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Treedepth game

The treedepth game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a connected component in Gi − v .

Splitter wins once he deletes the last vertex.
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Treedepth game

The treedepth game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a connected component in Gi − v .

Splitter wins once he deletes the last vertex.

Definition

A treedepth of a graph G is the minimum number of rounds that are enough for
Splitter to always win the treedepth game, no matter how Connector is playing.

Observation: We don’t need to assume that G is a finite graph for this definition to
make sense.
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Progressing moves in the treedepth game

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

There exists a function f : N → N such that if a graph G has treedepth d then Splitter
has at most f (d) progressing moves1.

1A vertex v is a progressing move for Splitter if every connected component C of G − {v} has
strictly smaller treedepth than G .
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Progressing moves in infinite graphs

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.
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For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn’t hold. Denote V (G ) = {vi : i ∈ I}.

Consider the following theory over the signature that consists of constant symbols
{vi : i ∈ I} ∪ {v∞} and one binary relation E :

• vi ̸= vj for every i , j ∈ I ;

• E (vi , vj) for every (vi , vj) ∈ E (G ) and ¬E (vi , vj) for every (vi , vj) ̸∈ E (G );

• Splitter wins the treedepth game in d rounds if he plays optimally;

• v∞ ̸= vi for every i ∈ I ;

• v∞ is a progressing move.
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Progressing moves in infinite graphs

Theorem. [Ohlmann, Pilipczuk, P., Toruńczyk, 2023]

There exists a function f : N → N such that if a graph G has treedepth d then Splitter
has at most f (d) progressing moves.

Proof.

Assume the statement is not true. Consider the following theory:

• Splitter can win the treedepth game in at most d rounds;

• there are at least m progressing moves for every m ∈ N.

Compactness yields a model that contradicts the previous lemma.
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Summary

Techniques from model theory can be applied in finite model theory – in this way we
get model theoretic proofs of combinatorial theorems.

• Cannonical decompositions of graphs of bounded treedepth/shrubdepth.
[Ohlmann, Pilipczuk, P., Toruńczyk, ’23]

• Game characterization of monadically stable classes of graphs. [Gajarský,
Mählmann, McCarty, Ohlmann, Pilipczuk, P., Siebertz, Soko lowski, Toruńczyk,
’23]

Thank you for your attention!
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