Selected Topics in Combinatorics, tutorial 7

Haussler's packing theorem, Szemerédi-Trotter theorem

April 20, 2023

Problem 1. Let \mathcal{F} be a set system and let d be its VC-dimension. Prove that the Hamming graph $H_{\mathcal{F}}$ of \mathcal{F} has edge density at most d.

Problem 2. Let *L* be a set of *n* lines in the plane in general position. We already know that they split the plane into set \mathcal{R} of $\binom{n+1}{2} + 1$ regions. Define a function $d : \mathcal{R} \times \mathcal{R} \to \mathbb{R}_{\geq 0}$ in the following way. For any two regions $R_1, R_2 \in \mathcal{R}$ take points $x, y \in \mathbb{R}^2$ that belong to R_1 and R_2 respectively. Set $d(R_1, R_2)$ as the number of lines from *L* crossed by the open interval (x, y). Show that *d* is well defined and that it is a metric on \mathcal{R} .

Problem 3. Let L be a set of n lines in the plane in general position, let $x \in \mathbb{R}^2$ be a point, and let $r < \frac{n}{2}$ be a number. Show that the number of intersections of the lines of L lying at distance at most r from x (that is, intersections v such that the open interval (v, x) is intersected by at most r lines of L) is at least cr^2 , with an absolute constant c > 0.

Problem 4. Let $(\mathbb{R}^2, \mathcal{F})$ be a set system of *n* half-planes in the general position. Prove Haussler's packing theorem for \mathcal{F}^* .

Definition 1. Let G be a graph together with a planar embedding ρ . The crossing number of G and ρ (denoted $cr(G, \rho)$) is the number of pairs of edges of G such that their images with ρ cross. The crossing number of a graph G (denoted cr(G)) is the minimum crossing number of G together with a planar embedding.

Problem 5. Show that the crossing number of any simple graph G = (V, E) is at least |E| - 3|V|.

Problem 6. Let G = (V, E) be a simple graph. Show that:

$$\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{|E|^3}{|V|^2} - |V|.$$

Hint: Fix $p \in (0,1)$. Take a random subgraph of G by selecting every vertex with probability p and use Problem 5.

Theorem 1 (Szemerédi-Trotter). For a set of lines L and a set of points P denote by I(L, P) the number of pairs $(\ell, p) \in L \times P$ such that $p \in \ell$. For two integers n, m denote by I(n, m) the maximum value of I(L, P) where L is a set of n lines and P is a set of m points. Then $I(n, m) = \mathcal{O}(m^{2/3}n^{2/3} + m + n)$.

Problem 7. Prove Theorem 1.