
Short introduction
to

Octave

Lecture Notes

by Piotr Kowalczyk

Computational Finance – p. 1

Features

high level programming language and interactive
environment

intended especially for numerical calculations

natively supports many mathematical concepts

many function libraries available

free and compatible with MATLAB

www.octave.org

Computational Finance – p. 2

Basic use

simple calculator:
>> 2+2
ans = 4

>> 3^(2+1)
ans = 27

>> 0^0
ans = 1

>> (-4)^(.5)
ans = 1.2246e-016 + 2.0000e+000i

built-in support for complex arithmetic

special kinds of “numbers”: Inf, NaN

Computational Finance – p. 3

Basic use

built-in functions — all of the usual mathematical functions:
>> exp(1)-e
ans = 0

>> sqrt(-4)
ans = 0 + 2i

>> 1.5*log(2+sin(3+pi))
ans = 0.92996

named variables:
>> deg = pi/180
deg = 0.017453
>> h = cos(60*deg);
>> h
h = 0.50000

Computational Finance – p. 4

Vectors

row vector: >> v=[3 5 1 -2]; #or v=[3, 5, 1, -2];

column vector: >> v=[-1; 1.5; 3; 0];

colon notation: start[:increment]:end (range)
>> v=3:6
v =

3 4 5 6
>> x=0:.2:1
x =
0.00000 0.20000 0.40000 0.60000 0.80000 1.00000

evenly spaced vector:
linspace(x1,x2,N); #N elements between x1 and x2

logarithmically spaced vector:
logspace(x1,x2,N); #N elements between 10^x1 and 10^x2

Computational Finance – p. 5

Matrices

Generating:
>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

>> B = [A; 3:-1:1]
B =

1 2 3
4 5 6
3 2 1

>> [A A]
ans =

1 2 3 1 2 3
4 5 6 4 5 6

Computational Finance – p. 6

Matrices

Special matrices:
eye() # create matrix with ones on the main diagonal
ones() # create matrix of ones
zeros() # create matrix of zeros
rand() # create random matrix

with entries uniformly distributed in (0,1)
diag() # create diagonal matrix from the given vector

or extract diagonal of the given matrix

‘Equation solving’ operators:
>> X = A \ B; # X is solution of AX=B
>> X = B / A; # X is solution of XA=B

Computational Finance – p. 7

Vectors and matrices

Indexing (indices of vectors and matrices start at one!):
>> v = [-1 3:2:8 0];
>> v(4)
ans = 7
>> A = [1 2 3; 4 5 6];
>> A(2,2)
ans = 5
>> A(1,:)
ans =

1 2 3

Assigning values:
>> A(1,:)=v(1:2:5)
A =

-1 5 0
4 5 6

Computational Finance – p. 8

Vectors and matrices
Dimensions:
>> size(v)
ans =

1 5
>> size(A)
ans =

2 3

Empty matrix:
>> P = [];
>> P = [P; [1 2]]
P =

1 2

Built-in functions can take vector and matrix arguments:
>> t = 0:.5:2;
>> sin(t)
ans =

0.00000 0.47943 0.84147 0.99749 0.90930
Computational Finance – p. 9

Operators

arithmetic: + - * / ^ ++ --

matrix: + - * ^ ’ .’

element-wise: .+ .- .* ./ .\ .^

logical: < <= > >= == != ! & | && ||

>> v = [5 8 1 -3 0 4 -8];
>> v < 2
ans =

0 0 1 1 1 0 1
>> v(v<2)
ans =

1 -3 0 -8

Computational Finance – p. 10

User-defined functions and script files
Defining a function:
function [out1, out2, ...] = name (input1, input2, ...)
sequence of commands

endfunction

Calling the function:
[outvar1, outvar2, ...] = name(invar1, invar2, ...);

Each function is stored in a different file, which must have the
same name as the function. Alternatively, several functions
can be defined in a script file with the rest of the program.
Script file is a normal text file (it can not begin with the
command function). This is the basic form of Octave
program. Scripts are run by typing the name of the script
(without the extension) in the Octave command window.
Both function and script files must have an extension .m

Computational Finance – p. 11

Control statements

if selection
if (condition) # brackets are not necessary
commands

elseif (condition)
commands

else
commands

endif

switch selection
switch expression # different than in C
case label

commands
case label

commands
...
otherwise

commands
end

Computational Finance – p. 12

Control statements

for loop
for variable = expression # expr.: vector or matrix
commands

endfor

while loop
while (condition)
commands

endwhile

do-until loop
do
commands

until (condition)

Computational Finance – p. 13

Input and output

save data var1 [var2 ...]

saves the variables var1 etc. into the file data

load data

restores the variables from the file data

fprintf, printf

resembles C syntax for formatted output

var = input("Text");

prints the text text and waits for the user to enter a value

format long; format short;

display 5 or 15 significant digits

Computational Finance – p. 14

Graphics

x = linspace(0,pi,200);
y = cos(x);
plot(x,y); # plot a line through the points (x,y)
plot(x,y,"go"); # use green circles instead
hold on;
plot(x,sin(x),"r"); # add red sinusoid
hold off;
title("Sample plot");
legend("cosine","sine")
print("sample.eps","-deps")
figure # create new window

Computational Finance – p. 15

Other useful functions

timing the execution of the statements:
tic;
some calculations later ...
toc; # prints the number of seconds since tic

cputime can be used also.

getting help:
>> help
>> help log

Computational Finance – p. 16

Sparse matrices

Sparse matrix — matrix with many zeros, only non-zero
elements are stored in memory.

To convert a full matrix to a sparse one use:
B=sparse(A);

Use sparse matrices whenever the size is large!

Building band matrix (sparse diagonal matrix):
B=spdiags(V,C,m,n);

where column of V are diagonals of B represented by C

(negative values — diagonals below the main diagonal,
positive values — above the main diagonal) and m,n are
dimensions of matrix.

Computational Finance – p. 17

Efficiency

Octave is designed to process matrices and vectors and this is
its most powerful feature.

Vectorization is an essential programming skill in Octave.

A few tips on efficient programming in Octave:

avoid using loops (especially while and do-until)

if possible, vectorize all operations

if necessary, rewrite the problem to use matrices and
vectors

use ranges (colon notation) for vectors, whenever possible

Computational Finance – p. 18

Efficiency example

Problem: calculate the sum of squares of numbers 1, 2, ..., n

Solution 1:
n = input ("Type a value for n: ");
tic;
nn = 1;
s = 0;
while (nn <= n)
s += nn^2;
nn++;

endwhile
toc;
disp ("Result:"), disp(s);

Computational Finance – p. 19

Efficiency example

Problem: calculate the sum of squares of numbers 1, 2, ..., n

Solution 2:
n = input ("Type a value for n: ");
tic;
s = 0;
for nn = 1:n
s += nn^2;

endfor
toc;
disp ("Result:"), disp(s);

Computational Finance – p. 20

Efficiency example

Problem: calculate the sum of squares of numbers 1, 2, ..., n

Solution 3:
n = input ("Type a value for n: ");
tic;
s = sum((1:n).^2);
toc;
printf("Result: %f\n",s);

Computational Finance – p. 21

	Features
	Basic use
	Basic use
	Vectors
	Matrices
	Matrices
	Vectors and matrices
	Vectors and matrices
	Operators
	User-defined functions and script files
	Control statements
	Control statements
	Input and output
	Graphics
	Other useful functions
	Sparse matrices
	Efficiency
	Efficiency example
	Efficiency example
	Efficiency example

