Selected Topics in Combinatorics, tutorial 10

Range minimum queires, Szemerédi regularity lemma

May 11, 2023

Problem 1. Give a data structure that for a given tree T on n vertices can be constructed in time $\mathcal{O}(n)$ and then answers queries about lowest common ancestor of any given two vertices $u, v \in V(T)$ in time $\mathcal{O}(1)$.

Problem 2. Give a recurrence relation for the number of different Cartesian trees for arrays of length n.
Problem 3. Let G be a graph and $A, B \subseteq V(G)$ be two disjoint subsets of its vertices. Suppose for every $X \subseteq A, Y \subseteq B, X, Y \neq \emptyset$ we have

$$
|d(A, B)-d(X, Y)| \leq 0
$$

(something like 0-regularity). What can you say about the graph induced by $A \cup B$?
Problem 4. Let G be a graph and let (A, B) be an ε-regular pair in G for some $0<\varepsilon \leq 1$. Let $B_{0} \subseteq B$ have size at least $\varepsilon|B|$. Then:

- the number of vertices of A with more than $(d(A, B)+\varepsilon)\left|B_{0}\right|$ neighbors in B_{0} is less than $\varepsilon|A|$, and
- the number of vertices of A with less than $(d(A, B)-\varepsilon)\left|B_{0}\right|$ neighbors in B_{0} is less than $\varepsilon|A|$.

Problem 5. Let (A, B) be an ε-regular pair with $d(A, B)=d$, and let $\alpha>\varepsilon$. If $X \subseteq A,|X| \geq \alpha|A|$, and $Y \subseteq B,|Y| \geq \alpha|B|$, then (X, Y) is an ε^{\prime}-regular pair, where $\varepsilon^{\prime}=\max \left(\frac{\varepsilon}{\alpha}, 2 \varepsilon\right)$, and $d(X, Y)=d^{\prime}$ for some d^{\prime} with $\left|d^{\prime}-d\right| \leq \varepsilon$.

Problem 6. Let $|A|=|B|=|C|=n$, let $(A, B),(B, C),(C, A)$ be three ε-regular pairs, for some $\varepsilon \in(0,1 / 2]$. Assume that $d(A, B), d(B, C), d(C, A) \geq 2 \varepsilon$. Let $t=t(A, B, C)$ be the number of triangles with one vertex in A, another in B and the third in C. Then

$$
t \geq(1-2 \varepsilon)(d(A, B)-\varepsilon)(d(B, C)-\varepsilon)(d(C, A)-\varepsilon) n^{3} .
$$

Theorem 1 (Triangle removal lemma). For every $0<\alpha \leq 1$, there exists $\beta>0$ and n_{0} such that if G is a graph with $n \geq n_{0}$ vertices, then either

- G contains at least βn^{3} triangles, or
- there exists a set $X \subseteq E(G)$ such that $|X| \leq \alpha n^{2}$ and $G-X$ contains no triangles.

Problem 7. Prove Theorem 1.
Hint: Apply Szemerédi regularity lemma to G. Then delete small number of edges so either all triangles are removed or we can see a configuration as in Problem 6.

