Selected Topics in Combinatorics, tutorial 1

VC-dimension

March 2, 2023

Definition 1. Let (X, \mathcal{F}) be a set system. The dual set system to (X, \mathcal{F}) is defined as follows: The ground set is $Y=\left\{Y_{S}: S \in \mathcal{F}\right\}$, where the Y_{S} are pairwise distinct points, and for each $x \in X$ we have the set $\mathcal{F}^{*}=\left\{Y_{S}: S \in \mathcal{F}, x \in S\right\}$ (the same set may be obtained for several different x, but this does not matter for the VC-dimension).

Problem 1. Let (X, \mathcal{F}) be a set system and let \mathcal{F}^{*} be its dual set system. Prove that $\operatorname{vc}\left(\mathcal{F}^{*}\right)<2^{\operatorname{vc}(\mathcal{F})+1}$. Is this bound optimal?

Problem 2. Let \mathcal{F} be the family of half-planes in \mathbb{R}^{2} and let \mathcal{F}^{*} be its dual set system. Prove that $\pi_{\mathcal{F}^{*}}(m)=\binom{m+1}{2}+1$.

Definition 2. For a graph G, let $\mathcal{N}(G)=\left\{N_{G}(v): v \in V(G)\right\}$ be the system of vertex neighborhoods (where $\left.N_{G}(v)=\{u \in V(G):(u, v) \in E(G)\}\right)$.

Problem 3. Prove that there is a constant d_{0} such that $\operatorname{vc}(\mathcal{N}(G)) \leq d_{0}$ for all planar G.
Problem 4. Let G be a $K_{t, t}$-free graph (i.e. a graph that excludes $K_{t, t}$ as a subgraph) for some $t>1$. Prove that $\pi_{\mathcal{N}(G)}(s) \leq s^{t}$ for $s>4$.

Theorem 1 (Radon's theorem). Let A be a set of $d+2$ points in \mathbb{R}^{d}. Then there exist two disjoint subsets $A_{1}, A_{2} \subset A$ such that

$$
\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset
$$

Problem 5. Prove Radon's theorem.
Problem 6. Show that the VC-dimension of the set system of all half-spaces in \mathbb{R}^{d} equals $d+1$.
Problem 7. Let $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{d}\right]_{\leq D}$ denote the set of all real polynomials in d variables of degree at most D, and let

$$
\mathcal{P}_{d, D}=\left\{\left\{x \in \mathbb{R}^{d}: p(x) \geq 0\right\}: p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{d}\right]_{\leq D}\right\}
$$

Show that $\operatorname{vc}\left(\mathcal{P}_{d, D}\right) \leq\binom{ d+D}{d}$.
Hint: Consider the following trick known as Veronese mapping: Let M be the set of all possible nonconstant monomials of degree at most D in $x_{1}, x_{2}, \ldots, x_{d}$. For example, for $D=d=2$, we have $M=$ $\left\{x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right\}$. Let $m=|M|$ and consider the map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ which evaluates every point in \mathbb{R}^{d} on all the monomials from M. For example, for $D=d=2$, the map is

$$
\mathbb{R}^{2} \ni\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right) \in \mathbb{R}^{5}
$$

Show that if $A \subset \mathbb{R}^{d}$ is shattered by $\mathcal{P}_{d, D}$, then $\varphi(A)$ is shattered by half-spaces in \mathbb{R}^{m}.
Problem 8. Show that the family of balls in \mathbb{R}^{d} has VC-dimension at most $d+2$.

Problem 9. Show that the unit square cannot be expressed as $\left\{(x, y) \in \mathbb{R}^{2}: p(x, y) \geq 0\right\}$ for any polynomial $p(x, y)$.

Problem 10. Let $F\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ be a fixed set-theoretic expression (using the operations of union, intersection, and difference) with variables $X_{1}, X_{2}, \ldots, X_{k}$ standing for sets; for instance,

$$
F\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \cup X_{2} \cup X_{3}\right) \backslash\left(X_{1} \cap X_{2} \cap X_{3}\right)
$$

Let \mathcal{S} be a set system on a ground set X with $\operatorname{vc}(\mathcal{S})=d<\infty$. Let

$$
\mathcal{T}=\left\{F\left(S_{1}, S_{2}, \ldots, S_{k}\right): S_{1}, S_{2}, \ldots, S_{k} \in \mathcal{S}\right\}
$$

Prove that $\operatorname{vc}(\mathcal{T})=\mathcal{O}(k d \log k)$.
Hint: Show that for any set A we have $F\left(S_{1}, S_{2}, \ldots S_{k}\right) \cap A=F\left(S_{1} \cap A, S_{2} \cap A, \ldots, S_{k} \cap A\right)$.

