Selected Topics in Combinatorics, tutorial 10

Range minimum queires, Szemerédi regularity lemma

May 11, 2023

Problem 1. Give a data structure that for a given tree T on n vertices can be constructed in time $\mathcal{O}(n)$ and then answers queries about lowest common ancestor of any given two vertices $u, v \in V(T)$ in time $\mathcal{O}(1)$.

Problem 2. Give a recurrence relation for the number of different Cartesian trees for arrays of length *n*.

Problem 3. Let G be a graph and $A, B \subseteq V(G)$ be two disjoint subsets of its vertices. Suppose for every $X \subseteq A, Y \subseteq B, X, Y \neq \emptyset$ we have

 $|d(A,B) - d(X,Y)| \le 0$

(something like 0-regularity). What can you say about the graph induced by $A \cup B$?

Problem 4. Let G be a graph and let (A, B) be an ε -regular pair in G for some $0 < \varepsilon \leq 1$. Let $B_0 \subseteq B$ have size at least $\varepsilon |B|$. Then:

- the number of vertices of A with more than $(d(A, B) + \varepsilon)|B_0|$ neighbors in B_0 is less than $\varepsilon|A|$, and
- the number of vertices of A with less than $(d(A, B) \varepsilon)|B_0|$ neighbors in B_0 is less than $\varepsilon|A|$.

Problem 5. Let (A, B) be an ε -regular pair with d(A, B) = d, and let $\alpha > \varepsilon$. If $X \subseteq A, |X| \ge \alpha |A|$, and $Y \subseteq B, |Y| \ge \alpha |B|$, then (X, Y) is an ε' -regular pair, where $\varepsilon' = \max(\frac{\varepsilon}{\alpha}, 2\varepsilon)$, and d(X, Y) = d' for some d' with $|d' - d| \le \varepsilon$.

Problem 6. Let |A| = |B| = |C| = n, let (A, B), (B, C), (C, A) be three ε -regular pairs, for some $\varepsilon \in (0, 1/2]$. Assume that d(A, B), d(B, C), $d(C, A) \ge 2\varepsilon$. Let t = t(A, B, C) be the number of triangles with one vertex in A, another in B and the third in C. Then

$$t \ge (1 - 2\varepsilon)(d(A, B) - \varepsilon)(d(B, C) - \varepsilon)(d(C, A) - \varepsilon)n^3.$$

Theorem 1 (Triangle removal lemma). For every $0 < \alpha \leq 1$, there exists $\beta > 0$ and n_0 such that if G is a graph with $n \geq n_0$ vertices, then either

- G contains at least βn^3 triangles, or
- there exists a set $X \subseteq E(G)$ such that $|X| \leq \alpha n^2$ and G X contains no triangles.

Problem 7. Prove Theorem 1.

Hint: Apply Szemerédi regularity lemma to G. Then delete small number of edges so either all triangles are removed or we can see a configuration as in Problem 6.