Selected Topics in Combinatorics, tutorial 6

Sample compression schemes, minimax theorem, (p, q)-theorem

April 13, 2023

Problem 1. Let \mathcal{F} be a set system with sample compression scheme of size k. Prove that $\dim(\mathcal{F}) < \infty$.

Problem 2. For a graph G define $L(G) = \max_H \frac{E(H)}{V(H)}$, where H ranges over all subgraphs of G (thus L(G) is a half of the maximum values of the average degree of a subgraph of G). Prove that $L(G) \leq d$ if and only if we can orient edges of G so that every vertex has outdegree at most d.

Lemma 1 (Farkas lemma). Consider systems of linear inequalities of the form

 $P_1(\bar{x}) \ge 0, \dots, P_m(\bar{x}) \ge 0$

where $\bar{x} \in \mathbb{R}^n$ and $P_1, \ldots, P_m : \mathbb{R}^n \to \mathbb{R}$ are linear functions. Then exactly one of the statements is true:

- 1. there is a solution $\bar{x} \in \mathbb{R}^n$ to the system; or
- 2. there exist non-negative reals $q_1, \ldots q_n$ such that $q_1P_1 + \ldots q_mP_m = -1$.

Problem 3. Prove Farkas lemma. *Hint: Proceed by induction on n.*

Theorem 1 (Minimax Theorem). Let $E \subseteq A \times B$ be a binary relation with A, B finite, and let $\alpha \in \mathbb{R}$. Then exactly one of the following cases holds:

- 1. there is some probability distribution ν on B such that $\nu(E(a)) \ge \alpha$ holds for every $a \in A$; or
- 2. there is some probability distribution μ on A such that $\mu(E^*(b)) < \alpha$ holds for every $b \in B$.

Problem 4. Prove Minimax Theorem

Problem 5. Prove that if \mathcal{F} is a finite family of disks in the plane such that every two members of \mathcal{F} intersect, then $\tau(\mathcal{F})$ is bounded by a constant.

Problem 6. Show that for every $p \ge 2$ there is p' such that if a family of disks in the plane has the (p, 2)-property then it has the (p', 3)-property.

Hint: Use Problem 5 and Ramsey theorem.

Problem 7. Show that $\tau(\mathcal{F}) \leq \tau^*(\mathcal{F}) \cdot \ln(|\mathcal{F}|+1)$ for all finite set systems \mathcal{F} . *Hint: Choose transversal as a random sample.*