Selected Topics in Combinatorics, tutorial 11

Szemerédi regularity lemma, property testing

May 18, 2023

Problem 1. Let (A, B) be a pair of disjoint subsets of vertices of a graph G. Show that if (A, B) is ε-homogenous (i.e. $d(A, B) \leq \varepsilon$ or $d(A, B) \geq 1-\varepsilon)$ then (A, B) is ε^{3}-regular.

Theorem 1 (Szemerédi regularity lemma). For any positive integer m_{0} and real number $\varepsilon>0$, there exists an integer $M \geq m_{0}$ such that the following holds. Every graph G with at least m_{0} vertices has a partition $V_{0}, V_{1}, \ldots, V_{m}$ of $V(G)$ with $m_{0} \leq m \leq M$ such that:

- $\left|V_{0}\right| \leq \varepsilon|V(G)| ;$
- $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{m}\right| ;$
- for all but at most εm^{2} values of $1 \leq i<j \leq m$, the pair $\left(V_{i}, V_{j}\right)$ is not ε-regular.

Theorem 2 (Triangle removal lemma). For every $0<\alpha \leq 1$, there exists $\beta>0$ and n_{0} such that if G is a graph with $n \geq n_{0}$ vertices, then either

- G contains at least βn^{3} triangles, or
- there exists a set $X \subseteq E(G)$ such that $|X| \leq \alpha n^{2}$ and $G-X$ contains no triangles.

Theorem 3 (Mantel). If a graph G on n vertices contains no triangle then it contains at most $\frac{n^{2}}{4}$ edges.
Problem 2. Prove Theorem 3.
Problem 3. Let $\delta>0$. Show that there exists n_{0} such that, for $n \geq n_{0}$, any subset A of $[n]^{2}$ with at least δn^{2} elements must contain a triple of the form $(x, y),(x+d, y),(x, y+d)$ with $d \neq 0$.

Problem 4. Solve Problem 3 with the additional requirement, that $d>0$.
Theorem 4 (Roth). For all $\delta>0$ there exists n_{0} such that, for $n \geq n_{0}$, any subset A of $[n]$ with at least δn elements contains an arithmetic progression of length 3.

Problem 5. Prove Theorem 4.
Problem 6. Prove that the class of half-graphs does not satisfy Theorem 1 if we additionally want all the pairs $\left(V_{i}, V_{j}\right)$ for $1 \leq i<j \leq m$ to be ε-regular.

Definition 1. A list of length n is ε-close to sorted if one can remove εn its elements to obtain a sorted list.
Problem 7. Give an algorithm that works in time $\mathcal{O}\left(\varepsilon^{-1} \log n\right)$ and decides if a given list is sorted with one-side error for lists that are not ε-close to sorted. More precisely, the algorithm should correctly identify sorted lists and if the list is not ε-close to sorted the algorithm should identify that with probability at least $3 / 4$.

Definition 2. A graph on n vertices is ε-close to triangle-free if one can remove εn^{2} its edges to obtain a triangle-free graph.

Problem 8. Give an algorithm that works in time $\mathcal{O}_{\varepsilon}(1)$ and decides if a given graph is triangle-free with one-side error for graphs that are not ε-closed to traingle-free.

