Selected Topics in Combinatorics, tutorial 7

Haussler's packing theorem, Szemerédi-Trotter theorem

April 20, 2023

Problem 1. Let \mathcal{F} be a set system and let d be its VC-dimension. Prove that the Hamming graph $H_{\mathcal{F}}$ of \mathcal{F} has edge density at most d.

Problem 2. Let L be a set of n lines in the plane in general position. We already know that they split the plane into set \mathcal{R} of $\binom{n+1}{2}+1$ regions. Define a function $d: \mathcal{R} \times \mathcal{R} \rightarrow \mathbb{R}_{\geq 0}$ in the following way. For any two regions $R_{1}, R_{2} \in \mathcal{R}$ take points $x, y \in \mathbb{R}^{2}$ that belong to R_{1} and R_{2} respectively. Set $d\left(R_{1}, R_{2}\right)$ as the number of lines from L crossed by the open interval (x, y). Show that d is well defined and that it is a metric on \mathcal{R}.

Problem 3. Let L be a set of n lines in the plane in general position, let $x \in \mathbb{R}^{2}$ be a point, and let $r<\frac{n}{2}$ be a number. Show that the number of intersections of the lines of L lying at distance at most r from x (that is, intersections v such that the open interval (v, x) is intersected by at most r lines of L) is at least $c r^{2}$, with an absolute constant $c>0$.

Problem 4. Let $\left(\mathbb{R}^{2}, \mathcal{F}\right)$ be a set system of n half-planes in the general position. Prove Haussler's packing theorem for \mathcal{F}^{*}.

Definition 1. Let G be a graph together with a planar embedding ρ. The crossing number of G and ρ (denoted $\operatorname{cr}(G, \rho))$ is the number of pairs of edges of G such that their images with ρ cross. The crossing number of a graph G (denoted $\operatorname{cr}(G))$ is the minimum crossing number of G together with a planar embedding.

Problem 5. Show that the crossing number of any simple graph $G=(V, E)$ is at least $|E|-3|V|$.
Problem 6. Let $G=(V, E)$ be a simple graph. Show that:

$$
\operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{|E|^{3}}{|V|^{2}}-|V|
$$

Hint: Fix $p \in(0,1)$. Take a random subgraph of G by selecting every vertex with probability p and use Problem 5.

Theorem 1 (Szemerédi-Trotter). For a set of lines L and a set of points P denote by $I(L, P)$ the number of pairs $(\ell, p) \in L \times P$ such that $p \in \ell$. For two integers n, m denote by $I(n, m)$ the maximum value of $I(L, P)$ where L is a set of n lines and P is a set of m points. Then $I(n, m)=\mathcal{O}\left(m^{2 / 3} n^{2 / 3}+m+n\right)$.

Problem 7. Prove Theorem 1.

