Selected Topics in Combinatorics, tutorial 13

Stability

June 1, 2023

Definitions (partial types). A partial type τ in a graph G is a pair of two disjoint subsets (τ_+, τ_-) of V(G). By $|\tau|$ we denote $|\tau_+| + |\tau_-|$.

We say that a partial type σ is a *subtype* of a partial type τ , and write $\sigma \subseteq \tau$, if $\sigma_{-} \subseteq \tau_{-}$ and $\sigma_{+} \subseteq \tau_{+}$. Partial types are ordered by the relation \subseteq , and we can therefore say that a partial type σ' is a *successor* of σ if σ' is a *least* partial type such that $\sigma \subsetneq \sigma'$.

A partial type τ such that τ_+ and τ_- form a partition of V(G) is a *complete type*. The *complete type of an* element $a \in V(G)$ is the complete type τ such that $\tau_+ = \{b \in V(G) : ab \in E(G)\}$. If ℓ is a number, we say that a partial type τ is ℓ -consistent if every subtype $\sigma \subseteq \tau$ with $|\sigma| < \ell$, is a subtype of a type of some $a \in V(G)$.

If σ is a partial type and $b \in V(G)$, then by $\sigma + b$ we denote the partial type $(\sigma_+ \cup \{b\}, \sigma_-)$, which is only defined when $b \notin \sigma_-$, and by $\sigma - b$ we denote the partial type $(\sigma_+, \sigma_- \cup \{b\})$, which is only defined when $b \notin \sigma_+$.

Fix a parameter $\ell \in \mathbb{N}$. The ℓ -rank of a partial type τ (the graph G is implicit), denoted $R_{\ell}(\tau)$, is defined inductively:

- $R_{\ell}(\tau) = -1$ if and only if τ is not ℓ -consistent;
- $R_{\ell}(\tau) \ge 0$ if and only if τ is ℓ -consistent;
- $R_{\ell}(\tau) \ge n+1$ if and only if there is some $b \in V(G)$ such that $R_{\ell}(\tau+b) \ge n$ and $R_{\ell}(\tau-b) \ge n$.

By $R_{\ell}(G)$ we denote $R_{\ell}(\tau)$ where τ is the empty type (i.e. $\tau = (\emptyset, \emptyset)$). If \mathcal{C} is a class of graphs then by $R_{\ell}(\mathcal{C})$ we denote the supremum of all values $R_{\ell}(G)$, for all $G \in \mathcal{C}$.

For an ℓ -consistent partial type τ we call a subtype $\sigma \subseteq \tau$ robust (with respect to τ) if for every subtype σ' which is a successor of σ and is a subtype of τ , we have $R_{\ell}(\sigma') = R_{\ell}(\sigma)$.

Problem 1. Show that if $\tau \subseteq \sigma$ then $R_{\ell}(\tau) \ge R_{\ell}(\sigma)$.

Problem 2. Show that for given ℓ, n and $\rho_+, \rho_- \subseteq V(G)$ the property $R_{\ell}(\rho) \geq n$ is expressible by an FO formula that uses vertices from ρ_+, ρ_- as parameters.

Problem 3. Let C be a class of graphs with ladder index smaller than ℓ . Show that $R_{\ell}(C) \leq f(\ell)$ for some function f.

Problem 4. Let $G \in \mathcal{C}$ such that the ladder index of \mathcal{C} is smaller than ℓ . Show that if τ is an ℓ -consistent partial type then there is a robust partial type $\rho \subseteq \tau$ with $|\rho| \leq R(G)$.

Problem 5. Let τ be a complete, ℓ -consistent type and let $\rho \subseteq \tau$ be a robust partial type. Show that $b \in \tau_+$ if and only if $R_{\ell}(\rho + b) = R_{\ell}(\rho)$.

Problem 6 (Definability of types). Let C be a class of graphs with ladder index less than ℓ . Show that for every graph $G \in C$ and every complete, ℓ -consistent type τ there exists a formula $\varphi(y)$ with at most ℓ parameters

from V(G) such that for any $b \in V(G)$ we have $b \in \tau_+$ if and only if $G \models \varphi(b)$.

Problem 7. Let G be a graph with ladder index ℓ . Show that for any two sets $A, B \subseteq V(G)$ at least one of the followings holds:

- there is a subset $|A_0| \subseteq A$ of size at most ℓ which dominates B;
- there is a subset $|B_0| \subseteq B$ of size at most ℓ which antidominates A.

Problem 8. Show that a Boolean combination of stable edge relations is stable.

Definition (Flip). We say that a graph G' is a *flip* of a graph G if there is a subset $A \subseteq V(G)$ and E(G') = E(G) xor $A \times A$.

Problem 9. Show that a flip of stable graph is stable.