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Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:
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Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.
Example play of the radius-2 Splitter game:

Observation: We don’t need to assume that G is a finite graph for this definition to
make sense.
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Progressing moves in the Splitter game

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs C and every r ∈ N there exists a constant c
such that for every G ∈ C Splitter has at most c progressing moves in the radius-r
Splitter game on G .
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Progressing moves in infinite graphs

Lemma.

For every infinite graph G and r ∈ N if Splitter can win the radius-r Splitter game on
G in d rounds, then he has finitely many progressing moves.
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Progressing moves in infinite graphs

Lemma.

For every infinite graph G and r ∈ N if Splitter can win the radius-r Splitter game on
G in d rounds, then he has finitely many progressing moves.

Proof.

Assume statement doesn’t hold. Denote V (G ) = {vi : i ∈ I}.

Consider the following theory over the signature that consists of constant symbols
{vi : i ∈ I} ∪ {v∞} and one binary relation E :

• vi ̸= vj for every i , j ∈ I ;

• E (vi , vj) for every (vi , vj) ∈ E (G ) and ¬E (vi , vj) for every (vi , vj) ̸∈ E (G );

• Splitter wins the radius-r game in d rounds if he plays optimally;

• v∞ ̸= vi for every i ∈ I ;

• v∞ is a progressing move.
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Progressing moves in infinite graphs

Lemma.

For every infinite graph G and r ∈ N if Splitter can win the radius-r Splitter game on
G in d rounds, then he has finitely many progressing moves.
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Progressing moves in infinite graphs

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

For every nowhere dense class of graphs C and every r ∈ N there exists a constant c
such that for every G ∈ C Splitter has at most c progressing moves in the radius-r
Splitter game on G .

Proof.

Assume the statement is not true. Consider the following theory:

• Splitter can win the radius-r game in at most d rounds;

• there are at least m progressing moves for every m ∈ N.

Compactness yields a model that contradicts the previous lemma.
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Treedepth

Question: What happens if we take r = ∞?

The radius-∞ Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete
2. Localizer chooses Gi+1 as a connected component in Gi − v .

Splitter wins once Gi has size 1.

Defintion.

A graph G has treedepth d if Splitter wins the radius-∞ game on G in d rounds if he
plays optimally.

Fact.

There exists a function f : N → N such that for every graph G of treedepth d there
exists at most f (d) vertices v such that treedepth of every connected component of
G − {v} is at most d − 1.
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Cannonical decomoposition of graphs of bounded treedepth
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Cannonical decomoposition of graphs of bounded treedepth

Observation: This yields a decomposition algorithm working in time f (d) · n2 on
graphs of treedepth at most d .
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Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczyński, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time
f (d) · n3 · log n.

Remark: The running time can be further improved to f (d) · n · log2 n.
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Beyond sparsity

1. We found canonical moves for Splitter in the Splitter game

2. and applied them for the radius-∞ Splitter game

3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs
of bounded treedepth.
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Beyond sparsity

1. We want to find canonical moves for Flipper in the Flipper game

2. and apply them for the radius-∞ Flipper game

3. to obtain canonical decompositions and a graph isomorphism algorithm for graphs
of bounded shrubdepth.

Defintion. [Ganian, Hliněný, Nešeťril, Obdržálek, Ossona de Mendez, 2017]

A graph G has shrubdepth at most d if Flipper can win the radius-∞ game on G in at
most d rounds.
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Finitary Substitute Lemma
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Finitary Substitute Lemma

Proof uses a number of tools from stability theory [Shelah], most importantly
properties of forking independence in stable theories.
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Main theorem

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

Graph isomorphism can be solved on graphs of shrubdepth at most d in time f (d) · n2.
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