Combinatorial characterization of forking independence in monadically stable graphs

Wojciech Przybyszewski

Institute of Informatics, University of Warsaw

January 18, 2023
Joint work with Szymon Toruńczyk

Definitions

- (Colored) Graph - a structure G over a signature consisting of the binary edge relation symbol E and a number of unary predicates, such that E is symmetric and antireflexive in G. We refer to the elements of the domain of G as vertices.

Definitions

- (Colored) Graph - a structure G over a signature consisting of the binary edge relation symbol E and a number of unary predicates, such that E is symmetric and antireflexive in G. We refer to the elements of the domain of G as vertices.
- Stable graph - a graph G such that no formula has the order property in G.

Order property

Formula $\varphi(\bar{x} ; \bar{y})$ with two tuples of variables has the order property in G if there exist $\bar{a}_{1}, \bar{a}_{2}, \ldots$ and $\bar{b}_{1}, \bar{b}_{2}, \ldots$ such that

$$
G \vDash \varphi\left(\bar{a}_{i} ; \bar{b}_{j}\right) \Longleftrightarrow i<j .
$$

Order property

Formula $\varphi(\bar{x} ; \bar{y})$ with two tuples of variables has the order property in G if there exist $\bar{a}_{1}, \bar{a}_{2}, \ldots$ and $\bar{b}_{1}, \bar{b}_{2}, \ldots$ such that

$$
G \vDash \varphi\left(\bar{a}_{i} ; \bar{b}_{j}\right) \Longleftrightarrow i<j
$$

Definitions

- Stable graph - a graph G such that no formula has the order property in G.

Definitions

- Stable graph - a graph G such that no formula has the order property in G.
- Monadically stable graph - a graph G such that if we add in any way a number of new unary predicates to it thus obtaining a graph \hat{G}, then \hat{G} is stable.

Example

Consider an infinite 1-subdivided clique.

Example

Consider an infinite 1 -subdivided clique.

Is it stable?

Example

Consider an infinite 1-subdivided clique.

Is it stable?
Is it monadically stable?

Flips

Let G be a graph and X, Y be two subsets of its vertices. The (X, Y) flip of G is the graph \bar{G} with the same domain as G, such that for any two vertices u, v :

$$
\bar{G} \models E(u, v) \Longleftrightarrow[G \models E(u, v)] \text { xor }[(u, v) \in X \times Y \cup Y \times X]
$$

Flips

Let G be a graph and X, Y be two subsets of its vertices. The (X, Y) flip of G is the graph \bar{G} with the same domain as G, such that for any two vertices u, v :

$$
\bar{G} \models E(u, v) \Longleftrightarrow[G \models E(u, v)] \text { xor }[(u, v) \in X \times Y \cup Y \times X]
$$

Flips

Let G be a graph and X, Y be two subsets of its vertices. The (X, Y) flip of G is the graph \bar{G} with the same domain as G, such that for any two vertices u, v :

$$
\bar{G} \models E(u, v) \Longleftrightarrow[G \models E(u, v)] \text { xor }[(u, v) \in X \times Y \cup Y \times X]
$$

Flips

Let G be a graph and X, Y be two subsets of its vertices. The (X, Y) flip of G is the graph \bar{G} with the same domain as G, such that for any two vertices u, v :

$$
\bar{G} \models E(u, v) \Longleftrightarrow[G \models E(u, v)] \text { xor }[(u, v) \in X \times Y \cup Y \times X]
$$

Flips

Let G be a graph and S be a subset of its vertices. An S flip of G is any graph \bar{G} obtained from G by performing a sequence of flips between sets with the same atomic type on S.

Flips

Let G be a graph and S be a subset of its vertices. An S flip of G is any graph \bar{G} obtained from G by performing a sequence of flips between sets with the same atomic type on S.

Example below.

Elementary extension

Let G and H be two graphs with $G \subseteq H$. Then G is an elementary substructure of H, written $G \prec H$, if for every formula $\varphi(\bar{x})$ (without parameters) and tuple $\bar{v} \in G^{|\bar{x}|}$ the following equivalence holds:

$$
G \models \varphi(\bar{v}) \Longleftrightarrow H \models \varphi(\bar{v})
$$

Definability of types

Theorem

Let $G \prec H$ be stable graphs, $\varphi(\bar{x} ; \bar{y})$ be a formula and $\bar{v} \in H^{|x|}$ be a tuple of vertices. Then there are tuples $\bar{a}_{1}, \ldots, \bar{a}_{k} \in G^{|x|}$ such that for any $\bar{u} \in G^{|y|}$ whether $\varphi(\bar{v} ; \bar{u})$ hold in H can be expressed by a Boolean combination of the truth values of $\varphi\left(\bar{a}_{i} ; \bar{u}\right)$. We denote this Boolean combination by $\psi_{\varphi ; \bar{v}}(\bar{y})$.

Definability of types

Theorem

Let $G \prec H$ be stable graphs, $\varphi(\bar{x} ; \bar{y})$ be a formula and $\bar{v} \in H^{|x|}$ be a tuple of vertices. Then there are tuples $\bar{a}_{1}, \ldots, \bar{a}_{k} \in G^{|x|}$ such that for any $\bar{u} \in G^{|y|}$ whether $\varphi(\bar{v} ; \bar{u})$ hold in H can be expressed by a Boolean combination of the truth values of $\varphi\left(\bar{a}_{i} ; \bar{u}\right)$. We denote this Boolean combination by $\psi_{\varphi ; \bar{v}}(\bar{y})$.

Example below.

Separating by flips

> Theorem (Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, P., Siebertz, Sokołowski, Toruńczyk)

> Let $G \prec H$ be monadically stable graphs and r be an integer.
> Then for every $v \in H \backslash G$ there exists a finite subset $S \subseteq G$ and an S-flip \bar{H} of H such that in $\operatorname{dist}_{\bar{H}}(v, G)>r$.

Separating by flips

> Theorem (Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, P., Siebertz, Sokołowski, Toruńczyk)

Let $G \prec H$ be monadically stable graphs and r be an integer. Then for every $v \in H \backslash G$ there exists a finite subset $S \subseteq G$ and an S-flip \bar{H} of H such that in $\operatorname{dist}_{\bar{H}}(v, G)>r$.

Example

The case $r=1$ follows from definability of types. Indeed, take a_{1}, \ldots, a_{k} defined as previously. Then for every equivalence class C of the same neighborhood in $\left\{a_{1}, \ldots, a_{k}\right\}$ the set $C \cap G$ consist only of neighbors or non-neighbors of v. Therefore we flip the equivalence class of v with the equivalence classes with its neighbors.

Forking independence over models in stable graphs

Disclaimer: This is not the original definition of forking independence and it is true only for stable structures!

Forking independence over models in stable graphs

Disclaimer: This is not the original definition of forking independence and it is true only for stable structures!

Let $G \prec H$ be stable graphs and \bar{v}, \bar{u} be two tuples of vertices. We say that \bar{v} and \bar{u} are forking independent over G (denoted
$\left.\bar{v} \downarrow_{G} \bar{u}\right)$ if the type of \bar{v} over $G \bar{u}$ is finitely satisfiable in G

Forking independence over models in stable graphs

Disclaimer: This is not the original definition of forking independence and it is true only for stable structures!

Let $G \prec H$ be stable graphs and \bar{v}, \bar{u} be two tuples of vertices. We say that \bar{v} and \bar{u} are forking independent over G (denoted
$\left.\bar{v} \downarrow_{G} \bar{u}\right)$ if the type of \bar{v} over $G \bar{u}$ is finitely satisfiable in G
(i.e. for every formula φ with parameters from G if $H \models \varphi(\bar{v} ; \bar{u})$ then there is a tuple $\bar{v}^{\prime} \in G$ such that $H \models \varphi\left(\bar{v}^{\prime} ; \bar{u}\right)$.

Forking independence over models in stable graphs

Disclaimer: This is not the original definition of forking independence and it is true only for stable structures!

Let $G \prec H$ be stable graphs and \bar{v}, \bar{u} be two tuples of vertices. We say that \bar{v} and \bar{u} are forking independent over G (denoted
$\left.\bar{v} \downarrow_{G} \bar{u}\right)$ if the type of \bar{v} over $G \bar{u}$ is finitely satisfiable in G
(i.e. for every formula φ with parameters from G if $H \models \varphi(\bar{v} ; \bar{u})$ then there is a tuple $\bar{v}^{\prime} \in G$ such that $H \models \varphi\left(\bar{v}^{\prime} ; \bar{u}\right)$.

Theorem (Baldwin and Shelah, simplified version)

Let $G \prec H$ be monadically stable graphs and \bar{v}, \bar{u} be two tuples of vertices. Then:

- $\bar{v} \downarrow_{G} \bar{u}$ if and only if for every $v \in \bar{v}, u \in \bar{u}$ we have $v \downarrow_{G} u$;
- \not_{G} is an equivalence relation on the vertices in $H \backslash G$.

When two vertices are not independent?

Lemma
Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is an integer r, a finite $S \subseteq G$, and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u) \leq r$. Then $u \mathbb{X}_{G} v$.

When two vertices are not independent?

Lemma

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is an integer r, a finite $S \subseteq G$, and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u) \leq r$. Then $u \mathbb{X}_{G} v$.

Proof.

Take the formula $\varphi(x ; y)$ with parameters from S which stipulates that after performing the S-flip there is a path between x and y of length at most r.

When two vertices are not independent?

Lemma

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is an integer r, a finite $S \subseteq G$, and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u) \leq r$. Then $u \mathbb{X}_{G} v$.

Proof.

Take the formula $\varphi(x ; y)$ with parameters from S which stipulates that after performing the S-flip there is a path between x and y of length at most r.

Then $H \models \varphi(u ; v)$, but we can't find any $u^{\prime} \in G$ such that $H \mid=\varphi\left(u^{\prime} ; v\right)$.

When two vertices are independent?

Lemma
Let $G \prec H$ and $v, u \in H \backslash G$. Assume that for every integer r there is a finite $S \subseteq G$ and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$. Then $u \downarrow_{G} v$.

When two vertices are independent?

Sketch of the proof.

Take any formula $\varphi(x ; y)$ with parameters \bar{m} from G, such that $H \models \varphi(u ; v)$. Our goal is to find $u^{\prime} \in G$ satisfying $H \models \varphi\left(u^{\prime} ; v\right)$.

When two vertices are independent?

Sketch of the proof.

Take any formula $\varphi(x ; y)$ with parameters \bar{m} from G, such that $H \models \varphi(u ; v)$. Our goal is to find $u^{\prime} \in G$ satisfying $H \models \varphi\left(u^{\prime} ; v\right)$. Denote by q the quantifier rank of φ. Consider the set S and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$ for $r:=2 \cdot 7^{q}$.

When two vertices are independent?

Sketch of the proof.

Take any formula $\varphi(x ; y)$ with parameters \bar{m} from G, such that $H \models \varphi(u ; v)$. Our goal is to find $u^{\prime} \in G$ satisfying $H \models \varphi\left(u^{\prime} ; v\right)$. Denote by q the quantifier rank of φ. Consider the set S and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$ for $r:=2 \cdot 7^{q}$.
Add a unary predicate to \bar{H} which selects subsets of H that were flipped. We can write a formula $\varphi^{\prime}(x, y)$ with parameters \bar{m} of quantifier rank q with the following property:

$$
H \models \varphi(x ; y) \Longleftrightarrow \bar{H} \models \varphi^{\prime}(x ; y)
$$

When two vertices are independent?

Sketch of the proof.

Take any formula $\varphi(x ; y)$ with parameters \bar{m} from G, such that $H \models \varphi(u ; v)$. Our goal is to find $u^{\prime} \in G$ satisfying $H \models \varphi\left(u^{\prime} ; v\right)$. Denote by q the quantifier rank of φ. Consider the set S and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$ for $r:=2 \cdot 7^{q}$.
Add a unary predicate to \bar{H} which selects subsets of H that were flipped. We can write a formula $\varphi^{\prime}(x, y)$ with parameters \bar{m} of quantifier rank q with the following property:

$$
H \models \varphi(x ; y) \Longleftrightarrow \bar{H} \models \varphi^{\prime}(x ; y) .
$$

By Gaifman locality theorem there is a formula $\psi(x)$ with parameters \bar{m} such that whenever a vertex u^{\prime} is at distance at least r from $v \bar{H} \models \psi\left(u^{\prime}\right)$ then $\bar{H} \models \varphi^{\prime}\left(u^{\prime}, v\right)$.

When two vertices are independent?

Sketch of the proof.

Take any formula $\varphi(x ; y)$ with parameters \bar{m} from G, such that $H \models \varphi(u ; v)$. Our goal is to find $u^{\prime} \in G$ satisfying $H \models \varphi\left(u^{\prime} ; v\right)$. Denote by q the quantifier rank of φ. Consider the set S and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$ for $r:=2 \cdot 7^{q}$.
Add a unary predicate to \bar{H} which selects subsets of H that were flipped. We can write a formula $\varphi^{\prime}(x, y)$ with parameters \bar{m} of quantifier rank q with the following property:

$$
H \models \varphi(x ; y) \Longleftrightarrow \bar{H} \models \varphi^{\prime}(x ; y) .
$$

By Gaifman locality theorem there is a formula $\psi(x)$ with parameters \bar{m} such that whenever a vertex u^{\prime} is at distance at least r from $v \bar{H} \models \psi\left(u^{\prime}\right)$ then $\bar{H} \models \varphi^{\prime}\left(u^{\prime}, v\right)$.
Such vertex u^{\prime} exists in \bar{G} because \bar{G} is an elementary substructure of \bar{H}.

When two vertices are (not)independent?

Lemma

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is an integer r, a finite $S \subseteq G$, and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u) \leq r$. Then $u \mathbb{X}_{G} v$.

Lemma

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that for every integer r there is a finite $S \subseteq G$ and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>r$ and $\operatorname{dist}_{\bar{H}}(v, u)>r$. Then $u \downarrow_{G} v$.

Condition for radius 1 revisited

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is a finite $S \subseteq G$ and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>1$ and $\operatorname{dist}_{\bar{H}}(v, u)=1$.

Condition for radius 1 revisited

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is a finite $S \subseteq G$ and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>1$ and $\operatorname{dist}_{\bar{H}}(v, u)=1$.

That means that if we take any equivalence class C of the same atomic type on S, then v is connected by an edge to every vertex in $C \cap G$ or it is not connected to every vertex in $C \cap G$.

Condition for radius 1 revisited

Let $G \prec H$ and $v, u \in H \backslash G$. Assume that there is a finite $S \subseteq G$ and an S-flip \bar{H} of H such that $\operatorname{dist}_{\bar{H}}(v, G)>1$ and $\operatorname{dist}_{\bar{H}}(v, u)=1$.
That means that if we take any equivalence class C of the same atomic type on S, then v is connected by an edge to every vertex in $C \cap G$ or it is not connected to every vertex in $C \cap G$.

Therefore, we had to flip the equivalence class of v with every equivalence class that contains neighbors of v, so

$$
\bar{H} \models E(u, v) \Longleftrightarrow[H \models E(u, v)] \text { xor }\left[H \models \psi_{E, v}(u)\right] .
$$

Characterization of forking by connected components

Theorem (P., Toruńczyk)

Let $G \prec H$. Consider the following relation:

$$
E^{\prime}(u, v) \Longleftrightarrow[u, v \in H \backslash G] \wedge\left[H \models E(u, v) \text { xor } H \models \psi_{v}(u)\right] \text {. }
$$

Then $u \mathbb{X}_{G} v$ if and only if u and v are in the same connected component of E^{\prime}.

Thank you!

