Selected Topics in Combinatorics, tutorial 14

Permutations

June 15, 2023

Problem 1. Let $\sigma \in S_{n}$ satisfy $312 \npreceq \sigma$. Show that σ can be obtained from id_{n} using a stack.
Problem 2. For a permutation $\sigma \in S_{n}$ by $\operatorname{rev}(\sigma)$ we denote its reverse permutation, i.e. the permutation obtained from σ by reversing its string representation (e.g. $\operatorname{rev}(52413)=31425$). Show that $\left|\operatorname{Av}_{m}(\sigma)\right|=$ $\left|\operatorname{Av}_{m}(\operatorname{rev}(\sigma))\right|$ for any $\sigma \in S_{n}$.

Problem 3. Show that $\left|\operatorname{Av}_{m}(\sigma)\right|=\left|\operatorname{Av}_{m}\left(\sigma^{-1}\right)\right|$ for any $\sigma \in S_{n}$.
Problem 4. Show that $\left|\operatorname{Av}_{m}(123)\right|=C_{m}$, where C_{m} denotes m 'th Catalan number.
Theorem 1 (Knuth-MacMahon). For every permutation $\sigma \in S_{3}$ and every $m \in \mathbb{N}$ we have $\operatorname{Av}_{m}(\sigma)=C_{m}$.
Problem 5. Deduce Theorem 1 from previous exercises.
Theorem 2 (Erdös-Szekeres). Let $r, s, n \in N$ satisfy $n \geq(r-1)(s-1)+1$. Show that for every $\sigma \in S_{n}$ either $\mathrm{id}_{r} \preceq \sigma$ or $\operatorname{rev}\left(\mathrm{id}_{s}\right) \preceq \sigma$.

Problem 6. Prove Theorem 2.
Definition 1. Let \mathcal{C} be a class of graphs. We say that \mathcal{C} has bounded sparse twin-width if there is a constant t such that for every $G \in \mathcal{C}$ there is an order \preceq on $V(G)$ such that $M_{\preceq}(G)$ does not contain t-grid-minor.

Problem 7. Let \mathcal{C} be a class of graphs of bounded sparse twin-width. Show that \mathcal{C} has a linear neighbourhood complexity, i.e. there is a constant c such that for every $G \in \mathcal{C}$ and every $A \subseteq V(G)$ vertices of G have at most $c|A|$ different neighbourhoods in A.

