Selected Topics in Combinatorics, tutorial 5

Transversals, packings, (p, q)-theorem

March 30, 2023

Theorem 1 (Hall's theorem). If G is a bipartite graph with parts A and B such that every subset $S \subseteq A$ has at least |S| neighbors in B then there is a matching in G containing all vertices of A.

Theorem 2 (König's theorem). Let G be a bipartite graph and let \mathcal{F} be the set system of edges of G. Then $\tau(\mathcal{F}) = \nu(\mathcal{F})$.

Problem 1. Derive König's theorem from Hall's theorem (and reversely).

Problem 2. 1. Let X = [m] and $\mathcal{F} = {[m] \choose n}$. Show that $\tau = m - n + 1$ while $\tau^* = m/n$. Thus for m = 2n we have $\tau = n + 1$ while $\tau^* = 2$.

2. Similarly, find a family of set systems where ν is bounded by a constant, while ν^* is arbitrarily large.

Problem 3. Show that $\tau(\mathcal{F}) \leq \tau^*(\mathcal{F}) \cdot \ln(|\mathcal{F}| + 1)$ for all finite set systems \mathcal{F} .

Hint: Choose transversal as a random sample.

Problem 4. For which values of p and r does the following hold? Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d , and suppose that any subfamily consisting of at most p sets can be pierced by at most r points. Then \mathcal{F} can be pierced by at most C points, for some C = C(p, r).

Problem 5. Let $X \subset \mathbb{R}^2$ be a (4k+1)-point set, and let $\mathcal{F} = \{\operatorname{conv}(Y) \colon Y \subset X, |Y| = 2k+1\}$. Verify that \mathcal{F} has the (4,3)-property.

Problem 6. Prove that if \mathcal{F} is a finite family of disks in the plane such that every two members of \mathcal{F} intersect, then $\tau(\mathcal{F})$ is bounded by a constant.

Problem 7. Show that for every $p \ge 2$ there is p' such that if a family of disks in the plane has the (p, 2)-property then it has the (p', 3)-property.

Hint: Use Problem 6 and Ramsey theorem.