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∥∥∥ ≥ t/Cd).
B Glossary

• F – the underlying Banach space, p. 2

• (g
(k)
i )i,k≥1 – an array of i.i.d standard Gaussian variables, p. 2

• F ∗ – the dual of F , p. 12

• Bn2 – the standard unit Euclidean ball, p. 2

• Bn1 – the standard unit ball in Rn in the norm ‖ · ‖1, p. 30

• [n] – the set {1, . . . , n}, p. 5

• Rn
d

= (Rn)⊗d – the space of d-indexed matrices, p. 5

• Bn
d

2 – the unit Euclidean (Hilbert-Schmidt) ball in Rn
d

, p. 5

• P(I) – the set of partitions of I, p. 5

• ‖·‖P′ | P – a norm appearing in general moment estimates, p. 5

• ||| · |||P – a norm appearing in general moment estimates, p. 5

• G(l) = (g
(l)
iIl

)iIl – independent arrays of i.i.d. standard Gaussian variables, p. 5

• |||A|||Lq,P – a norm appearing in moment estimates for Lq-values chaoses, p. 10

• sk(A) – the sum of norms corresponding to partitions of cardinality k, p. 12

• ρA – the distance induced by the canonical Gaussian process, p. 13

• αA – a norm related to ρA, p. 13

• N(S, ρ, ε) – the entropy number, p. 13

• WU
d (αA, s) – a quantity appearing in estimates for entropy numbers, p. 13

• WU
I (αA, s) – a quantity appearing in estimates for entropy numbers, p. 13

• βA – an auxiliary norm related to the main Gaussian process, p. 13

• V UI (βA) – a quantity appearing in estimates for entropy numbers, p. 13

• µdε,T – a measure used in the volumetric argument, p. 14

• α̂A – an auxiliary norm appearing in estimates for entropy numbers, p. 16

• FA(U) – the expected supremum of the main Gaussian process, p. 17

• ∆A(U) – the diameter of the set U in the distance ρA, p. 17

• ∆n
d – the set of multi-indices corresponding to Hermite polynomials of degree d,

p. 26

• 〈A〉Lq,M – an auxiliary norm related to moment estimates for chaoses in exponential
variables, p. 29
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