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Splitter Game

The radius-r Splitter game is played on a graph Gi. In round /
1. Splitter chooses a vertex v to delete
2. Localizer chooses Gjyj as a radius-r ball in G; — v.

Splitter wins once G; has size 1.
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Splitter Game

The radius-r Splitter game is played on a graph Gi. In round /
1. Splitter chooses a vertex v to delete
2. Localizer chooses Gjyj as a radius-r ball in G; — v.

Splitter wins once G; has size 1.
Example play of the radius-2 Splitter game:

Observation: We don't need to assume that G is a finite graph for this definition to
make sense.
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Progressing moves in the Splitter game

Theorem. [Ohlmann, Pilipczuk, P., Toruiczyk, 2023]

For every nowhere dense class of graphs % and every r € N there exists a constant ¢
such that for every G € & Splitter has at most ¢ progressing moves in the radius-r
Splitter game on G.
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Lemma.

For every infinite graph G and r € N if Splitter can win the radius-r Splitter game on
G in d rounds, then he has finitely many progressing moves.
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® V., iS a progressing move.
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Progressing moves in infinite graphs

Lemma.

For every infinite graph G and r € N if Splitter can win the radius-r Splitter game on
G in d rounds, then he has finitely many progressing moves.

)

After removing v., Splitter
Splitter needs d rounds can win in d — 1 rounds

to win the game
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O]

Compactness yields a model that contradicts the previous lemma.
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Treedepth

Question: What happens if we take r = co?
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Question: What happens if we take r = c0?

The radius-co Splitter game is played on a graph Gi. In round i
1. Splitter chooses a vertex v to delete
2. Localizer chooses Gjy1 as a connected component in G; — v.
Splitter wins once G; has size 1.

Defintion.

A graph G has treedepth d if Splitter wins the radius-oco game on G in d rounds if he
plays optimally.

Fact.

There exists a function f : N — N such that for every graph G of treedepth d there
exists at most f(d) vertices v such that treedepth of every connected component of
G — {v} is at most d — 1.
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Cannonical decomoposition of graphs of bounded treedepth
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Cannonical decomoposition of graphs of bounded treedepth
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Observation: This yields a decomposition algorithm working in time f(d) - n? on

graphs of treedepth at most d.
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Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczynski, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time
f(d) - n3-logn.
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Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczynski, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time
f(d) - n3-logn.

Remark: The running time can be further improved to f(d) - n - log? n.
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Beyond sparsity

1. We found canonical moves for Splitter in the Splitter game
2. and applied them for the radius-oo Splitter game

3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs
of bounded treedepth.
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Beyond sparsity

1. We want to find canonical moves for Flipper in the Flipper game
2. and apply them for the radius-oc Flipper game

3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs
of bounded shrubdepth.

Defintion. [Ganian, Hlin&ny, Ne3et¥il, Obdrzdlek, Ossona de Mendez, 2017]

A graph G has shrubdepth at most d if Flipper can win the radius-co game on G in at
most d rounds.
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Finitary Substitute Lemma
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Finitary Substitute Lemma
GGC ¢/($1§$2§y17---7y£) 1/)

Proof uses a number of tools from stability theory [Shelah], most importantly

properties of forking independence in stable theories.
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Main theorem

Graph isomorphism can be solved on graphs of shrubdepth at most d in time f(d) - n°.
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