Selected Topics in Combinatorics, tutorial 8

Matchings with low crossing number, cutting lemma, Haussler's packing theorem

April 27, 2023

Theorem 1. Let S be a set system on an *n*-point set X, n even, with $\pi_{\mathcal{S}}^*(m) \leq Cm^d$ for all m, where C and d > 1 are constants. Then there exists a perfect matching M on X (i.e. a set of $\frac{n}{2}$ vertex-disjoint edges) whose crossing number is at most $C_1 n^{1-1/d}$, where $C_1 = C_1(C, d)$ is another constant.

Problem 1. Prove that any set system (X, S) as in Theorem 1 admits a spanning path with crossing number $\mathcal{O}(n^{1-1/d})$, i.e. there is a path connecting all the points of X in some order such that any set $S \in S$ crosses at most $\mathcal{O}(n^{1-1/d})$ edges of the path.

Problem 2. Prove that there exist 2n points in the plane such that for any perfect matching on them there is a line crossing at least $c\sqrt{n}$ edges. This means that Theorem 1 is asymptotically optimal for d = 2.

Lemma 1 (Cutting lemma). Let L be a set of n lines in the plane, and let r be a parameter, 1 < r < n. Then the plane can be subdivided into t generalized triangles (this means intersections of three half-planes) $\Delta_1, \Delta_2, \ldots, \Delta_t$ in such a way that the interior of each Δ_i is intersected by at most $\frac{n}{r}$ lines of L, and we have $t \leq Cr^2$ for a certain constant C independent of n and r.

Problem 3. Prove that the cutting lemma is asymptotically optimal for $r \to \infty$.

Problem 4. Prove a weaker version of the cutting lemma, with $t \leq Cr^2(\log n)^2$. *Hint: Sample randomly* $6r \log n$ *lines from* L *and triangulate them.*

Problem 5. Let *L* be a set of *n* lines in the plane in general position. We already know that they split the plane into set \mathcal{R} of $\binom{n+1}{2} + 1$ regions. Define a function $d : \mathcal{R} \times \mathcal{R} \to \mathbb{R}_{\geq 0}$ in the following way. For any two regions $R_1, R_2 \in \mathcal{R}$ take points $x, y \in \mathbb{R}^2$ that belong to R_1 and R_2 respectively. Set $d(R_1, R_2)$ as the number of lines from *L* crossed by the open interval (x, y). Show that *d* is well defined and that it is a metric on \mathcal{R} .

Problem 6. Let L be a set of n lines in the plane in general position, let $x \in \mathbb{R}^2$ be a point, and let $r < \frac{n}{2}$ be a number. Show that the number of intersections of the lines of L lying at distance at most r from x (that is, intersections v such that the open interval (v, x) is intersected by at most r lines of L) is at least cr^2 , with an absolute constant c > 0.

Problem 7. Let $(\mathbb{R}^2, \mathcal{F})$ be a set system of *n* half-planes in the general position. Prove Haussler's packing theorem for \mathcal{F}^* .