PubH 7400—-2 Biostatistics Methods and Modeling

Homework #3 Solutions

Basic body measurements are taken on 86 incoming female cadets at one of the U.S. military
academies. The variables measured are: 1. height (cm), 2. weight (kg), 3. hip circumfrence (cm),
4. forearm circumfrence (cm), 5. neck circumfrence (cm), 6. wrist circumfrence (cm), 7. tricep
skinfold (mm), 8. scapular skinfold (mm), 9. suprailiac skinfold (mm), and 10. body fat as percent

of body weight. We are interested in predicting body fat (which is the most difficult of these to

10 15 20 25 15 25 35 45

T
110

hlp nﬂﬁn_:v I
° 80 ’8
L -3
o] -
E g,.gwsn ®
a ] .
1 o, fore
9 ]
<
° [ v
AT e o % g;?f:“ . ‘ 8
© SESAB,° o° ® 3 o 0| |gaiB oo T AT
R nea | * KA
g -
] wrist
7 2 o §
. -2
:;- 5
5; A L
SR -
A - S
s |
g |
s
-2
-8
- e
- S

0 ]
~ .
1 o B
N AT AR
A, o egas® “‘%’"n
P R~ X S |k
Q Sgaf Ly
4 Tkswe =B . o
ol o s ]
s £ 3
L g
. o o 8
3 53, o
. w s L
2 * °
o o8 ¢
§¥ o ®, -
K . %o 3 S
T T < T T T T
80 90 100 120 25 30 35 30

Figure 1: Scatterplot of entire dataset



A quick look at the correlation between the variables listed above shows that the weight variable is
highly correlated with most other anthropomorphic measurements. Because the Body Mass Index
(kg/m?) is widely used, I converted the height and weight variables to the BMI and therefore
reduced some of the collinearity present in the dataset as well as the total number of variables to

be analyzed.
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Figure 2: Scatterplot of the wrist covariate, (a) with and (b) without outliers

Next, to start the analysis, a scatterplot of all the potential covariates in the dataset, as well as
the outcome, is drawn. This scatterplot is shown in Figure 1. It is immediately obvious that the
forearm and neck circumference are not related to body fat. So, these are removed. Next, the
plot of wrist circumference versus body fat shows very little association, as well as four very large
outliers (see Figure 2a). A univariate analysis of wrist versus body fat is statistically significant,
however. If the four outliers are removed, the relationship between wrist and body fat disappears.
This is shown in Figure 2b. So, the wrist variable is also removed from the dataset. Hence, I
proceeded to examine BMI, hip circumference, tricep skinfold, scapular skinfold, and suprailiac

skinfold for their ability to predict body fat.

With five covariates remaining, I calculated the variance inflation factor (VIF) for each and fit the

full linear regression model. The output is in Table 1.

The BMI variable and the hip circumference variable are highly correlated and therefore one variable



Table 1: bodyfat = Gy + S1BMI + Bohip + Bstricep + (iscapular + Fssuprailiac

Covariate 16} p-value | VIF | R?

BMI 0.60 0.03 4.70 1 0.704

Hip -0.004 0.96 3.03

Tricep 0.42 | 0.00009 | 3.34

Scapular 0.18 0.099 | 2.46

Suprailiac | 0.02 0.76 2.27

eclipses the significance of the other. In univariate analysis, the BMI seems to perform better and
hence we will keep this variable and eliminate the hip circumference variable. Also, the suprailiac
skinfold is not statistically significant in models that include the BMI and tricep skinfold. So,
this variable is also eliminated. Furthermore, a stepwise selection procedure that uses AIC as the
selection criteria also eliminates hip circumference and suprailiac skinfold. Therefore, the final

model is:

bodyfat = By + S1BMI + Baotricep + P3scapular (1)

and the regression table for this model is in Table 2.

The VIFs for each covariate are now much less than five, and so the majority of the collinearity
problem has been resolved. Also, there was no reduction in the R? from the five to the three
covariate model, so we have likely selected a minimally sufficient model for prediction. All of the
regression coefficients are statistically significant and therefore different from zero. Further, they
are also positive indicating a positive relationship between increasing covariate and increasing body
fat. For example, when the tricep and scapular skinfold measurements are the same for two women

but their BMI differs by one point, the increase in body fat is 0.587. Of course, because there is



Table 2: bodyfat = Gy + S1BMI + Batricep 4+ (3scapular

Full dataset Outlier removed (obs. 74)
Covariate 0 p-value | VIF R? Covariate 0 p-value R?
Intercept | 3.897 0.3 0.704 | Intercept | 2.65 0.45 0.74
BMI 0.587 0.01 3.09 BMI 0.614 0.004
Tricep | 0.435 | 0.00001 | 2.8 Tricep | 0.434 | 0.000004
Scapular | 0.195 | 0.046 | 1.995 Scapular | 0.248 0.009

some correlation between these three variables, the probability that two covariates remain fixed

while another changes is unlikely.

Figure 3 shows that added predictive advantage of the model given in equation (1) compared to
other options. The first two plots in Figure 3 indicate that nothing is lost by eliminating hip and
suprailiac from the model. The last two plots in Figure 3 show the fitted values compared to the
outcome for univariate models containing tricep alone and BMI alone. Comparing these last two
plots for the plot corresponding to equation (1) indicates a better relationship between fitted values
and outcome for the model that we have shown in equation (1). This gives further confidence that

the final model chosen for prediction is the best.

The major regression assumptions all appear to be met in this dataset. The 86 incoming cadets in
the study are probably independent, and so we can generalize results to all incoming female cadets.
Also, the relationships between the three covariates, BMI, tricep, and scapular skinfold, and body
fat all appear to be linear. An examination of the residuals in Figure 4 indicates that residuals are
evenly scattered and normally distributed. There does appear to be one outlying point and this

point, indicated in the first panel of Figure 4, has a studentized residual less than —3. This point
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Figure 3: Plots comparing fitted values to outcome for four different models

also has the largest Cook’s distance as indicated in the last panel of Figure 4.

Figure 5 gives the Af’s for each of the linear regression coefficients. Given the variation in the
influence diagnostics, it seemed best to fit the model again removing the outlying point. The results
for this regression, eliminating the outlier, are also shown in Table 2. The regression coefficients
are not altered too greatly and the major conclusions certainly do not change. Therefore, in the
absence of further information about the outlier, it is best to leave it in the model and use the

results from the complete dataset.



Here is the code in R used to analyze the dataset:

fatty <- read.table("bodyfat.dat",header=T)
fatty$bmi <- fatty$wt/((fatty$ht/100)"2)

pairs(fattyl[,c(4:12)1)

#Scatterplot indicates that fore and neck aren’t very interesting,
#so we take them out, they also aren’t sig. in the big full model
par (mfrow=c(1,2) ,pty=’s’)

plot(fatty$wrist,fatty$fat,xlab="Wrist circumfrence’,ylab=’Body Fat’)
plot(fatty$wrist,fatty$fat,xlim=c(13,17),xlab="Wrist circumfrence’,
ylab=’Body Fat’)

# The variable wrist has 4 outliers that are highly influential

# and so the variable appears sig. It really isn’t. We’ll take out
# the covariate.

pairs(fattyl[,c(4,8:12)1)

vifs <- rep(0,5)

out <- summary(lm(fattyl[,4] fattyl[,8]+fatty[,9]+fatty[,10]+fatty[,12]))$r.

vifs[1] <- 1/(1-out)

out <- summary(lm(fattyl[,8] fattyl[,4]+fatty[,9]+fatty[,10]+fatty[,12]))%r.

vifs[2] <- 1/(1-out)

out <- summary(Im(fattyl[,9] fattyl[,4]+fattyl[,8]+fatty[,10]+fatty[,12]))$r.

vifs[3] <- 1/(1-out)

out <- summary(lm(fattyl[,10] fatty[,4]+fatty[,8]+fatty[,9]+fatty[,12]))$r.
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vifs[4] <- 1/(1-out)
out <- summary(lm(fattyl[,12] fatty[,4]+fattyl[,8]+fatty[,9]+fatty[,10]1))$r.sq

vifs[5] <- 1/(1-out)

modellout <- lm(fat~bmi+hip+tri+scap+sup,data=fatty)

step(modellout, list(upper = “bmi+hip+tri+scap+sup, lower = “tri))

outl <- lm(fat~bmi+tri+scap,data=fatty)
out2 <- lm(fat"tri,data=fatty)

out3 <- lm(fat~bmi,data=fatty)

par (mfrow=c(2,2))

plot(modellout$fit,fatty$fat,

xlab="Fitted values: “bmi+hip+tri+scap+sup’,ylab=’Body Fat’)
plot(outl$fit,fatty$fat,xlab="Fitted values: “bmi+tri+scap’,ylab=’Body Fat’)
plot(out2$fit,fatty$fat,xlab="Fitted values: ~tri’,ylab=’Body Fat’)

plot (out3$fit,fatty$fat,xlab="Fitted values: “bmi’,ylab=’Body Fat’)

plot(out1$fit,rstudent(outl) ,xlab="Fitted values’,ylab=’Studentized Residuals’)
identify(out1$£fit,rstudent (outl))

hist(rstudent (outl) ,xlab=’Studentized Residuals’,main="Histogram")
qgnorm(rstudent (outl))

abline(0,1)

plot(cooks.distance(outl) ,xlab=’0bservation’,ylab=’Cook\’s Distance’)



plot(dfbetas(outl) [,1],outl1$fit,xlab="Dfbetas for the intercept",
ylab="Fitted values")

plot(dfbetas(outl) [,2] ,outi1$fit,xlab="Dfbetas for the BMI",
ylab="Fitted values")

plot (dfbetas(outl) [,3],outi$fit,xlab="Dfbetas for tricep skinfold",
ylab="Fitted values")

plot (dfbetas(outl) [,4],outl1$fit,xlab="Dfbetas for scapular skinfold",

ylab="Fitted values")

summary (lm(fat ~ bmi + tri + scap, data = fatty[-74,]1))
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Figure 4: Residual diagnostic plots
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Scatterplot of covariates used in stepwise selection
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