Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes

Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Szymon Toruńczyk

ICALP 2023

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

The radius-r Splitter game is played on a graph G_1 . In round i

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a radius-*r* ball in $G_i v$.

Splitter wins once G_i has size 1.

Example play of the radius-2 Splitter game:

Observation: We don't need to assume that G is a finite graph for this definition to make sense.

Progressing moves in the Splitter game

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs \mathscr{C} and every $r \in \mathbb{N}$ there exists a constant c such that for every $G \in \mathscr{C}$ Splitter has at most c progressing moves in the radius-r Splitter game on G.

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Consider the following theory over the signature that consists of constant symbols $\{v_i : i \in I\} \cup \{v_\infty\}$ and one binary relation E:

• $v_i \neq v_j$ for every $i, j \in I$;

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the radius-r game in d rounds if he plays optimally;

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the radius-r game in d rounds if he plays optimally;
- $v_{\infty} \neq v_i$ for every $i \in I$;

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the radius-r game in d rounds if he plays optimally;
- $v_{\infty} \neq v_i$ for every $i \in I$;
- v_{∞} is a progressing move.

Lemma.

For every infinite graph G and $r \in \mathbb{N}$ if Splitter can win the radius-r Splitter game on G in d rounds, then he has finitely many progressing moves.

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs \mathscr{C} and every $r \in \mathbb{N}$ there exists a constant c such that for every $G \in \mathscr{C}$ Splitter has at most c progressing moves in the radius-r Splitter game on G.

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs \mathscr{C} and every $r \in \mathbb{N}$ there exists a constant c such that for every $G \in \mathscr{C}$ Splitter has at most c progressing moves in the radius-r Splitter game on G.

Proof.

Assume the statement is not true. Consider the following theory:

• Splitter can win the radius-r game in at most d rounds;

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs \mathscr{C} and every $r \in \mathbb{N}$ there exists a constant c such that for every $G \in \mathscr{C}$ Splitter has at most c progressing moves in the radius-r Splitter game on G.

Proof.

Assume the statement is not true. Consider the following theory:

- Splitter can win the radius-r game in at most d rounds;
- there are at least *m* progressing moves for every $m \in \mathbb{N}$.

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs \mathscr{C} and every $r \in \mathbb{N}$ there exists a constant c such that for every $G \in \mathscr{C}$ Splitter has at most c progressing moves in the radius-r Splitter game on G.

Proof.

Assume the statement is not true. Consider the following theory:

- Splitter can win the radius-r game in at most d rounds;
- there are at least m progressing moves for every $m \in \mathbb{N}$.

Compactness yields a model that contradicts the previous lemma.

Question: What happens if we take $r = \infty$?

Question: What happens if we take $r = \infty$?

The radius- ∞ Splitter game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Question: What happens if we take $r = \infty$?

The radius- ∞ Splitter game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Defintion.

A graph G has treedepth d if Splitter wins the radius- ∞ game on G in d rounds if he plays optimally.

Question: What happens if we take $r = \infty$?

The radius- ∞ Splitter game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Localizer chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Defintion.

A graph G has treedepth d if Splitter wins the radius- ∞ game on G in d rounds if he plays optimally.

Fact.

There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that for every graph G of treedepth d there exists at most f(d) vertices v such that treedepth of every connected component of $G - \{v\}$ is at most d - 1.

Observation: This yields a decomposition algorithm working in time $f(d) \cdot n^2$ on graphs of treedepth at most d.

Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczyński, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time $f(d) \cdot n^3 \cdot \log n$.

Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczyński, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time $f(d) \cdot n^3 \cdot \log n$.

Remark: The running time can be further improved to $f(d) \cdot n \cdot \log^2 n$.

Beyond sparsity

- 1. We found canonical moves for Splitter in the Splitter game
- 2. and applied them for the radius- ∞ Splitter game
- 3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded treedepth.

Beyond sparsity

- 1. We want to find canonical moves for Flipper in the Flipper game
- 2. and apply them for the radius- ∞ Flipper game
- 3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded shrubdepth.

Beyond sparsity

- 1. We want to find canonical moves for Flipper in the Flipper game
- 2. and apply them for the radius- ∞ Flipper game
- 3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded shrubdepth.

Defintion. [Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez, 2017]

A graph G has shrubdepth at most d if Flipper can win the radius- ∞ game on G in at most d rounds.

Proof uses a number of tools from stability theory [Shelah], most importantly properties of forking independence in stable theories.

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

Graph isomorphism can be solved on graphs of shrubdepth at most d in time $f(d) \cdot n^2$.