Selected Topics in Combinatorics, tutorial 8

Matchings with low crossing number, cutting lemma, Haussler's packing theorem

April 27, 2023

Theorem 1. Let \mathcal{S} be a set system on an n-point set X, n even, with $\pi_{\mathcal{S}}^{*}(m) \leq C m^{d}$ for all m, where C and $d>1$ are constants. Then there exists a perfect matching M on X (i.e. a set of $\frac{n}{2}$ vertex-disjoint edges) whose crossing number is at most $C_{1} n^{1-1 / d}$, where $C_{1}=C_{1}(C, d)$ is another constant.

Problem 1. Prove that any set system (X, \mathcal{S}) as in Theorem 1 admits a spanning path with crossing number $\mathcal{O}\left(n^{1-1 / d}\right)$, i.e. there is a path connecting all the points of X in some order such that any set $S \in \mathcal{S}$ crosses at most $\mathcal{O}\left(n^{1-1 / d}\right)$ edges of the path.

Problem 2. Prove that there exist 2 n points in the plane such that for any perfect matching on them there is a line crossing at least $c \sqrt{n}$ edges. This means that Theorem 1 is asymptotically optimal for $d=2$.

Lemma 1 (Cutting lemma). Let L be a set of n lines in the plane, and let r be a parameter, $1<r<n$. Then the plane can be subdivided into t generalized triangles (this means intersections of three half-planes) $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{t}$ in such a way that the interior of each Δ_{i} is intersected by at most $\frac{n}{r}$ lines of L, and we have $t \leq C r^{2}$ for a certain constant C independent of n and r.

Problem 3. Prove that the cutting lemma is asymptotically optimal for $r \rightarrow \infty$.
Problem 4. Prove a weaker version of the cutting lemma, with $t \leq C r^{2}(\log n)^{2}$. Hint: Sample randomly $6 r \log n$ lines from L and triangulate them.

Problem 5. Let L be a set of n lines in the plane in general position. We already know that they split the plane into set \mathcal{R} of $\binom{n+1}{2}+1$ regions. Define a function $d: \mathcal{R} \times \mathcal{R} \rightarrow \mathbb{R}_{\geq 0}$ in the following way. For any two regions $R_{1}, R_{2} \in \mathcal{R}$ take points $x, y \in \mathbb{R}^{2}$ that belong to R_{1} and R_{2} respectively. Set $d\left(R_{1}, R_{2}\right)$ as the number of lines from L crossed by the open interval (x, y). Show that d is well defined and that it is a metric on \mathcal{R}.

Problem 6. Let L be a set of n lines in the plane in general position, let $x \in \mathbb{R}^{2}$ be a point, and let $r<\frac{n}{2}$ be a number. Show that the number of intersections of the lines of L lying at distance at most r from x (that is, intersections v such that the open interval (v, x) is intersected by at most r lines of L) is at least $c r^{2}$, with an absolute constant $c>0$.

Problem 7. Let $\left(\mathbb{R}^{2}, \mathcal{F}\right)$ be a set system of n half-planes in the general position. Prove Haussler's packing theorem for \mathcal{F}^{*}.

