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DOWODY KOMBINATORYCZNE

1. Oznaczenia

Przypuśćmy, że dany jest zbiór skończony A. Wtedy

|A| = liczba elementów zbioru A,

P (A) = {B : B ⊆ A},

Pk(A) = {B ∈ P (A) : |B| = k}.

W szczególności
P0(A) = {∅},

P1(A) =
{
{a} : a ∈ A

}
,

Pm(A) = {A},

gdzie |A| = m. Ponadto

[n] = {1, 2, . . . , n},

[0] = ∅,

[1] = {1},

[2] = {1, 2},

P (n) = P ([n]) = P ({1, 2, . . . , n}),

Pk(n) = Pk([n]) = Pk({1, 2, . . . , n}),

Pk(0) = Pk(∅).

Będą potrzebne dwie funkcje. Jeśli 1 ≤ k ≤ n, to

(n)k = n · (n− 1) · . . . · (n− k + 1).

Dla k > n przyjmujemy (n)k = 0. Wreszcie

n! = (n)n = 1 · 2 · . . . · n

oraz 0! = 1.

2. Reguła dodawania

Zauważmy bez dowodu, że jeśli A i B są zbiorami skończonymi oraz A ∩B = ∅, to

|A ∪B| = |A|+ |B|.

Ogólnie, jeśli dane są zbiory skończone A1, A2, . . . , An oraz Ai ∩ Aj = ∅ dla i 6= j, to

|A1 ∪ A2 ∪ . . . ∪ An| = |A1|+ |A2|+ . . .+ |An|.
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Stąd w szczególności mamy:

|A ∪B| = |(A \B) ∪ (A ∩B) ∪ (B \A)| =

= |A \B|+ |A ∩B|+ |B \A| =

= |A \B|+ |A ∩B|+ |B \A|+ |A ∩B| − |A ∩B| =

= |(A \B) ∪ (A ∩B)|+ |(B \A) ∪ (A ∩B)| − |A ∩B| =

= |A|+ |B| − |A ∩B|

oraz

|A ∪B ∪ C| = |(A ∪B) ∪ C| =

= |A ∪B|+ |C| − |(A ∪B) ∩ C| =

= |A|+ |B| − |A ∩B|+ |C| − |(A ∩ C) ∪ (B ∩ C)| =

= |A|+ |B|+ |C| − |A ∩B|−
(
|A ∩ C|+ |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)|

)
=

= |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

W następnym wykładzie zajmiemy się uogólnieniami tych wzorów.

Regułę dodawania możemy wysłowić w następujący sposób. Przypuśćmy, że możemy
wykonać n czynności; pierwsza kończy się jednym z m1 wyników, druga jednym z m2
wyników i tak dalej, aż do ostatniej, kończącej się jednym z mn wyników. Zakładamy
przy tym, że wszystkie te wyniki są różne, tzn. żadne dwie z tych czynności nie mogą
kończyć się tym samym wynikiem. Załóżmy następnie, że mamy wykonać jedną, dowol-
nie przez nas wybraną czynność. Możemy wtedy otrzymać jeden z m1 +m2 + . . .+mn
wyników.

3. Reguła mnożenia

Zaczniemy od następującej oczywistej równości

|A×B| = |A| · |B|.

Możemy ją wysłowić w następujący sposób. Przypuśćmy, że mamy do wykonania dwie
czynności. Pierwsza kończy się jednym z m wyników, druga jednym z n wyników. Wy-
konanie obu, jedna po drugiej, zakończy się zatem jednym z m · n możliwych wyników.
Przy tym sformułowaniu zakładamy, że niezależnie od wyniku pierwszej czynności, druga
kończy się zawsze jednym z n tych samych wyników. Inaczej mówiąc, zbiór wyników
drugiej czynności jest ustalony; nie zależy od tego, w jaki sposób zakończy się pierwsza
czynność.

Zbiór wyników drugiej czynności może jednak zależeć od tego, jak zakończyła się pierw-
sza czynność. Popatrzmy na przykład. Z talii 52 kart wyciągamy kolejno dwie karty
i układamy koło siebie (z zachowaniem kolejności). Pierwszą czynnością jest wyciągnię-
cie pierwszej karty. Może ona zakończyć się jednym z 52 wyników. Drugą czynnością
jest wyciągnięcie drugiej karty. Widzimy, że zbiór możliwych wyników drugiej czynno-
ści zależy od tego, jakiej karty już nie ma w talii, czyli od wyniku pierwszej czynności.
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Zauważmy jednak, że druga czynność, niezależnie od wyniku pierwszej, zakończy się jed-
nym z 51 wyników, bo niezależnie, od tego, jaką kartę wyciągniemy, w talii pozostanie
51 kart.

Przypuśćmy zatem, że mamy do wykonania dwie czynności. Pierwsza kończy się jednym
z m wyników: x1, x2, . . . , xm. Dla każdego xk zbiór Ak możliwych wyników drugiej
czynności ma zawsze n elementów:

|A1| = |A2| = . . . = |Am| = n.

Wykonujemy obie czynności po kolei. Wynikiem będzie para (x, y), gdzie x jest wynikiem
pierwszej czynności, a y wynikiem drugiej. Zbiór wyników ma zatem postać:

{(xk, y) : k = 1, 2, . . . , m, y ∈ Ak}.

Ten zbiór możemy przedstawić w postaci sumy m zbiorów rozłącznych:

{(xk, y) : k = 1, 2, . . . , m, y ∈ Ak} =

= {(x1, y) : y ∈ A1} ∪ {(x2, y) : y ∈ A2} ∪ . . . ∪ {(xm, y) : y ∈ Am}.

Każdy z m zbiorów po prawej stronie ma n elementów, a więc z reguły dodawania
wynika, że

|{(xk, y) : k = 1, 2, . . . , m, y ∈ Ak}| = m · n.

Regułę mnożenia możemy zatem wysłowić w następujący sposób. Mamy do wykonania
dwie czynności. Pierwsza kończy się jednym zm wyników. Druga, niezależnie od wyniku
pierwszej, kończy się jednym z n wyników (przy czym zbiory wyników drugiej mogą być
różne w zależności od wyniku pierwszej). Wykonanie obu czynności po kolei zakończy
się wtedy jednym z m · n wyników.

Regułę mnożenia możemy łatwo uogólnić na większą liczbę czynności. Dokładne jej
sformułowanie pozostawię jako ćwiczenie.

4. Zliczanie funkcji i podzbiorów

Niech |A| = m i |B| = n. Wtedy z reguły mnożenia wynika natychmiast, że

|AB| = mn.

Wartość f(b) dla każdego elementu zbioru B wybieramy bowiem na jeden zm sposobów;
tych elementów zbioru B jest n, więc dokonujemy n wyborów.

Podobnie
|{f ∈ AB : f jest 1− 1}| = (m)n.

Znów wybieramy n wartości: pierwszą wartość f(b) wybieramy na jeden z m sposobów,
drugą na jeden z m− 1 sposobów i tak dalej.

Definiujemy współczynnik dwumianowy
(
m
n

)
wzorem

(
m

n

)

= |Pn(m)|.
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5. Permutacje, kombinacje i wariacje

Niech |A| = m. Wtedy mamy następujące obiekty kombinatoryczne znane ze szkoły.

1) Wariacjami n-elementowymi z powtórzeniami ze zbioru A nazywamy ciągi
(a1, . . . , a2) o wyrazach ze zbioru A. Wówczas

|{(a1, . . . , an) : a1, . . . , an ∈ A}| = |A[n]| = mn.

2) Wariacjami n-elementowymi bez powtórzeń ze zbioru A nazywamy ciągi
różnowartościowe (a1, . . . , an) o wyrazach ze zbioru A. Wówczas

|{(a1, . . . , an) ∈ A[n] : ai 6= aj dla i 6= j}| = (m)n =
m!

(m− n)!
.

3) Permutacjami zbioru A nazywamym-elementowe wariacje bez powtórzeń. Wów-
czas

|{(a1, . . . , am) ∈ A[m] : ai 6= aj dla i 6= j}| = m!

4) Kombinacjami n-elementowymi ze zbioru A nazywamy n-elementowe pod-
zbiory zbioru A. Wówczas

|Pn(A)| =
(
m

n

)

.

Zobaczymy teraz jeden ważny przykład występowania kombinacji. Niech będzie dany
zbiór C składający się ze wszystkich ciągów długości m o dwóch wyrazach a i b, w któ-
rych litera a występuje n razy, a litera b występuje m− n razy. Otóż wtedy |C| =

(
m
n

)
.

Każdy taki ciąg jest bowiem jednoznacznie wyznaczony przez wskazanie, które spośród
m wyrazów są literami a; pozostałe są równe b. Wskazać te n wyrazów możemy właśnie
na
(
m
n

)
sposobów. W szczególności istnieje

(
m+n
m

)
ciągów, w których jest dokładnie m

wyrazów równych a i n wyrazów równych b.

Oprócz powyższych obiektów znanych ze szkoły zdefiniujemy teraz kombinacje z po-
wtórzeniami. Kombinacje wskazują, które elementy zbioru A zostały wybrane, bez
uwzględnienia kolejności, w jakiej te elementy były wybierane. Kombinacje z powtórze-
niami wskazują ponadto, że elementy zbioru A mogły być wybrane wielokrotnie, przy
czy nadal nie wskazujemy kolejności wybierania. Pokażemy teraz dwa sposoby definiowa-
nia takich kombinacji z powtórzeniami. Możemy przedstawiać je jako funkcje c : A→ N,
gdzie liczba c(a) wskazuje, ile razy element a został wybrany. Zatem kombinacjami
n-elementowymi z powtórzeniami ze zbioru A nazywamy funkcje c : A→ N takie,
że ∑

a∈A

c(a) = n.

Popatrzmy na przykład. Niech A = {p, q, r, s, t} będzie zbiorem pięcioelementowym.
Funkcja c : A→ N określona w następujący sposób

c(p) = 3, c(q) = 2, c(r) = 1, c(s) = 1, c(t) = 0
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jest kombinacją, w której element p został wybrany 3 razy, element q został wybrany 2
razy, elementy r i s po jednym razie i wreszcie element t ani razu. Tę kombinację z po-
wtórzeniami moglibyśmy zatem zapisać w postaci ciągu pppqqrs. Taki właśnie sposób
zapisu kombinacji z powtórzeniami będzie podstawą innej definicji. Ten drugi sposób
definiowania kombinacji z powtórzeniami wymaga uporządkowania najpierw zbioru A.
Przyjmijmy, że

A = {a1, a2, . . . , am}.

Kombinacją n-elementową z powtórzeniami ze zbioru A nazwiemy teraz dowolny
ciąg (x1, x2, . . . , xn) elementów zbioru A, w którym dla dowolnych i, j = 1, 2, . . . , m, jeśli
i < j, to wszystkie wyrazy równe ai występują przez wszystkimi wyrazami równymi aj .
Inaczej mówiąc, w takim ciągu najpierw występuje blok wartości a1, potem blok wartości
a2 i tak dalej aż do ostatniego bloku wartości am; może się zdarzyć, że niektóre z tych
bloków będą puste. W naszym przykładzie zbioru A = {p, q, r, s, t} takie ciągi będą
składać się z bloku liter p na początku, potem będą występować kolejno bloki liter q,
r i s i wreszcie na końcu znajdzie się blok liter t. Przypominamy, że niektóre z tych
bloków mogą być puste. Widzieliśmy wyżej przykład takiego ciągu: pppqqrs. W tym
ciągu mieliśmy najpierw blok trzech liter p, następnie blok dwóch liter q, po nim dwa
bloki jednoliterowe liter r i s i wreszcie na końcu pusty blok liter t.

Zajmiemy się teraz zliczaniem kombinacji z powtórzeniami. Zaczniemy od przykładu.
Niech |A| = 5 i n = 7. Zliczamy zatem kombinacje siedmioelementowe z powtórzeniami
z pięcioelementowego zbioru A. Uporządkujmy elementy zbioru A:

A = {p, q, r, s, t}.

Weźmy znany nam przykład kombinacji z powtórzeniami zapisanej w postaci ciągu:
pppqqrs. Oddzielmy pionowymi kreskami bloki liter:

p p p | q q | r | s |

Zwracamy uwagę na kreskę na końcu. Oddziela ona jednoliterowy blok s od pustego
bloku liter t. Teraz możemy zauważyć, że nie jest już potrzebne pisanie liter. Wiemy
bowiem, że w pierwszym bloku muszą wystąpić litery p, w drugim litery q i tak dalej.
Istotne jest tylko zaznaczenie, ile liter jest w każdym bloku. Rysujemy zatem kropki
w miejscu liter. Narysujemy więc 7 kropek, oznaczających elementy wybrane podzielo-
nych czterema pionowymi kreskami na pięć części. Wskażemy tym samym, które kropki
oznaczają kolejne elementy zbioru A. W naszym przykładzie otrzymamy następujący
ciąg kropek i kresek

• • • | • • | • | • |

oznaczający, że element p został wybrany 3 razy (przed pierszą kreską są 3 kropki),
element q został wybrany 2 razy (między pierwszą i drugą kreską są 2 kropki), elementy
r i s zostały wybrane po jednym razie (między kolejnymi kreskami jest jedna kropka),
wreszcie element t nie został wybrany ani razu (za ostanią, czwartą kreską nie ma ani
jednej kropki). Podobnie zapis

• • | | | • • • • | •
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oznacza, że element p został wybrany 2 razy, elemeny q i r ani razu, element s został
wybrany 4 razy i element t jeden raz. Każdy ciąg siedmiu kropek i czterech kresek odpo-
wiada dokładnie jednej kombinacji z powtórzeniami. Mamy zatem łącznie 11 symboli:
7 kropek i 4 kreski. Z powyższych rozważań dotyczących kombinacji wynika, że istnieje
(
11
4

)
różnych ciągów złożonych z 7 kropek i 4 kresek.

W ogólności mamy n kropek (wybieramy n elementów) i m − 1 kresek (dzielą one
kropki na m bloków odpowiadających m elementom zbioru A). Mamy zatem

(
m+n−1
m−1

)

ciągów n kropek i m− 1 kresek i tyle jest n-elementowych kombinacji z powtórzeniami
z m-elementowego zbioru A.

Zwróćmy uwagę na dwie rzeczy. Po pierwsze, sposób kodowania kombinacji z powtórze-
niami za pomocą ciągu kropek i kresek zależy od uporządkowania zbioru A. Przy innym
uporządkowaniu ten sam ciąg będzie na ogół oznaczał inną kombinację. Po drugie, je-
śli naszym zbiorem A jest zbiór [m] z naturalnym uporządkowaniem, to kombinację
z powtórzeniami możemy przedstawić jako ciąg liczb od 1 do m, w którym najpierw
występują wyrazy równe 1, potem wyrazy równe 2 i tak dalej. Inaczej mówiąc, taką kom-
binację możemy zapisać w postaci ciągu niemalejącego długości n o wyrazach ze zbioru
[m]. Stąd wynika, że istnieje

(
m+n−1
m−1

)
niemalejących ciągów długości n o wyrazach ze

zbioru [m]. Z tego wniosku kilkakrotnie dalej skorzystamy.

6. Podstawowe własności współczynników dwumianowych

Przypominamy, że (
m

n

)

= |Pn(A)|,

gdzie |A| = m. Oczywiście dla n > m mamy Pn(A) = ∅, czyli
(
m
n

)
= 0 dla n > m.

Przyjmujemy ponadto, że
(
m
n

)
= 0 dla n < 0.

Zauważmy następnie, że

P0(A) = {∅} oraz Pm(A) = {A}.

Zatem (
m

0

)

=
(
m

m

)

= 1. (1.1)

Niech teraz 0 < n ≤ m. Udowodnimy, że

n ·

(
m

n

)

= m ·
(
m− 1
n− 1

)

.

Niech |A| = m. Rozpatrujemy zbiór

B = {(a,N) : a ∈ N ∈ Pn(A)}.

Zliczamy dwoma sposobami elementy zbioru B. Po pierwsze

B =
⋃

N∈Pn(A)

{(a,N) : a ∈ N},

Wykłady z kombinatoryki



Dowody kombinatoryczne 7

przy czym sumowane zbiory są rozłączne dla różnych N . Z reguły dodawania mamy
zatem

|B| =
∑

N∈Pn(A)

|{(a,N) : a ∈ N}| =
∑

N∈Pn(A)

n = n ·
(
m

n

)

.

Z drugiej strony
B =

⋃

a∈A

{(a,N) : a ∈ N ∈ Pn(A)},

przy czym znów sumowane zbiory są rozłączne (tym razem dla różnych a). Zatem

|B| =
∑

a∈A

|{(a,N) : a ∈ N ∈ Pn(A)}| =

=
∑

a∈A

|{(a, {a} ∪K) : K ∈ Pn−1(A \ {a})}| =

=
∑

a∈A

|{(a,K) : K ∈ Pn−1(A \ {a})}| =

=
∑

a∈A

(
m− 1
n− 1

)

=

= m ·
(
m− 1
n− 1

)

.

Ponieważ liczba elementów zbioru skończonego nie zależy od sposobu zliczania tych
elementów, więc otrzymujemy równość

n ·

(
m

n

)

= m ·
(
m− 1
n− 1

)

, (1.2)

z której otrzymujemy
(
m

n

)

=
m

n
·

(
m− 1
n− 1

)

. (1.3)

Zazwyczaj nie przedstawiamy dowodów tożsamości kombinatorycznych w sposób tak
sformalizowany. Przedstawiamy natomiast „historyjkę”, którą można łatwo sformalizo-
wać i którą traktujemy jako dowód. Jest to tzw. dowód kombinatoryczny. A oto
przykład historyjki będącej dowodem tożsamości (1.2).

Przypuśćmy, że w naszej firmie pracuje m osób. Chcemy wybrać spośród nich n osób
(n > 0), które otrzymają nagrodę oraz chcemy jedną z nagrodzonych osób awansować.
Na ile sposobów możemy tego dokonać?

Po pierwsze wybieramy osoby do nagrody. Możemy to zrobić na
(
m
n

)
sposobów. Na-

stępnie wśród wybranych osób wskazujemy osobę przeznaczoną do awansu. Możemy to
zrobić na n sposobów. Z reguły mnożenia wynika, że istnieje n ·

(
m
n

)
sposobów łącznego

wyboru.

Możemy także wybrać najpierw osobę do awansu: mamy m możliwości. Tę osobę także
nagradzamy, mamy więc już jedną osobę nagrodzoną. Spośród pozostałych m− 1 osób
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dobieramy jeszcze n−1 osób do nagrody; możemy to zrobić na
(
m−1
n−1

)
sposobów. Z reguły

mnożenia wynika, że mamy łącznie m ·
(
m−1
n−1

)
sposobów wyboru.

Wreszcie, tak jak poprzednio, stwierdzamy, że liczba sposobów wyboru nie zależy od
metody zliczania. Otrzymujemy zatem równość (1.2):

n ·

(
m

n

)

= m ·
(
m− 1
n− 1

)

, (1.2)

co kończy dowód.

Tożsamość (1.3) pozwala obliczać współczynniki dwumianowe. Popatrzmy na przykład:

(
7
4

)

=
7
4
·

(
6
3

)

=
7
4
·
6
3
·

(
5
2

)

=
7
4
·
6
3
·
5
2
·

(
4
1

)

=
7
4
·
6
3
·
5
2
·
4
1
·

(
3
0

)

=

=
7
4
·
6
3
·
5
2
·
4
1
· 1 =

7 · 6 · 5 · 4
4 · 3 · 2 · 1

=
7 · 6 · 5
3 · 2

= 7 · 5 = 35.

Przykład ten uogólniamy w następnym twierdzeniu.

Twierdzenie 1.1. Jeśli 0 ≤ n ≤ m, to

(
m

n

)

=
m!

n! · (m− n)!
. (1.4)

Dowód. Stosujemy indukcję względemm. Zauważmy najpierw, że dla dowolnego n i dla
n = 0 mamy (

m

0

)

= 1 oraz
m!

0! · (m− 0)!
=
m!
m!
= 1,

czyli (
m

0

)

=
m!

0! · (m− 0)!
.

W szczególności teza twierdzenia jest prawdziwa dla m = 0.

Zakładamy następnie, że dla pewnegom i dowolnego n takiego, że 0 ≤ n ≤ m prawdziwa
jest równość (

m

n

)

=
m!

n! · (m− n)!
.

Niech teraz 0 ≤ n ≤ m+ 1. Mamy dowieść, że

(
m+ 1
n

)

=
(m+ 1)!

n! · (m+ 1− n)!
.

Wiemy już, że ta równość jest prawdziwa dla n = 0. Niech zatem n > 0. Z równości
(1.3) otrzymujemy

(
m+ 1
n

)

=
m+ 1
n
·

(
m

n− 1

)

.
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Ponieważ 0 ≤ n− 1 ≤ m, więc z założenia indukcyjnego otrzymujemy

(
m

n− 1

)

=
m!

(n− 1)! ·
(
m− (n− 1)

) =
m!

(n− 1)! · (m+ 1− n)!
.

Stąd dostajemy
(
m+ 1
n

)

=
m+ 1
n
·

m!
(n− 1)! · (m+ 1− n)!

=

=
m! · (m+ 1)

(n− 1)! · n · (m+ 1− n)!
=

=
(m+ 1)!

n! · (m+ 1− n)!
,

c. b. d. o.

Twierdzenie 1.1 można udowodnić w inny sposób. Zastanówmy się, jak można utworzyć
dowolną permutację ustalonego m-elementowego zbioru A. Wykonujemy trzy czynno-
ści: najpierw wybieramy n-elementowy podzbiór B zbioru A, następnie porządkujemy
elementy zbioru A, wreszcie porządkujemy elementy zbioru A \ B, ustawiając je za
elementami zbioru B. Nietrudno zauważyć, że w ten sposób każdą permutację zbioru
A otrzymamy dokładnie jeden raz. Popatrzmy teraz, ile możliwych wyników da każda
z tych trzech czynności. Pierwsza ma

(
m
n

)
możliwych wyników, druga n!, trzecia (m−n)!

wyników. Z reguły mnożenia otrzymujemy zatem

(
m

n

)

· n! · (m− n)! = m!,

czyli (
m

n

)

=
m!

n! · (m− n)!

Pokażemy teraz dowód następującej tożsamości, podobnej do tożsamości (1.2):

n ·

(
m

n

)

= (m− n+ 1) ·
(
m

n− 1

)

. (1.5)

Niech |A| = m. Znów dwoma sposobami zliczamy elementy zbioru

B =
⋃

N∈Pn(A)

{(a,N) : a ∈ N}.

Tak jak poprzednio, zbiór N ∈ Pn(A) możemy wybrać na
(
m
n

)
sposobów, a jego element

a możemy wybrać na n sposobów. To daje łącznie n ·
(
m
n

)
par (a,N). Możemy postąpić

inaczej. Najpierw wybieramy zbiórN ′ ∈ Pn−1(A). Możemy to zrobić na
(
m
n−1

)
sposobów.

Następnie wybieramy a ∈ A \ N ′ i przyjmujemy N = N ′ ∪ {a}. Element a możemy
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wybrać na m − n+ 1 sposobów, co daje łącznie (m− n+ 1) ·
(
m
n−1

)
par (a,N). W ten

sposób równość (1.5) została udowodniona.

Paragraf ten zakończymy dowodem tożsamości będącej naturalnym uogólnieniem toż-
samości (1.2). Udowodnimy, że

(
m

n

)(
n

k

)

=
(
m

k

)(
m− k

n− k

)

. (1.6)

Niech M będzie zbiorem m-elementowym. Będziemy zliczać na dwa sposoby elementy
zbioru

A = {(N,K) : K ⊆ N ⊆M, |K| = k, |N | = n}.

Zbiór N możemy wybrać na
(
m
n

)
sposobów. Następnie jego podzbiór k-elementowy K

możemy wybrać na
(
n
k

)
sposobów. To daje łączną liczbę

(
m
n

)(
n
k

)
sposobów wyboru.

Możemy jednak wybierać te zbiory w innej kolejności. Najpierw wybieramy zbiór K;
mamy

(
m
k

)
sposobów wyboru. Następnie spośród pozostałych m − k elementów zbioru

M wybieramy n−k elementów. Łącznie z już wybranymi elementami utworzą one zbiór
N . Te n−k elementów możemy wybrać na

(
m−k
n−k

)
sposobów. Łącznie daje to

(
m
k

)(
m−k
n−k

)

sposobów wyboru elementów zbioru A. Znów liczba elementów zbioru A nie zależy od
kolejności zliczania, co dowodzi równości (1.6).

Do tego dowodu można ułożyć historyjkę podobną do historyjki w dowodzie tożsamości
(1.2). Przypuśćmy, że w naszej firmie nadal pracuje m osób. Chcemy nagrodzić n z nich
oraz k nagrodzonych osób awansować. Na ile sposobów możemy to zrobić? Zliczamy
te sposoby wyboru dwiema metodami. Najpierw wybieramy osoby do nagrody: na

(
m
n

)

sposobów, następnie spośród nich wybieramy k osób do awansu: na
(
n
k

)
sposobów. To

daje lewą stronę równości (1.6). Możemy też najpierw wybrać osoby do awansu (i jedno-
cześnie nagrody): na

(
m
k

)
sposobów, a następnie dobrać brakujące n−k osób do nagrody:

na
(
m−k
n−k

)
sposobów. To daje prawą stronę. Zauważmy także, że dla k = 1 otrzymujemy

równość (1.2).

7. Trójkąt Pascala

Ustawmy współczynniki dwumianowe w tablicy:

(
0
0

)

(
1
0

) (
1
1

)

(
2
0

) (
2
1

) (
2
0

)

(
3
0

) (
3
1

) (
3
2

) (
3
0

)

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
0

)

. . . . . . . . . . . . . . . . . .

Tablicę tę nazywamy trójkątem Pascala. Widzimy zasadę umieszczania współczyn-
ników dwumianowych w trójkącie Pascala. Liczba m we współczynniku

(
m
n

)
oznacza

numer wiersza, przy czym wiersze numerujemy od zera. Liczba n oznacza kolejny nu-
mer współczynnika w wierszu, przy czym znów numerujemy miejsca od zera. Zauważmy
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następnie, że w wierszu o numerze m mamy m+1 współczynników numerowanych licz-
bami n od zera do m. Możemy sobie oczywiście wyobrazić, że wszystkie wiersze są
nieskończone i ich wyrazy są numerowane liczbami całkowitymi. Ponieważ

(
m
n

)
= 0 dla

n < 0 i n > m, więc wszystkie współczynniki dwumianowe nieuwidocznione w trójkącie
Pascala są równe zeru. Inaczej mówiąc, w trójkącie Pascala pokazujemy tylko niezerowe
współczynniki dwumianowe.

Pierwsze wiersze trójkąta Pascala wyglądają następująco:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . . . . . . . . . . . . . . . . .

Zbadamy teraz własności trójkąta Pascala.
Zauważmy, że każdy wiersz trójkąta Pascala zaczyna się i kończy jedynką. Wynika to
z równości (1.1):

(
m

0

)

=
(
m

m

)

= 1.

Następnie zauważmy, że każdy wiersz jest symetryczny:
(
m

n

)

=
(
m

m− n

)

. (1.7)

Wynika to stąd, że jeśli |A| = m, to zbiory Pn(A) i Pm−n(A) są równoliczne, funkcja
f : Pn(A)→ Pm−n(A) określona wzorem f(B) = A \B ustala tę równoliczność. Inaczej
mówiąc, wybór n elementów ze zbioru A jest tym samym, co odrzucenie pozostałych
m− n elementów tego zbioru A.
Wreszcie najważniejsza własność trójkąta Pascala. Każdy współczynnik dwumianowy
(
m
n

)
, gdzie 0 < n < m, jest sumą dwóch współczynników stojących bezpośrednio nad

nim. Tę zależność można zapisać wzorem
(
m

n

)

=
(
m− 1
n− 1

)

+
(
m− 1
n

)

. (1.8)

Podamy teraz trzy dowody tego wzoru.
Dowód 1. Korzystamy z równości (1.5) (podstawiając m − 1 w miejsce m). Mamy
zatem

n ·

(
m− 1
n

)

= (m− n) ·
(
m− 1
n− 1

)

.

Teraz, korzystając również z równości (1.3), dostajemy
(
m− 1
n− 1

)

+
(
m− 1
n

)

=
(
m− 1
n− 1

)

+
m− n

n
·

(
m− 1
n− 1

)

=
(

1 +
m− n

n

)

·

(
m− 1
n− 1

)

=

=
m

n
·

(
m− 1
n− 1

)

=
(
m

n

)

.
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Dowód 2. Korzystamy ze wzoru (1.4). Mamy zatem
(
m− 1
n− 1

)

+
(
m− 1
n

)

=
(m− 1)!

(n− 1)! · (m− n)!
+

(m− 1)!
n! · (m− n− 1)!

=

=
(m− 1)!

(n− 1)! · (m− n− 1)! · (m− n)
+

(m− 1)!
(n− 1)! · n · (m− n− 1)!

=

=
(m− 1)!

(n− 1)! · (m− n− 1)!
·
( 1
m− n

+
1
n

)

=

=
(m− 1)!

(n− 1)! · (m− n− 1)!
·
m

(m− n)n
=

=
(m− 1)! ·m

(n− 1)! · n · (m− n− 1)! · (m− n)
=

=
m!

n! · (m− n)!
=
(
m

n

)

.

Dowód 3. Podamy teraz dowód kombinatoryczny. W naszej firmie, razem z dyrektorem,
pracuje m osób. Chcemy, by na konferencję pojechało m osób. Na ile sposobów możemy
je wybrać?

Mamy dwa przypadki. W pierwszym przypadku zakładamy, że dyrektor jedzie na konfe-
rencję. Wtedy z pozostałychm−1 osób musimy wybrać n−1 osób. W drugim przypadku
zakładamy, że dyrektor nie jedzie na konferencję. Wtedy z pozostałych m− 1 osób mu-
simy wybrać n osób jadących na konferencję. Z reguły dodawania wynika teraz wzór
(1.8).

To rozumowanie można łatwo sformalizować. Mianowicie zauważamy, że

Pn(m) = Pn(m− 1) ∪
{
A ∪ {m} : A ∈ Pn−1(m− 1)

}
,

przy czym zbiory po prawej stronie są rozłączne oraz oczywiście

|Pn(m− 1)| =
(
m

n

)

oraz
∣
∣
{
A ∪ {m} : A ∈ Pn−1(m− 1)

}∣
∣ =

(
m− 1
n− 1

)

.

Dopiszmy do trójkąta Pascala współczynniki
(
m
n

)
dla n < 0 i n > m:

. . .
(
0
−2

) (
0
−1

) (
0
0

) (
0
1

) (
0
2

)
. . .

(
1
−2

) (
1
−1

) (
1
0

) (
1
1

) (
1
2

) (
1
3

)

. . .
(
2
−1

) (
2
0

) (
2
1

) (
2
2

) (
2
3

)
. . .

(
3
−1

) (
3
0

) (
3
1

) (
3
2

) (
3
3

) (
3
4

)

. . .
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
. . .

. . . . . . . . . . . . . . . . . .

Zauważmy, że w pierwszym wierszu występują same zera z wyjątkiem jednego miejsca:
(
0
0

)

= 1.
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We wszystkich następnych wierszach każdy współczynnik powstaje z położonych nad
nim zgodnie ze wzorem (1.8). Dlatego odtąd we wzorze (1.8) nie będziemy przyjmować
żadnych założeń o m i n, poza oczywistym założeniem, że m− 1 ≥ 0, czyli m ≥ 1.

Jeszcze jedną ważną własność trójkąta Pascala otrzymujemy z równości (1.5). Miano-
wicie z równości

n ·

(
m

n

)

= (m− n+ 1) ·
(
m

n− 1

)

(1.5)

wynika, że
(
m

n

)

=
m− n+ 1
n

·

(
m

n− 1

)

.

Przypuśćmy teraz, że m jest liczbą parzystą: m = 2p. Niech teraz n ≤ p. Wówczas

m− n+ 1
n

=
m+ 1
n
− 1 =

2p+ 1
n
− 1 ≥

2n+ 1
n
− 1 >

2n
n
− 1 = 1,

skąd wynika, że
(
m

n

)

>

(
m

n− 1

)

.

Niech teraz n > p, czyli n− 1 ≥ p. Wówczas

m− n+ 1
n

=
m+ 1
n
− 1 =

2p+ 1
n
− 1 ≤

2(n− 1) + 1
n

− 1 =
2n− 1
n
− 1 <

2n
n
− 1 = 1,

skąd wynika, że
(
m

n

)

<

(
m

n− 1

)

.

Podsumowując, jeśli m = 2p, to

(
m

0

)

=
(
m

m

)

<

(
m

1

)

=
(
m

m− 1

)

< . . . <

(
m

p− 1

)

=
(
m

p+ 1

)

<

(
m

p

)

.

Przypuśćmy taraz, że m jest liczbą nieparzystą: m = 2p + 1. Niech najpierw n ≤ p.
Wówczas

m− n+ 1
n

=
m+ 1
n
− 1 =

2p+ 2
n
− 1 ≥

2n+ 2
n
− 1 >

2n
n
− 1 = 1,

skąd wynika, że
m

n
>
m

n− 1
.

Niech następnie n = p+ 1. Wtedy

m− n+ 1
n

=
2p+ 1− p− 1 + 1

p+ 1
=
p+ 1
p+ 1

= 1,
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skąd wynika, że (
m

p+ 1

)

=
(
m

p

)

.

Wreszcie niech n > p+ 1, czyli p < n− 1. Wówczas

m− n+ 1
n

=
m+ 1
n
− 1 =

2p+ 2
n
− 1 <

2(n− 1) + 2
n

− 1 =
2n
n
− 1 = 1,

skąd wynika, że
(
m

n

)

<

(
m

n− 1

)

.

Podsumowując, jeśli m = 2p+ 1, to

(
m

0

)

=
(
m

m

)

<

(
m

1

)

=
(
m

m− 1

)

< . . . <

(
m

p− 1

)

=
(
m

p+ 2

)

<

(
m

p

)

=
(
m

p+ 1

)

.

Paragraf ten zakończymy wzorem na sumę współczynników dwumianowych jednego
wiersza trójkąta Pascala:

m∑

n=0

(
m

n

)

= 2n. (1.9)

Dowód. Zauważmy, że, jeśli |A| = m, to

P (A) = P0(A) ∪ P1(A) ∪ . . . ∪ Pm(A),

przy czym zbiory po prawej stronie są rozłączne oraz

Pn(A) =
(
m

n

)

dla n = 0, 1, . . . , m. Równość (1.9) wynika teraz z reguły dodawania.

8. Wzór dwumianowy Newtona

W tym paragrafie podamy dwa dowody wzoru znanego (przynajmniej częściowo) ze
szkoły. Dla dowolnych liczb rzeczywistych a i b i dowolnej liczby naturalnej n ≥ 1
zachodzi równość:

(a+ b)n =
n∑

k=0

(
n

k

)

an−kbk. (1.10)

Wzór (1.10) nazywamy zazwyczaj wzorem dwumianowym Newtona.

Dowód 1. Stosujemy indukcję ze względu na n. Dla n = 1 mamy

P =
1∑

k=0

(
1
k

)

a1−kbk =
(
1
0

)

a1b0 +
(
1
1

)

a0b1 = a+ b = (a+ b)1 = L.
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Przypuśćmy następnie, że dla pewnej liczby naturalnej n równość (1.10) jest prawdziwa:

(a+ b)n =
n∑

k=0

(
n

k

)

an−kbk.

Mamy udowodnić, że

(a+ b)n+1 =
n+1∑

k=0

(
n+ 1
k

)

an+1−kbk.

Skorzystamy w tym celu z równości (1.8):

(a+ b)n+1 = (a+ b)n · (a+ b) =

=

(
n∑

k=0

(
n

k

)

an−kbk

)

· (a+ b) =

= a ·
n∑

k=0

(
n

k

)

an−kbk + b ·
n∑

k=0

(
n

k

)

an−kbk =

=
n∑

k=0

(
n

k

)

an+1−kbk +
n∑

k=0

(
n

k

)

an−kbk+1 =

=
n∑

k=0

(
n

k

)

an+1−kbk +
n+1∑

k=1

(
n

k − 1

)

an−k+1bk =

=
n+1∑

k=0

(
n

k

)

an+1−kbk +
n+1∑

k=0

(
n

k − 1

)

an+1−kbk =

=
n∑

k=0

((n

k

)

+
(
n

k − 1

))

an−kbk =

=
n∑

k=0

(
n+ 1
k

)

an−kbk,

co kończy dowód.

Dowód 2. Przyjrzyjmy się lewej stronie:

(a+ b)n = (a+ b) · . . . · (a+ b)
︸ ︷︷ ︸

n czynników

.

Po wymnożeniu czynników w n nawiasach otrzymamy sumę iloczynów: dla każdego
wyboru a lub b z kolejnego czynnika otrzymamy jeden składnik sumy. Mamy zatem
łącznie 2n składników; każdy z nich jest postaci an−kbk dla pewnego k. Składnik an−kbk

powstaje w wyniku wyboru b z k czynników a + b; z pozostałych n − k czynników
wybieramy a. Ponieważ mamy

(
n
k

)
możliwości k wyborów b z n czynników a + b, więc
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składnik an−kbk pojawi się
(
n
k

)
razy w naszej sumie. Zatem po uproszczeniu jednomian

an−kbk wystąpi ze współczynnikiem
(
n
k

)
. Ponieważ k jest oczywiście jedną z liczb od 1

do n, więc ostatecznie otrzymujemy sumę występującą po prwej stronie wzoru (1.10),
c. b. d. o.

9. Cztery dowody jednej tożsamości

W tym paragrafie udowodnimy następującą tożsamość dla n ≥ 1:

n∑

k=0

k ·

(
n

k

)

= n · 2n−1. (1.11)

Podamy cztery dowody tej tożsamości.

Dowód 1. Skorzystamy najpierw ze wzoru (1.2). Wiemy, że:

n∑

k=0

k ·

(
n

k

)

=
n∑

k=1

k ·

(
n

k

)

=
n∑

k=1

n ·

(
n− 1
k − 1

)

= n ·
n∑

k=1

(
n− 1
k − 1

)

= n ·
n−1∑

k=0

(
n− 1
k

)

.

Teraz wystarczy skorzystać z równości (1.9):

n−1∑

k=0

(
n− 1
k

)

= 2n−1,

skąd wynika równość (1.11).

Dowód 2. Prowadzimy dowód przez indukcję ze względu na n. Niech najpierw n = 1.
Mamy wtedy

1∑

k=0

k ·

(
1
k

)

= 0 ·
(
1
0

)

+ 1 ·
(
1
1

)

= 1

oraz
1 · 21−1 = 1,

co dowodzi, że wzór (1.11) jest prawdziwy dla n = 1.

Załóżmy teraz, że równość (1.11) jest prawdziwa dla pewnej liczby n. Wykażemy, że jest
ona też prawdziwa dla liczby n+ 1. Mamy zatem udowodnić, że

n+1∑

k=0

k ·

(
n+ 1
k

)

= (n+ 1) · 2n.

W dowodzie skorzystamy ze wzoru (1.8):

(
n

k − 1

)

+
(
n

k

)

=
(
n+ 1
k

)

.
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A oto obliczenia:

n+1∑

k=0

k ·

(
n+ 1
k

)

=
n+1∑

k=1

k ·

(
n+ 1
k

)

=
n∑

k=1

k ·

(
n+ 1
k

)

+ n+ 1 =

=
n∑

k=1

k ·

(
n

k

)

+
n∑

k=1

k ·

(
n

k − 1

)

+ n+ 1 =

= n · 2n−1 +
n−1∑

k=0

(k + 1) ·
(
n

k

)

+ n+ 1 =

=
n−1∑

k=0

k ·

(
n

k

)

+
n−1∑

k=0

(
n

k

)

+ n · 2n−1 + n+ 1 =

= n · 2n−1 − n+ 2n − 1 + n · 2n−1 + n+ 1 =

= (n+ 1) · 2n.

Dowód 3. Skorzystamy z prostego wniosku ze wzoru dwumianowego Newtona. Miano-
wicie dla każdej liczby rzeczywistej x prawdziwa jest równość:

(1 + x)n =
n∑

k=0

(
n

k

)

· xk.

Po obu stronach znaku równości mamy więc dwie funkcje, których wartości w każdym
punkcie są równe. Są to wielomiany, a więc funkcje różniczkowalne. Ich pochodne są
więc też równe. Popatrzmy więc na te pochodne:

(
(1 + x)n

)′
= n · (1 + x)n−1

oraz (

1 +
n∑

k=1

(
n

k

)

· xk

)′

=
n∑

k=1

k ·

(
n

k

)

· xk−1.

Zatem mamy równość

n · (1 + x)n−1 =
n∑

k=1

k ·

(
n

k

)

· xk−1,

w której wystarczy podstawić x = 1.

Dowód 4. Jest to dowód kombinatoryczny. Zauważmy najpierw, że wzór (1.11) można
zapisać w następującej równoważnej postaci:

n∑

k=1

k

(
n

k

)

= n · 2n−1. (1.11)
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Przypuśćmy zatem, że w naszej firmie pracuje n osób. Chcemy nagrodzić pewne osoby
i jedną z nagrodzonych osób dodatkowo chcemy awansować. Na ile sposobów możemy
to uczynić?

Różne wybory tych osób będziemy zliczać dwiema metodami. Po pierwsze, możemy
najpierw zdecydować, ile osób nagradzamy, potem wybrać osoby, które nagrodzimy
i na końcu wybierzemy jedną z tych nagrodzonych osób, by ją awansować. Przypuśćmy
więc, że zdecydowaliśmy się nagrodzić k osób. Oczywiście k jest jedną z liczb od 0
(gdy nikogo nie chcemy nagrodzić) do n (gdy chcemy nagrodzić wszystkich). Osoby do
nagrody możemy teraz wybrać na

(
n
k

)
sposobów. Przy każdym takim wyborze jedną

osobę do awansu możemy wybrać na k sposobów. Dla danej liczby k mamy więc k ·
(
n
k

)

sposobów wykonania zadania. Liczba wszystkich sposobów jest zatem równa

n∑

k=0

k ·

(
n

k

)

.

Możemy też popatrzeć na to samo zadanie z drugiej strony. Najpierw wybierzmy jedną
osobę do awansu, a potem z pozostałych n− 1 osób wybierzmy niektóre do nagrody. Tę
jedną osobę do awansu możemy oczywiście wybrać na n sposobów. A pewną liczbę po-
zostałych osób do nagrody możemy wybrać na 2n−1 sposobów – bo tyle jest podzbiorów
zbioru liczącego n− 1 elementów. Łącznie mamy n · 2n−1 sposobów wykonania zadania.
To kończy dowód równości (1.11).

10. Tożsamość Cauchy’ego (tożsamość Vandermonde’a)

W tym paragrafie udowodnimy tożsamość, z której kilkakrotnie skorzystamy w dalszym
ciągu. Udowodnimy mianowicie, że dla dowolnych liczb naturalnych m, n i k zachodzi
równość

k∑

j=0

(
m

j

)(
n

k − j

)

=
(
m+ n
k

)

. (1.12)

Tożsamość (1.12) nosi nazwę tożsamości Cauchy’ego (lub tożsamości Vander-
monde’a). Pokażemy teraz trzy dowody tożsamości Cauchy’ego.

Dowód 1. Zastosujemy indukcję względem m. Pokażemy, że jeśli m jest dowolną liczbą
naturalną, to dla dowolnych liczb naturalnych n i k zachodzi równość (1.12). Spraw-
dzamy najpierw, że ta równość zachodzi dla m = 0 i dowolnych n i k, tzn.

k∑

j=0

(
0
j

)(
n

k − j

)

=
(
n

k

)

.

Zauważmy, że dla j 6= 0 mamy
(
0
j

)
= 0. Zatem suma po lewej stronie składa się tylko

z jednego składnika dla j = 0. Mamy zatem dowieść, że

(
0
0

)(
n

k − 0

)

=
(
n

k

)

,
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co jest oczywiste.
Przeprowadzimy teraz krok indukcyjny. Przypuśćmy więc, że tożsamość Cauchy’ego
zachodzi dla pewnej liczby m i wszystkich liczb naturalnych n i k:

k∑

j=0

(
m

j

)(
n

k − j

)

=
(
m+ n
k

)

.

Pokażemy, że wtedy dla dowolnych n i k zachodzi równość

k∑

j=0

(
m+ 1
j

)(
n

k − j

)

=
(
m+ n+ 1
k

)

.

A oto obliczenia:
k∑

j=0

(
m+ 1
j

)(
n

k − j

)

=
k∑

j=0

((
m

j

)

+
(
m

j − 1

))(
n

k − j

)

=

=
k∑

j=0

(
m

j

)(
n

k − j

)

+
k∑

j=0

(
m

j − 1

)(
n

k − j

)

=

=
(
m+ n
k

)

+
k−1∑

j=0

(
m

j

)(
n

k − j − 1

)

=

=
(
m+ n
k

)

+
(
m+ n
k − 1

)

=

=
(
m+ n+ 1
k

)

.

Dowód 2. Jeszcze raz wykorzystamy równość

(1 + x)n =
n∑

k=0

(
n

k

)

xk.

Popatrzmy na następujący iloczyn wielomianów:

(1 + x)m+n = (1 + x)m · (1 + x)n =





m∑

j=0

(
m

j

)

xj



 ·





n∑

j=0

(
n

j

)

xj



 .

Po lewej stronie równości mamy oczywiście wielomian stopnia m+n. Po prawej stronie
mamy iloczyn dwóch wielomianów, jeden stopnia m i drugi stopnia n, a więc jest to
także wielomian stopniam+n. Porównajmy współczynniki stojące przy xk w obu wielo-
mianach. Po lewej stronie mamy zgodnie ze wzorem dwumianowym składnik

(
m+n
k

)
xk.

Po prawej stronie, zgodnie ze wzorem na mnożenie wielomianów, mamy

k∑

j=0

(
m

j

)

xj ·

(
n

k − j

)

xk−j ,
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czyli
k∑

j=0

(
m

j

)(
n

k − j

)

xk.

Porównując te współczynniki w obu wielomianach otrzymamy dowodzoną równość.

Dowód 3. Znów kończymy dowodem kombinatorycznym. W naszej firmie pracujem+n
osób: m kobiet i n mężczyzn. Chcemy nagrodzić k osób. Oczywiście osoby do nagrody
możemy wybrać na

(
m+n
k

)
sposobów. Tę liczbę sposobów możemy jednak otrzymać

w wyniku innego rozumowania. Najpierw zdecydujmy, ile kobiet powinno dostać na-
grodę. Niech j oznacza liczbę nagrodzonych kobiet. Oczywiście j jest jedną z liczb od 0
(gdy nie nagrodzimy żadnej kobiety) do k (gdy nagrodzimy same kobiety). Dla każdej
wartości j kobietom możemy przyznać nagrody na

(
m
j

)
sposobów. Gdy rozdzielimy już

nagrody między kobiety, zostanie nam k − j „wolnych” nagród do rozdziału między
mężczyzn. Tych mężczyzn do nagrody oczywiście możemy wybrać na

(
n
k−j

)
sposobów.

Łącznie, dla każdej wartości k mamy
(
m
j

)(
n
k−j

)
sposobów przydziału k nagród. Teraz

wystarczy zsumować otrzymane liczby sposobów ze względu na j, by otrzymać wzór
(1.12).
Interesującym wnioskiem z tożsamości Cauchy’ego jest równość

n∑

j=0

(
n

j

)2

=
(
2n
n

)

, (1.13)

którą otrzymujemy przyjmując m = n = k. Mamy wtedy
(
2n
n

)

=
n∑

j=0

(
n

j

)(
n

n− j

)

=
n∑

j=0

(
n

j

)(
n

j

)

=
n∑

j=0

(
n

j

)2

.

11. Wybory ze zbiorów uporządkowanych
W dowodach kombinatorycznych, które widzieliśmy do tej pory, wybieraliśmy na po-
czątku dowolny zbiór skończony i nie była istotna żadna jego dodatkowa struktura.
W tym paragrafie pokażemy kilka dowodów kombinatorycznych, w których istotne bę-
dzie to, że wybierzemy zbiór uporządkowany. Dla ustalenia uwagi będzie to zbiór [n] dla
pewnej liczby naturalnej n z naturalnym porządkiem.
Udowodnimy najpierw, że dla dowolnych liczb naturalnych m i n zachodzi równość

m∑

k=0

(
k + n
n

)

=
(
m+ n+ 1
n+ 1

)

. (1.14)

Dowód. Zauważmy, że

Pn+1(m+ n+ 1) =
m⋃

k=0

{
A : |A| = n+ 1 oraz max(A) = k + n+ 1

}
=

=
m⋃

k=0

{
A : k + n+ 1 ∈ A oraz |A ∩ [k + n]| = n

}
.
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Zbiory będące składnikami sumy po prawej stronie oczywiście są rozłączne oraz

∣
∣
{
A : k + n+ 1 ∈ A oraz |A ∩ [k + n]| = n

}∣
∣ =

(
k + n
k

)

.

Równość (1.14) wynika zatem z reguły dodawania.

Ten dowód można opisać słownie w następujący sposób. Mamy wybrać n+1 elementów
ze zbioru [m + n + 1]. Najpierw wybieramy największy element naszego zbioru. Niech
będzie nim liczba l. Następnie ze zbioru [l − 1] wybieramy pozostałe n elementów.
Zauważmy, że n + 1 ≤ l ≤ m + n + 1. Liczbę l możemy zatem zapisać w postaci
l = k + n + 1, gdzie 0 ≤ k ≤ m. A więc: najpiew wybieramy liczbę k + n + 1, gdzie
k ∈ {0, . . . , m}, a następnie ze zbioru [k + n] wybieramy n elementów.

Podstawiając m − n w miejsce m i zmieniając granice sumowania we wzorze (1.14)
otrzymujemy jego postać równoważną:

m∑

k=n

(
k

n

)

=
(
m+ 1
n+ 1

)

. (1.15)

Popatrzmy na kilka przykładów tego wzoru:

n∑

k=1

(
k

1

)

=
(
n+ 1
2

)

. (1.16)

n∑

k=1

(
k

2

)

=
(
n+ 1
3

)

. (1.17)

n∑

k=1

(
k

3

)

=
(
n+ 1
4

)

. (1.18)

Ze wzorów tych skorzystamy w następnym paragrafie.

Udowodnimy teraz następujący wzór:

n∑

k=0

k(n− k) =
(
n+ 1
3

)

. (1.19)

Mianowicie

P3(n+ 1) =
n⋃

k=0

{
{a, b, c} : a ∈ [k], b = k + 1, c ∈ [n+ 1] \ [k + 1]

}
.

Wystarczy teraz zauważyć, że zbiory występujące w sumie po prawej stronie są rozłączne
oraz

∣
∣
{
{a, b, c} : a ∈ [k], b = k + 1, c ∈ [n+ 1] \ [k + 1]

}∣
∣ = k(n− k).

Inaczej mówiąc, trzy elementy a, b i c zbioru [n+ 1] wybieramy w następujący sposób:
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• najpierw ustalamy liczbę k = 0, . . . , n,
• potem wybieramy a spośród k najmniejszych liczb zbioru [n+1] (tzn. spośród liczb
1, . . . , k),
• następnie wybieramy b = k + 1,
• wreszcie wybieramy c spośród n − k największych elementów zbioru [n + 1] (tzn.
spośród liczb k + 2, . . . , n+ 1).

Paragraf ten zakończymy dowodem następującej tożsamości:

n∑

k=0

(
2n− k
n

)

· 2k = 4n. (1.20)

Rozpatrujemy zbiór P (2n+ 1). Możemy przedstawić go w postaci sumy

P (2n+ 1) = P+(2n+ 1) ∪ P−(2n+ 1),

gdzie

P+(2n+1) = {A ∈ P (2n+1) : |A| ≥ n+1}, P−(2n+1) = {A ∈ P (2n+1) : |A| ≤ n}.

Zauważmy, że dla dowolnego zbioru A ∈ P (2n+ 1)

A ∈ P+(2n+ 1) ⇔ [2n+ 1] \A ∈ P−(2n+ 1).

Stąd wynika, że

|P+(2n+ 1)| = |P−(2n+ 1)| =
1
2
· |P (2n+ 1)| =

1
2
· 22n+1 = 22n = 4n.

Zbiory A należące do P+(2n+ 1) mają co najmniej n+ 1 elementów. Będzie nas inte-
resować położenie elementu (n+ 1)-go w zbiorze A (licząc od najmniejszego elementu,
w kolejności rosnącej). Zauważmy, że

P+(2n+ 1) =
n⋃

k=0

{
A ∈ P+(2n+ 1) : 2n− k + 1 ∈ A oraz |A ∩ [2n− k]| = n

}
.

Inaczej mówiąc: mamy wybrać co najmniej n+1 elementów ze zbioru [2n+1]. Najmniej-
sze n elementów wybieramy ze zbioru [2n − k], potem wybieramy element 2n − k + 1
i wreszcie dopełniamy dowolnymi elementami wybranymi ze zbioru [2n+1]\ [2n−k+1],
czyli spośród k największych elementów zbioru [2n+ 1]. Zatem oczywiście

∣
∣
{
A ∈ P+(2n+ 1) : 2n− k + 1 ∈ A oraz |A ∩ [2n− k]| = n

}∣
∣ =

(
2n− k
n

)

· 2k.

Ponadto zbiory występujące w sumie po prawej stronie są rozłączne. Do zakończenia
dowodu wystarczy sprawdzić, jaki jest zakres zmienności parametru k. Otóż oczywiście
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2n−k ≤ 2n, skąd wynika, że k ≥ 0. Ponadto 2n−k ≥ n, skąd wynika, że k ≤ n. Zatem
k ∈ {0, . . . , n}. To kończy dowód.

12. Sumy potęg liczb naturalnych

Przyjmijmy oznaczenie

Sk(n) =
n∑

j=1

jk = 1k + . . .+ nk,

gdzie n, k ≥ 1. W tym paragrafie wyprowadzimy wzory na Sk(n) dla k = 0, 1, 2, 3.
Pokażemy mianowicie, że

S0(n) = n,

S1(n) =
(
n+ 1
2

)

=
n(n+ 1)
2
,

S2(n) =
1
4
·

(
2n+ 2
3

)

=
n(n+ 1)(2n+ 1)

6
,

S3(n) =
(
n+ 1
2

)2

= S1(n)2 =
n2(n+ 1)2

4
.

Równość S0(n) = n jest oczywista. W poprzednim paragrafie udowodniliśmy równość
(1.16):

n∑

k=1

(
k

1

)

=
(
n+ 1
2

)

.

Mamy zatem
n∑

k=1

k =
(
n+ 1
2

)

=
n(n+ 1)
2
. (1.21)

Liczby Tn = S1(n) nazywamy liczbami trójkątnymi. Tożsamość (1.21) wraz z nastę-
pującym rysunkiem tłumaczy tę nazwę:

T1 T2 T3 T4 T5

Inny dowód tożsamości (1.21) pokażemy na przykładzie. Dwie „piramidki” mające po
T5 kwdratów ustawiamy obok siebie tak jak na rysunku:

Wykłady z kombinatoryki



24 Wykład 1

Po połączeniu ich otrzymujemy prostokąt o wymiarach 6× 5:

Ogólnie 2Tn = (n+ 1) · n, skąd dostajemy

S1(n) = Tn =
n(n+ 1)
2
.

Następnie udowodnimy, że:

n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
. (1.22)

Skorzystamy tym razem z równości (1.17):

n∑

k=1

(
k

2

)

=
(
n+ 1
3

)

.

Mamy bowiem
(
n+ 1
3

)

=
n∑

k=1

(
k

2

)

=
n∑

k=1

k(k − 1)
2
,

skąd dostajemy

2 ·
(n+ 1)n(n− 1)

6
=
n∑

k=1

(k2 − k),

czyli

S2(n) =
n∑

k=1

k2 =
(n+ 1)n(n− 1)

3
+
n∑

k=1

k =

=
n(n+ 1)(n− 1)

3
+
n(n+ 1)
2

=
n(n+ 1)
6

·
(
2(n− 1) + 3

)
=

=
n(n+ 1)(2n+ 1)

6
.

Pokażemy teraz dowód kombinatoryczny równości

n∑

k=1

k2 =
1
4
·

(
2n+ 2
3

)

. (1.23)
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Z niej dostajemy natychmiast

n∑

k=1

k2 =
1
4
·

(
2n+ 2
3

)

=
(2n+ 2)(2n+ 1)(2n)

4 · 6
=
n(n+ 1)(2n+ 1)

6
.

Definiujemy dwa zbiory:

A = {(i, j, k) : 1 ≤ i, j ≤ k ≤ n},

oraz
B = {(i, j, k) : 1 ≤ i ≤ j ≤ k ≤ 2n}.

Pokażemy najpierw, że |A| = S2(n). Mianowicie

A =
n⋃

k=1

{(i, j, k) : i, j ∈ [k]}

oraz zbiory
Ak = {(i, j, k) : i, j ∈ [k]}

dla różnych k są rozłączne. Zauważmy ponadto, że |Ak| = k2; z reguły dodawania wynika
zatem, że |A| = S2(n). Wykażemy teraz, że

|B| =
(
2n+ 2
3

)

.

Zauważmy, że zbiór B jest zbiorem wszystkich niemalejących ciągów długości 3 o wy-
razach ze zbioru [2n]. Z rozważań dotyczących kombinacji z powtórzeniami wynika,
że takich ciągów jest tyle, ile 3-elementowych kombinacji z powtórzeniami ze zbioru
(2n)-elementowego, czyli właśnie

(
2n+2
2

)
.

Definiujemy teraz funkcję f : B → A w następujący sposób:

f(2i, 2j, 2k) = (i, j, k),

f(2i, 2j, 2k− 1) = (j + 1, i, k),

f(2i, 2j − 1, 2k) = (j, i, k),

f(2i, 2j − 1, 2k − 1) = (j, i, k),

f(2i− 1, 2j, 2k) = (i, j, k),

f(2i− 1, 2j, 2k− 1) = (j + 1, i, k),

f(2i− 1, 2j − 1, 2k) = (i, j, k),

f(2i− 1, 2j − 1, 2k − 1) = (i, j, k).

Sprawdzenie, że f(i, j, k) ∈ A dla (i, j, k) ∈ B pozostawiamy jako ćwiczenie. Na przykład

f(1, 4, 6) = (1, 2, 3).
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Można też łatwo pokazać, że jeśli i ≤ j, to

f−1
(
(i, j, k)

)
=
{
(2i, 2j, 2k), (2i− 1, 2j, 2k), (2i− 1, 2j − 1, 2k), (2i− 1, 2j − 1, 2k − 1)

}

oraz jeśli i > j, to

f−1
(
(i, j, k)

)
=
{
(2j, 2i−1, 2k−1), (2j, 2i−1, 2k), (2j, 2i−2, 2k−1), (2j−1, 2i−2, 2k−1)

}
.

Na przykład
f−1

(
(1, 2, 3)

)
=
{
(1, 3, 5), (1, 3, 6), (1, 4, 6), (2, 4, 6)

}
.

Podobnie
f−1

(
(2, 1, 3)

)
=
{
(1, 2, 5), (2, 2, 5), (2, 3, 5), (2, 3, 6)

}
.

Z tej własności funkcji f wynika, że 4 · |A| = |B|, co kończy dowód tożsamości (1.23).

Na zakończenie udowodnimy tożsamość

n∑

k=1

k3 =
(
n+ 1
2

)2

=
n2(n+ 1)2

4
. (1.24)

Kwadrat o boku długości Tn podzielmy na T 2n kwadratów jednostkowych, a następnie
na n części tak jak na rysunku (dla n = 4):

1

2

3

4

1 2 3 4

Długości odcinków, na jakie podzieliliśmy lewy i dolny bok kwadratu wynoszą kolejno:
1, 2, . . . , n. Niech Gk oznacza liczbę kwadratów jednostkowych zawartych w k-tej części.
Wtedy nietrudno zauważyć, że

Gk = T 2k − T
2
k−1 =

k2(k + 1)2

4
−
k2(k − 1)2

4
=
k2

4
·
(
(k+1)2 − (k− 1)2

)
=
k2

4
· 4k = k3.

Stąd wynika, że

S3(n) =
n∑

k=1

Gk = T 2n =
n2(n+ 1)2

4
,

co kończy dowód tożsamości (1.24).
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Naszkicujemy jeszcze jeden dowód kombinatoryczny tożsamości (1.24). Definiujemy dwa
zbiory

A =
{
(i, j, k, l) : 0 ≤ i, j, k < l ≤ n

}

oraz
B =

{(
(i, j), (k, l)

)
: 0 ≤ i < j ≤ n, 0 ≤ k < l ≤ n

}
.

Pozostawiamy jako ćwiczenie wykazanie, że

|A| = S3(n) oraz |B| =
(
n+ 1
2

)2

.

Następnie definiujemy funkcję f : A→ B wzorem

f(i, j, k, l) =







(
(i, j), (k, l)

)
jeśli i < j,

(
(k, l), (j, i)

)
jeśli i > j,

(
(j, l), (k, l)

)
jeśli i = j.

Na przykład
f(1, 2, 3, 4) =

(
(1, 2), (3, 4)

)
,

f(2, 1, 3, 4) =
(
(3, 4), (1, 2)

)
,

f(1, 1, 3, 4) =
(
(1, 4), (3, 4)

)
.

Pozostawiamy również jako ćwiczenie sprawdzenie, że funkcja f przekształca zbiór A
wzajemnie jednoznacznie na zbiór B.

13. Sumy naprzemienne współczynników dwumianowych

Udowodnimy teraz, że jeśli n ≥ 1, to

n∑

k=0

(−1)k ·
(
n

k

)

= 0. (1.25)

Dowód. Zdefiniujmy najpierw dwa zbiory

P = {n ∈ N : 2 | n},

N = {n ∈ N : 2 ∤ n}.

Tożsamość (1.25) możemy teraz zapisać w postaci

∑

k∈[n]∩P

(
n

k

)

=
∑

k∈[n]∩N

(
n

k

)

,

czyli ∣
∣
∣

⋃

k∈[n]∩P

Pk(n)
∣
∣
∣ =

∣
∣
∣

⋃

k∈[n]∩N

Pk(n)
∣
∣
∣.
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Nietrudno zauważyć, że funkcja

f : P (n)→ P (n)

określona wzorem

f(A) = A . {n} =
{
A \ {n} jeśli n ∈ A,
A ∪ {n} jeśli n 6∈ A

dla A ∈ P (n) jest funkcją przekształcającą wzajemnie jednoznacznie zbiór
⋃

k∈[n]∩P

Pk(n)

na zbiór
⋃

k∈[n]∩N

Pk(n) i na odwrót (zauważmy bowiem, że f−1 = f).

Oczywiście, jeśli n = 0, to

0∑

k=0

(−1)k ·
(
0
k

)

= (−1)0 ·
(
0
0

)

= 1. (1.26)

Na zakończenie udowodnimy, że jeśli n ≥ 1 i m ≥ 0, to

m∑

k=0

(−1)k ·
(
n

k

)

= (−1)m ·
(
n− 1
m

)

. (1.27)

Rozpatrujemy tę samą funkcję f : P (n) → P (n) określoną wzorem f(A) = A . {n}

dla A ∈ P (n). Wiemy, że funkcja f jest różnowartościowa. Będziemy rozpatrywać teraz
dwa przypadki.

Przypadek 1. m = 2p. Tożsamość (1.27) przyjmuje postać

p
∑

k=0

(
n

2k

)

−

p−1
∑

k=0

(
n

2k + 1

)

=
(
n− 1
2p

)

,

czyli
p
∑

k=0

(
n

2k

)

−

(
n− 1
2p

)

=
p−1
∑

k=0

(
n

2k + 1

)

. (1.27a)

Zdefiniujmy trzy zbiory:

P =
p
⋃

k=0

P2k(n),

N =
p−1
⋃

k=0

P2k+1(n),

R = P2p(n− 1) = {A ∈ P2p(n) : n 6∈ A}.
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Zauważmy teraz, że f(P \R) = N , co dowodzi tożsamości (1.27a).
Przypadek 2. m = 2p+ 1. Tożsamość (1.27) przyjmuje teraz postać

p
∑

k=0

(
n

2k

)

−

p
∑

k=0

(
n

2k + 1

)

= −
(
n− 1
2p+ 1

)

,

czyli
p
∑

k=0

(
n

2k

)

+
(
n− 1
2p+ 1

)

=
p−1
∑

k=0

(
n

2k + 1

)

. (1.27b)

Zdefiniujmy trzy zbiory:

P =
p
⋃

k=0

P2k(n),

N =
p−1
⋃

k=0

P2k+1(n),

R = P2p+1(n− 1) = {A ∈ P2p+1(n) : n 6∈ A}.

Zauważmy teraz, że f(P ) = N \R, co dowodzi tożsamości (1.27b). W ten sposób dowód
tożsamości (1.27) został zakończony.

14. Zliczanie dróg

Mamy dany prostokąt o wymiarachm×n podzielony na mn kwadratów jednostkowych.
Chcemy obliczyć liczbę dróg prowadzących z punktu A do punktu B, spełniających
założenie: w czasie przechodzenia drogi wolno poruszać się tylko w prawo i do góry.

A

B

m

n

Przykład takiej drogi widzimy na następnym rysunku:

A

B

m

n
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Każdą taką drogę możemy zakodować za pomocą m+ n znaków: m poziomych i n pio-
nowych kresek. Kolejność tych kresek odpowiada przechodzonym odcinkom poziomym
i pionowym od punktu A do punktu B. Powyższą drogę możemy zatem zakodować za
pomocą ciągu

− | − − | | | − | − − | − −

Oczywiste jest też, że każdy taki ciąg koduje dokładnie jedną drogę. Ciąg skład się
z m + n znaków. Jest on wyznaczony jednoznacznie po wskazaniu, na których miej-
scach znajdują się kreski poziome (równoważnie: kreski pionowe). Zatem istnieje

(
m+n
m

)

(równoważnie:
(
m+n
n

)
) takich ciągów, a więc i tyle rozważanych dróg. Mamy zatem

liczba dróg z A do B =
(
m+ n
m

)

=
(
m+ n
n

)

. (1.28)

Tę interpretację kombinatoryczną współczynnika dwumianowego jako liczby dróg można
wykorzystać do dowodu tożsamości kombinatorycznych. Udowodnimy najpierw tożsa-
mość (1.14):

m∑

k=0

(
k + n
n

)

=
(
m+ n+ 1
n+ 1

)

. (1.14)

Weźmy prostokąt o wymiarach m × (n+ 1). Każda droga prowadząca z A do B w do-
kładnie jednym miejscu przechodzi z przedostatniej na ostatnią linię poziomą (i dalej
już poziomo zmierza do B). Niech punkt C będzie ostatnim punktem naszej drogi znaj-
dującym się na przedostatniej linii:

A

B

C

m

n + 1

k

n

Niech odległość punktu C od lewego skraju prostokąta wynosi k kratek. Wtedy istnieje
dokładnie

(
k+n
n

)
dróg prowadzących z A do C. Ponieważ każda droga z A do B prowadzi

przez jeden taki punkt C, z którego następnie przechodzi do ostatniej poziomej linii
i dalej poziomo do B, więc łączna liczba dróg jest równa sumie

m∑

k=0

(
k + n
n

)

.
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Z drugiej strony, ze wzoru (1.28) wynika, że ta liczba dróg jest równa
(
m+n+1
n+1

)
, co kończy

dowód.

Udowodnimy teraz tożsamość (1.13).

n∑

k=0

(
n

k

)2

=
(
2n
n

)

, (1.13)

Weźmy kwadrat o boku długości n kratek. Każda droga z A do B przechodzi przez
dokładnie jeden zaznaczony punkt leżący na przekątnej kwadratu.

A

B

Przypuśćmy, że nasza droga przechodzi przez punkt C położony w odległości k kratek
od lewego boku kwadratu. Wtedy ten punkt leży także w odległości k kratek od boku
górnego.

A

B

C

k

k

n − k

n − k

Każdą drogę z A do B przechodzącą przez punkt C dzielimy na dwie drogi: z A do C
i z C do B. Droga z A do C znajduje się wewnątrz prostokąta o wymiarach k×(n−k); jest
zatem

(
n
k

)
takich dróg. Droga z C do B znajduje się wewnątrz prostokąta o wymiarach

(n − k) × k; takich dróg jest też
(
n
k

)
. Z reguły mnożenia wynika, że istnieje

(
n
k

)2
dróg

z A do B przechodzących przez punkt C. Sumując te liczby dróg dla k = 0, 1, . . . , n,
otrzymujemy tożsamość (1.13).

15. Zliczanie funkcji monotonicznych

W tym paragrafie zajmiemy się zliczaniem funkcji monotonicznych f : [m] → [n]. Naj-
pierw rozpatrujemy funkcje rosnące. Zauważmy, że funkcję rosnącą wyznacza jej zbiór
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wartości. Stąd wynika, że liczba funkcji rosnących f : [m]→ [n] jest równa
(
n
m

)
. Oczywi-

ście takie funkcje istnieją, o ile 1 ≤ m ≤ n. Nietrudno zauważyć, że funkcji malejących
jest tyle samo.

Następnie zajmiemy się funkcjami niemalejącymi. Udowodnimy następujące twierdze-
nie.

Twierdzenie 1.2. Niech m,n ≥ 1. Liczba niemalejących funkcji f : [m] → [n] jest
równa

(
m+n−1
m

)
.

Dowód 1. Dla dowolnej funkcji f : [m]→ [n] definiujemy funkcję g : [m]→ [m+n− 1]
wzorem

g(k) = f(k) + k − 1

dla k = 1, . . .m. Mamy zatem

g(1) = f(1),

g(2) = f(2) + 1,

g(3) = f(3) + 2,

. . . . . .

g(m− 1) = f(m− 1) +m− 2,

g(m) = f(m) +m− 1.

Ponieważ 1 ≤ f(k) ≤ n dla k ∈ [m], więc

1 ≤ f(k) ≤ f(k) + k − 1 = g(k) ≤ f(k) +m− 1 ≤ m+ n− 1.

Zatem rzeczywiście g : [m] → [n]. Teraz pokazujemy, że funkcja f jest niemalejąca
wtedy i tylko wtedy, gdy funkcja g jest rosnąca. Przypuśćmy zatem, że funkcja f jest
niemalejąca oraz 1 ≤ k < l ≤ m. Wtedy f(k) ≤ f(l), skąd wynika, że

g(k) = f(k) + k − 1 ≤ f(l) + k − 1 < f(l) + l − 1 = g(l).

Na odwrót, przypuśćmy, że funkcja g jest rosnąca oraz 1 ≤ k ≤ m. Wtedy g(k) <
g(k + 1), czyli

f(k) + k − 1 < f(k + 1) + (k + 1)− 1.

Zatem
f(k) + k − 1 < f(k + 1) + k,

czyli
f(k) < f(k + 1) + 1.

Stąd dostajemy f(k) ≤ f(k+ 1). Z dowolności k wynika, że funkcja f jest niemalejąca.
Wreszcie pokazujemy, że każda funkcja rosnąca g : [m] → [m + n − 1] powstaje w ten
sposób z pewnej funkcji f . Otóż funkcję f definiujemy wzorem

f(k) = g(k)− k + 1
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dla k = 1, . . . , m. Szczegóły dowodu, że f : [m] → [n] oraz że f jest niemalejąca,
pozostawiamy jako ćwiczenie. Do zakończenia dowodu wystarczy zauważyć, że istnieje
(
m+n−1
m

)
funkcji rosnących z [m] do [m+ n− 1].

Dowód 2. Funkcja niemalejąca f : [m] → [n] jest po prostu ciągiem niemalejącym
długości m o wyrazach ze zbioru [n]. Przypominamy, że za pomocą takich ciągów de-
finiowaliśmy kombinacje z powtórzeniami. Zatem liczba tych ciągów jest równa liczbie
m-elementowych kombinacji z powtórzeniami z n-elementowego zbioru [n], a więc jest
równa

(
m+n−1
n−1

)
, czyli

(
m+n−1
m

)
. Każdą taką kombinację kodowaliśmy za pomocą ciągu

kropek i kresek. Ze względu na znaczenie tego kodowania przypomnijmy je w kontekście
kodowania funkcji niemalejących.

Każdą funkcję niemalejącą f : [m]→ [n] kodujemy za pomocą ciągu m+n− 1 symboli:
m kropek i n − 1 pionowych kresek. Popatrzmy na przykład. Niech m = 8 i n = 7.
Weźmy funkcję f : [8]→ [7] zdefiniowaną następująco:

f(1) = 1,

f(2) = 2,

f(3) = 2,

f(4) = 5,

f(5) = 6,

f(6) = 6,

f(7) = 7,

f(8) = 7.

Kodem tej funkcji będzie ciąg ośmiu kropek i sześciu kresek:

• | • • | | | • | • • | • •

Pionowe kreski dzielą ciąg na 7 części odpowiadających możliwym wartościom funkcji
f . Kolejne kropki odpowiadają argumentom. Jeśli k-ta kropka leży w l-tej części, to
f(k) = l. Zatem pierwsza kropka leży w pierwszej części, druga i trzecia w drugiej
części, czwarta w piątej części, piąta i szósta w szóstej części i wreszcie siódma i ósma
w siódmej części. Ogólnie mamy m kropek odpowiadających argumentom i n−1 kresek
dzielących ciąg na n części odpowiadających możliwym wartościom. Teraz wystarczy
zauważyć, że każdy taki ciąg koduje dokładnie jedną funkcję niemalejącą i na odwrót,
każda funkcja niemalejąca ma dokładnie jeden kod. Wreszcie zauważmy, że kod jest
całkowicie wyznaczony, gdy wskażemy, na których miejscach znajdują się kropki; jest
zatem

(
m+n−1
m

)
takich kodów i tyle jest funkcji niemalejących f : [m]→ [n].

Dowód 3.Wykorzystamy prostokąt o wymiarach m× (n−1) do sporządzenia wykresu
funkcji. Na dolnym boku prostokąta numerujemy kolejne kratki liczbami od 1 do m.
Na lewym boku numerujemy linie tworzące kratki liczbami od 1 do n. Następnie zazna-
czamy pogrubioną liniąm poziomych odcinków jednostkowych. Jeśli f(k) = l, to w k-tej
kolumnie zaznaczamy odcinek znajdujący się na l-tej linii poziomej. Zwracamy uwagę
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na to, że powstaje wykres funkcji, w którym wartości nie są punktami, ale odcinkami.
Oto przykład takiego wykresu dla m = 8 i n = 7 i funkcji f określonej w dowodzie 2:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Poziome odcinki łączymy następnie odcinkami pionowymi, otrzymując tym samym
drogę z punktu A do punktu B, spełniającą warunek sformułowany w poprzednim
paragrafie. Oto droga utworzona z wykresu naszej funkcji f :

A

B

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Zauważmy teraz, że każda funkcja niemalejąca definiuje w ten sposób dokładnie jedną
drogę z A do B i na odwrót: każda droga z A do B spełniająca warunek z poprzed-
niego paragrafu definiuje dokładnie jedną funkcję niemalejącą. Stąd wynika, że istnieje
(
m+n−1
m

)
takich funkcji. To kończy dowód twierdzenia.

16. Liczby Catalana

W tym paragrafie rozwiążemy następujące zadanie:

Zadanie. Oblicz, ile jest funkcji niemalejących f : [n]→ [n] spełniających warunek

f(k) ≤ k dla k = 1, . . . , n. (∗)

W rozwiązaniu tego zadania wykorzystamy kodowanie funkcji niemalejących za pomocą
dróg. Niech zatem dany będzie prostokąt wymiaru n× (n− 1). Na dolnym boku nume-
rujemy kratki liczbami od 1 do n, na lewym boku numerujemy linie od 1 do n. Wiemy
już, że każda funkcja niemalejąca f : [n]→ [n] definiuje dokładnie jedną drogę z punktu
A do punktu B. Dodatkowy warunek (∗) nałożony na funkcje f oznacza, że droga od-
powiadająca funkcji f nie może przekroczyć przerywanej linii zaznaczonej na rysunku
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(gdzie przyjęto n = 8):

A

B

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Interesujące nas drogi z A do B nieprzekraczające przerywanej linii zliczymy inaczej: od
liczby

(
2n−1
n−1

)
wszystkich dróg z A do B odejmiemy liczbę dróg przekraczających tę linię.

Narysujmy więc nową przerywaną linię, położoną o jedną kratkę wyżej. Droga przekra-
czająca dolną linię przerywaną musi mieć punkt wspólny z wyższą linią przerywaną.
Niech C będzie pierwszym punktem na drodze z A do B położonym na tej wyższej linii
przerywanej.

A

B

C

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Część drogi od punktu A do punktu C odbijamy teraz symetrycznie względem wyższej
linii przerywanej. Otrzymujemy drogę z punktu A′ do punktu B.

A

A′

B

C

n

n−1

n+1

n−2

Odwrotnie, każda droga z punktu A′ do punktu B musi przeciąć tę wyższą linię prze-
rywaną. Niech C będzie pierwszym punktem wspólnym drogi i tej linii przerywanej.
Odbijając symetrycznie część A′C tej drogi względem linii przerywanej, otrzymujemy
drogę z A do B przekraczającą dolną linię przerywaną. Zatem interesująca nas liczba
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dróg z A do B przekraczających dolną linię przerywaną jest równa liczbie dróg z A′ do
B, czyli

(
2n−1
n−2

)
.

Liczba funkcji f : [n]→ [n] spełniających warunek (∗) jest zatem równa
(
2n− 1
n− 1

)

−

(
2n− 1
n− 2

)

.

Skorzystamy teraz ze wzoru (1.5):

n ·

(
m

n

)

= (m− n+ 1) ·
(
m

n− 1

)

. (1.5)

Mamy wówczas

(n− 1) ·
(
2n− 1
n− 1

)

=
(
2n− 1− (n− 1) + 1

)
·

(
2n− 1
n− 2

)

= (n+ 1) ·
(
2n− 1
n− 2

)

,

czyli
(
2n− 1
n− 2

)

=
n− 1
n+ 1

·

(
2n− 1
n− 1

)

.

Stąd otrzymujemy
(
2n− 1
n− 1

)

−

(
2n− 1
n− 2

)

=
(
2n− 1
n− 1

)

−
n− 1
n+ 1

·

(
2n− 1
n− 1

)

=

=
(

1−
n− 1
n+ 1

)

·

(
2n− 1
n− 1

)

=

=
2
n+ 1

·

(
2n− 1
n− 1

)

=
1
n+ 1

·
2n
n
·

(
2n− 1
n− 1

)

=

=
1
n+ 1

·

(
2n
n

)

.

Liczby

Cn =
1
n+ 1

·

(
2n
n

)

nazywamy liczbami Catalana. Oto kilka początkowych liczb Catalana:

C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429.

17. Podział zbioru na bloki równoliczne

Następne zadanie kombinatoryczne, którym będziemy się zajmować, polega na zliczaniu
podziałów zbioru na równe części. Przypuśćmy, że dany jest mn-elementowy zbiór A.
Chcemy wiedzieć, iloma sposobami możemy podzielić go na m zbiorów n-elementowych:

A = A1 ∪ . . . ∪ Am, |A1| = . . . = |Am| = n.
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Każdy taki podział możemy łatwo otrzymać z pewnej permutacji całego zbioru A. Mia-
nowicie jako pierwszy zbiór podziału (czyli A1) bierzemy zbiór składający się z elemen-
tów stojących na pierwszych n miejscach, jako drugi zbiór (czyli A2) bierzemy zbiór
elementów stojących na następnych n miejscach itd. Wreszcie zbiór Am składa się z ele-
mentów stojących na ostatnich n miejscach. Oczywiście ten sam podział otrzymamy na
ogół z różnych permutacji całego zbioru A.

Liczbę podziałów wyznaczymy dzieląc liczbę wszystkich permutacji przez liczbę permu-
tacji dających ten sam podział zbioru A. Wszystkich permutacji jest oczywiście (mn)!.
Ten sam podział otrzymamy z permutacji różniących się porządkiem elementów w każ-
dym bloku n-elementowym oraz różniących się porządkiem tych bloków. Każdy blok
n-elementowy możemy uporządkować na n! sposobów. Takich bloków jest m, więc łącz-
nie mamy (n!)m sposobów uporządkowania elementów wewnątrz każdego bloku. Wresz-
cie mamy m! sposobów uporządkowania tych m bloków. To ostatecznie daje liczbę
(n!)m ·m! permutacji wyznaczających ten sam podział zbioru A. Zatem liczba podzia-
łów wynosi

(mn)!
(n!)m ·m!

.

Wyprowadzimy stąd następujący wniosek. Ponieważ liczba podziałów zbioru jest liczbą
całkowitą, więc

(n!)m ·m! | (mn)!

Otrzymany wniosek pozwoli nam łatwo rozwiązać następujące zadanie teorioliczbowe
(XLIII Olimpiada Matematyczna, zawody III stopnia, zadanie 6).

Zadanie. Udowodnij, że dla dowolnej liczby naturalnej k

(k!)k
2+k+1 | (k3)!

Rozwiązanie. Najpierw podstawimy m = n = k i otrzymamy

(k!)k · k! | (k2)!

czyli
(k!)k+1 | (k2)!

Następnie podstawimy m = k2 oraz n = k i otrzymamy

(k!)k
2

· (k2)! | (k3)!

Łącząc ze sobą ostatnie dwie zależności łatwo otrzymamy

(k!)k
2

· (k!)k+1 | (k3)!

czyli ostatecznie
(k!)k

2+k+1 | (k3)!
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18. Operator różnicowy

Niech f : R→ R. Definiujemy funkcję ∆f : R→ R wzorem

(∆f)(x) = f(x+ 1)− f(x).

Operator ∆ tworzący z funkcji f funkcję ∆f nazywamy operatorem różnicowym.
Ten operator różnicowy można iterować. Definiujemy mianowicie ciąg funkcji ∆kf dla
k = 1, 2, . . . wzorami:

∆1f = ∆f,

∆k+1f = ∆(∆kf),

Czasami definiujemy ponadto ∆0f = f . Popatrzmy teraz na kilka przykładów.

(∆1f)(x) = (∆f)(x) = f(x+ 1)− f(x),

(∆2f)(x) = (∆(∆1f))(x) = (∆f)(x+ 1)− (∆f)(x) =

= (f(x+ 2)− f(x+ 1))− (f(x+ 1)− f(x)) =

= f(x+ 2)− 2f(x+ 1) + f(x),

(∆3f)(x) = (∆(∆2f))(x) = (∆2f)(x+ 1)− (∆2f)(x) =

= (f(x+ 3)− 2f(x+ 2) + f(x+ 1))− (f(x+ 2)− 2f(x+ 1) + f(x)) =

= f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x),

(∆4f)(x) = (∆(∆3f))(x) = (∆3f)(x+ 1)− (∆3f)(x) =

= (f(x+ 4)− 3f(x+ 3) + 3f(x+ 2)− f(x+ 1))−

− (f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x)) =

= f(x+ 4)− 4f(x+ 3) + 6f(x+ 2)− 4f(x+ 1) + f(x)

i tak dalej. Udowodnimy teraz twierdzenie ogólne.

Twierdzenie 1.3. Niech f : R → R. Wtedy dla dowolnego k ≥ 1 i dowolnego x ∈ R
mamy

(∆kf)(x) =
k∑

j=0

(−1)k−j
(
k

j

)

f(x+ j). (1.29)

Dowód. Stosujemy indukcję względem k. Dla k = 1 mamy

L = (∆1f)(x) = f(x+ 1)− f(x)

oraz

P =
∑

j=0

1(−1)1−j
(
1
j

)

f(x+ j) =

= (−1)1−0
(
1
0

)

f(x+ 0) + (−1)1−1
(
1
1

)

f(x+ 1) =

= (−1) · f(x) + f(x+ 1) = f(x+ 1)− f(x) =

= L.
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W kroku indukcyjnym zakładamy, że dla pewnego k mamy

(∆kf)(x) =
k∑

j=0

(−1)k−j
(
k

j

)

f(x+ j)

i dowodzimy, że

(∆k+1f)(x) =
k+1∑

j=0

(−1)k+1−j
(
k + 1
j

)

f(x+ j).

Zaczynamy od lewej strony:

L = (∆k+1f)(x) = (∆(∆kf))(x) = (∆kf)(x+ 1)− (∆kf)(x) =

=
k∑

j=0

(−1)k−j
(
k

j

)

f(x+ 1 + j)−
k∑

j=0

(−1)k−j
(
k

j

)

f(x+ j) =

=
k+1∑

j=1

(−1)k−j+1
(
k

j − 1

)

f(x+ j) +
k∑

j=0

(−1)k−j+1
(
k

j

)

f(x+ j) =

=
k∑

j=1

(−1)k−j+1
(
k

j − 1

)

f(x+ j) + (−1)k−(k+1)+1
(
k

k

)

f(x+ k + 1)+

+ (−1)k−0+1
(
k

0

)

f(x+ 0) +
k∑

j=1

(−1)k−j+1
(
k

j

)

f(x+ j) =

= (−1)k+1−0
(
k

0

)

f(x+ 0) +
k∑

j=1

(−1)k+1−j
((

k

j − 1

)

+
(
k

j

))

f(x+ j)+

+ (−1)k+1−(k+1)
(
k

k

)

f(x+ k + 1) =

= (−1)k+1−0
(
k + 1
0

)

f(x+ 0) +
k∑

j=1

(−1)k+1−j
(
k + 1
j

)

f(x+ j)+

+ (−1)k+1−(k+1)
(
k + 1
k + 1

)

f(x+ k + 1) =

=
k+1∑

j=0

(−1)k+1−j
(
k + 1
j

)

f(x+ j) =

= P,

c. b. d. o.

Operatory różnicowe ∆ i ∆n można stosować także do ciągów o wyrazach rzeczywistych.
Niech f : N→ R. Definiujemy wtedy

(∆f)(n) = f(n+ 1)− f(n)
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oraz
∆1f = ∆f,

∆k+1f = ∆(∆kf).

Z twierdzenia 1.3 otrzymujemy wtedy następujący wniosek:

Wniosek 1.4. Niech f : R→ R. Wtedy dla dowolnego k ≥ 1 i dowolnego x ∈ R mamy

(∆kf)(x− k) =
k∑

j=0

(−1)j
(
k

j

)

f(x− j). (1.30)

Dowód otrzymujemy zmianiając najpierw kolejność sumowania:

(∆kf)(x) =
k∑

j=0

(−1)k−j
(
k

j

)

f(x+ j) =

=
k∑

j=0

(−1)j
(
k

k − j

)

f(x+ k − j) =

=
k∑

j=0

(−1)j
(
k

j

)

f(x+ k − j),

a następnie podstawiając x− k w miejsce x.

Wniosek 1.5. Niech f : N→ R. Wtedy dla dowolnego k ≥ 1 i dowolnego n ≥ 0 mamy

(∆kf)(n) =
k∑

j=0

(−1)k−j
(
k

j

)

f(n+ j). (1.31)

W szczególności dla n = 0 dostajemy

(∆kf)(0) =
k∑

j=0

(−1)k−j
(
k

j

)

f(j). (1.32)

Dla dowodu wystarczy rozszerzyć funkcję f na cały zbiór R, przyjmując na przykład

f(x) =
{
0 dla x < 0,
f([x]) dla x ≥ 0,

gdzie [x] oznacza część całkowitą liczby rzeczywistej x.

19. Zastosowania operatora różnicowego

Zaczniemy od wykazania, że operator różnicowy jest operatorem liniowym. Przypuśćmy
zatem, że mamy dane dwie funkcje f, g : R→ R i dwie liczby rzeczywiste a i b. Definiu-
jemy funkcję h : R→ R wzorem

h(x) = a · f(x) + b · g(x)
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dla x ∈ R. Wówczas

(∆h)(x) = h(x+ 1)− h(x) = a · f(x+ 1) + b · g(x+ 1)− a · f(x)− b · g(x) =

= a · (∆f)(x) + b · (∆g)(x)

dla x ∈ R. Inaczej mówiąc

(
∆(a · f + b · g)

)
(x) =

(
a · (∆f) + b · (∆g)

)
(x)

dla x ∈ R, czyli
(
∆(a · f + b · g)

)
=
(
a · (∆f) + b · (∆g)

)
.

Stąd łatwo wynika przez indukcję, że

(
∆k(a · f + b · g)

)
=
(
a · (∆kf) + b · (∆kg)

)

dla k ≥ 1.

Niech teraz funkcja f : R→ R będzie określona wzorem f(x) = xn dla x ∈ R. Wtedy

(∆f)(x) = f(x+ 1)− f(x) = (x+ 1)n − xn =
n−1∑

k=0

(
n

k

)

xk

dla x ∈ R. Zatem funkcja ∆f jest wielomianem stopnia n − 1. Stąd i z liniowości
operatora ∆ wynika, że jeśli f jest wielomianem stopnia n, to ∆f jest wielomianem
stopnia n− 1. Przez indukcję względem k łatwo dowodzimy, że ∆kf jest wielomianem
stopnia n − k dla k = 1, . . . , n. W szczególności ∆n jest wielomianem stałym. Stąd
następnie wynika, że dla k ≥ n+ 1 funkcja ∆kf jest tożsamościowo równa 0.

Udowodnimy teraz przez indukcję, że jeśli funkcja f : R → R jest określona wzorem
f(x) = xn dla x ∈ R, to (∆nf)(x) = n! dla x ∈ R. Tę równość będziemy zapisywać
w skrócie jako ∆nxn = n!.

Dla n = 1 mamy f(x) = x dla x ∈ R. Zatem

(∆1f)(x) = f(x+ 1)− f(x) = x+ 1− x = 1 = 1!

Załóżmy teraz, że dane są funkcje fk : R → R określone wzorem fk(x) = xk dla k ≥ 0
i x ∈ R. Załóżmy także, że ∆nfn = n!. Pamiętamy również, że ∆nfk = 0 dla k < n.
Chcemy udowodnić, że ∆n+1fn+1 = (n+ 1)!. Otóż zauważmy najpierw, że

(∆fn+1)(x) = fn+1(x+ 1)− fn+1(x) = (x+ 1)n+1 − xn+1 =

=
n∑

k=0

(
n+ 1
k

)

xk =

(
n∑

k=0

(
n+ 1
k

)

fk

)

(x)

dla x ∈ R. Zatem

∆fn+1 =
n∑

k=0

(
n+ 1
k

)

fk.
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Stąd dostajemy

(∆n+1fn+1) = (∆n(∆fn+1)) = ∆n
(
n∑

k=0

(
n+ 1
k

)

fk

)

=
n∑

k=0

((
n+ 1
k

)

(∆nfk)
)

=

=
(
n+ 1
n

)

(∆nfn) = (n+ 1) · n! = (n+ 1)!

Pokażemy teraz kilka przykładów wykorzystania twierdzenia 1.3 oraz wniosków 1.4 i 1.5
do dowodu tożsamości kombinatorycznych.

Przykład 1. Weźmy funkcję f : R→ R określoną wzorem f(x) = 1 dla x ∈ R. Wtedy
dla n ≥ 1 mamy ∆nf = 0 i z tożsamości (1.30) dostajemy

(∆nf)(x− n) =
n∑

k=0

(−1)k
(
n

k

)

f(x− k) =
n∑

k=0

(−1)k
(
n

k

)

,

czyli
n∑

k=0

(−1)k
(
n

k

)

= 0.

Jest to tożsamość (1.25).

Przykład 2. Weźmy funkcję f : R→ R określoną wzorem f(x) = x dla x ∈ R. Wtedy
dla n ≥ 2 mamy ∆nf = 0 i z tożsamości (1.30) dostajemy

(∆nf)(x− n) =
n∑

k=0

(−1)k
(
n

k

)

f(x− k) =
n∑

k=0

(−1)k
(
n

k

)

(x− k),

czyli dla x = n mamy
n∑

k=0

(−1)k
(
n

k

)

(n− k) = 0.

Ponieważ

n∑

k=0

(−1)k
(
n

k

)

(n− k) =
n∑

k=0

(−1)k
(
n

k

)

n−
n∑

k=0

(−1)k
(
n

k

)

k =

= n ·
n∑

k=0

(−1)k
(
n

k

)

−
n∑

k=0

(−1)kk
(
n

k

)

.

= −
n∑

k=0

(−1)kk
(
n

k

)

,

więc
n∑

k=0

(−1)kk
(
n

k

)

= 0. (1.33)
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Nietrudno obliczyć, że
1∑

k=0

(−1)kk
(
1
k

)

= 1 (1.34)

oraz
0∑

k=0

(−1)kk
(
0
k

)

= 0. (1.35)

Przykład 3. Niech n ≥ 1. Weźmy funkcję f : R→ R określoną wzorem f(x) = xn dla
x ∈ R. Wtedy ∆nf = n! i z tożsamości (1.30) dostajemy

(∆nf)(x− n) =
n∑

k=0

(−1)k
(
n

k

)

f(x− k) =
n∑

k=0

(−1)k
(
n

k

)

(x− k)n,

czyli
n∑

k=0

(−1)k
(
n

k

)

(x− k)n = n!. (1.36)

Nietrudno sprawdzić, że ta tożsamość jest prawdziwa także dla n = 0.
Przykład 4.Weźmy funkcję f : N→ R określoną wzorem f(n) = 2n dla n ∈ N. Wtedy
nietrudno zauważyć, że ∆nf = f dla n ≥ 1 i z tożsamości (1.32) dostajemy

(∆nf)(0) =
n∑

k=0

(−1)n−k
(
n

k

)

f(k) =
n∑

k=0

(−1)n−k
(
n

k

)

2k,

czyli
n∑

k=0

(−1)n−k
(
n

k

)

2k = 1. (1.37)

Ta tożsamość jest też prawdziwa dla n = 0.
Przykład 5. Niech dana będzie liczba naturalna m. Definiujemy funkcję f : N → R
wzorem

f(n) =
(
m+ n
m

)

dla n ≥ 0. Z równości (1.32) dla ciągu f otrzymujemy

(∆kf)(0) =
k∑

j=0

(−1)k−j
(
k

j

)

f(j),

czyli

(∆kf)(0) =
k∑

j=0

(−1)k−j
(
k

j

)(
m+ j
m

)

=

=
k∑

j=0

(−1)j
(
k

k − j

)(
m+ k − j
m

)

=

=
k∑

j=0

(−1)j
(
k

j

)(
m+ k − j
m

)

.
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Z drugiej strony udowodnimy przez indukcję, że

(∆kf)(n) =
(
m+ n
m− k

)

.

Dla k = 1 mamy

(∆kf)(n) = (∆f)(n) = f(n+ 1)− f(n) =
(
m+ n+ 1
m

)

−

(
m+ n
m

)

=

=
(
m+ n
m

)

+
(
m+ n
m− 1

)

−

(
m+ n
m

)

=
(
m+ n
m− 1

)

.

W kroku indukcyjnym załóżmy, że

(∆kf)(n) =
(
m+ n
m− k

)

.

Mamy udowodnić, że

(∆k+1f)(n) =
(
m+ n
m− k − 1

)

.

Otóż

(∆kf)(n) = (∆(∆kf))(n) = (∆kf)(n+ 1)− (∆kf)(n) =

=
(
m+ n+ 1
m− k

)

−

(
m+ n
m− k

)

=
(
m+ n
m− k

)

+
(
m+ n
m− k − 1

)

−

(
m+ n
m− k

)

=

=
(
m+ n
m− k − 1

)

.

Stąd otrzymujemy równość

k∑

j=0

(−1)j
(
k

j

)(
m+ k − j
m

)

=
(
m

m− k

)

. (1.38)

Przyjmując teraz m = n+ k, otrzymujemy

k∑

j=0

(−1)j
(
k

j

)(
n+ 2k − j
n+ k

)

=
(
n+ k
n

)

. (1.39)

Przykład 6. Niech teraz p i q będą dowolnymi liczbami naturalnymi i przyjmijmy

f(n) =
(
p− n

q

)
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dla n ≥ 0. Z równości (1.32) dla ciągu f otrzymujemy

(∆if)(0) =
i∑

j=0

(−1)i−j
(
i

j

)

f(j),

czyli

(∆if)(0) =
i∑

j=0

(−1)i−j
(
i

j

)(
p− j

q

)

=

=
i∑

j=0

(−1)i+j
(
i

j

)(
p− j

q

)

.

Z drugiej strony udowodnimy przez indukcję, że

(∆if)(n) = (−1)i ·
(
p− n− i

q − i

)

.

Dla i = 1 mamy

(∆if)(n) = (∆f)(n) = f(n+ 1)− f(n) =
(
p− n− 1
q

)

−

(
p− n

q

)

=

=
(
p− n− 1
q

)

−

((
p− n− 1
q

)

+
(
p− n− 1
q − 1

))

= −
(
p− n− 1
q − 1

)

.

W kroku indukcyjnym załóżmy, że

(∆if)(n) =
(
p− n− i

q − i

)

.

Mamy udowodnić, że

(∆i+1f)(n) =
(
p− n− i− 1
q − i− 1

)

.

Otóż

(∆if)(n) = (∆(∆if))(n) = (∆if)(n+ 1)− (∆if)(n) =

=
(
p− n− i− 1
q − i

)

−

(
p− n− i

q − i

)

=

=
(
p− n− i− 1
q − i

)

−

((
p− n− i− 1
q − i

)

+
(
p− n− i− 1
q − i− 1

))

=

=
(
p− n− i− 1
q − i− 1

)

.

Stąd otrzymujemy równość

i∑

j=0

(−1)i−j
(
i

j

)(
p− j

q

)

= (−1)i ·
(
p− i

q − i

)

. (1.40)
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Dzieląc obie strony przez (−1)i i korzystając z tego, że (−1)−j = (−1)j, otrzymujemy

i∑

j=0

(−1)j
(
i

j

)(
p− j

q

)

=
(
p− i

q − i

)

.

Przyjmując teraz p = n+ 2k i q = n, otrzymujemy

i∑

j=0

(−1)j
(
i

j

)(
n+ 2k − j
n

)

=
(
n+ 2k − i
n− i

)

=
(
n+ 2k − i
2k

)

. (1.41)

19. Tożsamość Li Żeń-Szua

W książce opublikowanej w Nankinie w 1867 roku chiński matematyk Li Żeń-Szua podał
szereg interesujących tożsamości – zgodnie z chińską tradycją bez dowodu. Wśród tych
tożsamości znalazła się następująca:

k∑

i=0

(
k

i

)2(
n+ 2k − i
2k

)

=
(
n+ k
k

)2

. (1.42)

Tożsamość tę nazywamy dzisiaj tożsamością Li Żeń-Szua. W tym paragrafie udo-
wodnimy tę tożsamość, korzystając z wyników uzyskanych w poprzednim paragrafie.
Najpierw jednak udowodnimy dwie tożsamości pomocnicze.

Niech k i j będą liczbami naturalnymi takimi, że j ≤ k. Wtedy

k∑

i=j

(
k

i

)2(
i

j

)

=
(
k

j

)(
2k − j
k

)

. (1.43)

Mianowicie

k∑

i=j

(
k

i

)2(
i

j

)

=
k∑

i=j

(
k

i

)(
k

i

)(
i

j

)

=
k∑

i=j

(
k

i

)(
k

j

)(
k − j

i− j

)

=

=
(
k

j

) k∑

i=j

(
k

i

)(
k − j

i− j

)

=
(
k

j

) k∑

i=0

(
k

i

)(
k − j

i− j

)

=

=
(
k

j

) k∑

i=0

(
k

i

)(
k − j

k − i

)

=
(
k

j

)(
2k − j
k

)

.

Druga tożsamość ma postać:

(
n+ 2k − j
n

)(
2k − j
k

)

=
(
n+ 2k − j
n+ k

)(
n+ k
k

)

. (1.44)
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Udowodnimy ją korzystając kilkakrotnie z tożsamości (1.5). Mianowicie
(
n+ 2k − j
n

)(
2k − j
k

)

=
(
n+ 2k − j
2k − j

)(
2k − j
k

)

=

=
(
n+ 2k − j
k

)(
(n+ 2k − j)− k
(2k − j)− k

)

=

=
(
n+ 2k − j
k

)(
n+ k − j
k − j

)

=

=
(
n+ 2k − j
k

)(
n+ k − j
n

)

=

=
(
n+ 2k − j
k

)(
(n+ 2k − j)− k
(n+ k)− k

)

=

=
(
n+ 2k − j
n+ k

)(
n+ k
k

)

.

Dowodzimy teraz tożsamości Li Żeń-Szua.
k∑

i=0

(
k

i

)2(
n+ 2k − i
2k

)

=
k∑

i=0

(
k

i

)2 i∑

j=0

(−1)j
(
i

j

)(
n+ 2k − j
n

)

=

=
k∑

i=0

i∑

j=0

(−1)j
(
k

i

)2(
i

j

)(
n+ 2k − j
n

)

=

=
k∑

j=0

k∑

i=j

(−1)j
(
k

i

)2(
i

j

)(
n+ 2k − j
n

)

=

=
k∑

j=0

(−1)j
(
n+ 2k − j
n

) k∑

i=j

(
k

i

)2(
i

j

)

=

=
k∑

j=0

(−1)j
(
n+ 2k − j
n

)(
k

j

)(
2k − j
k

)

=

=
k∑

j=0

(−1)j
(
k

j

)(
n+ 2k − j
n

)(
2k − j
k

)

=

=
k∑

j=0

(−1)j
(
k

j

)(
n+ 2k − j
n+ k

)(
n+ k
k

)

=

=
(
n+ k
k

)

·
k∑

j=0

(−1)j
(
k

j

)(
n+ 2k − j
n+ k

)

=

=
(
n+ k
k

)

·

(
n+ k
n

)

=

=
(
n+ k
k

)2

.
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W dowodzie korzystaliśmy najpierw z tożsamości (1.41), potem z (1.43), następnie
z (1.44) i wreszcie z (1.39).

20. Współczynniki wielomianowe

Współczynnik dwumianowy
(
m
n

)
jest równy liczbie n-elementowych pozdbiorów zbioru

m-elementowego. Inaczej mówiąc, jest on równy liczbie podziałów zbioru m-elemen-
towego na dwa zbiory: pierwszy n-elementowy i drugi (m − n)-elementowy. Należy tu
zwrócić uwagę na ustaloną kolejność zbiorów. Ta definicja współczynnika dwumianowego
ma naturalne uogólnienie.

Przypuśćmy, że dany jest ciąg liczb (n1, . . . , nk) takich, że n1 + . . .+ nk = m.Współ-
czynnikiem wielomianowym

(
m

n1,...,nk

)
nazywamy liczbę ciągów (A1, . . . , Ak) takich,

że:
• A1, . . . , Ak ⊆ [m],
• zbiory A1, . . . , Ak są parami rozłączne,
• A1 ∪ . . . ∪Ak = [m],
• |A1| = n1, . . . , |Ak| = nk.

W szczególności dla k = 2 mamy
(
m
n1,n2

)
=
(
m
n1

)
, gdzie po lewej stronie mamy współ-

czynnik wielomianowy, a po prawej znany nam współczynnik dwumianowy.
Rodzinę parami rozłącznych podzbiorów zbioru A, dających w sumie cały zbiór A, na-
zywamy podziałem tego zbioru A. Jeśli ustalimy kolejność zbiorów w tej rodzinie, czyli
jeśli mamy do czynienia z ciągiem (a nie zbiorem) podzbiorów zbioru A, to będziemy mó-
wić o uporządkowanych podziałach zbioru A. Współczynnik wielomianowy

(
m

n1,...,nk

)

jest zatem równy liczbie uporządkowanych podziałów zbioru [m] na k podzbiorów, z któ-
rych pierwszy ma n1 elementów, drugi ma n2 elementów i tak dalej, aż wreszcie ostatni
ma nk elementów.
Inaczej mówiąc, współczynnik wielomianowy

(
m

n1,...,nk

)
(gdzie n1 + . . . + nk = m) jest

liczbą ciągów (x1, . . . , xm) długości m o wyrazach ze zbioru [k], mających n1 wyrazów
równych 1, n2 wyrazów równych 2, . . . i wreszcie mających nk wyrazów równych k.
Symbolicznie możemy to zapisać w następujący sposób:

∣
∣
{
f ∈ [k][m] : |f−1(1)| = n1, . . . , |f−1(k)| = nk

}∣
∣ =

(
m

n1, . . . , nk

)

.

Współczynniki wielomianowe mają następującą własność (która może być wykorzystana
także do zdefiniowania ich przez indukcję względem k):

(
m

n1, . . . , nk, nk+1

)

=
(
m

nk+1

)

·

(
m− nk+1
n1, . . . , nk

)

. (1.45)

Aby bowiem podzielić zbiór [m] na k+1 zbiorów, wybieramy najpierw nk+1-elementowy
zbiór Ak+1, a następnie zbiór mający pozostałe m − nk+1 elemenów dzielimy na k
podzbiorów. Stąd wynika następujące twierdzenie.

Twierdzenie 1.6. Jeśli n1 + . . .+ nk = m, to
(

m

n1, . . . , nk

)

=
m!

n1! · . . . · nk!
. (1.46)
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Dowód. Stosujemy indukcję względem k. Dla k = 2 mamy n1+n2 = m, skąd dostajemy
n2 = m− n1. Mamy teraz

(
m

n1, n2

)

=
(
m

n1

)

=
m!

n1! · (m− n1)!
=

m!
n1! · n2!

.

W kroku indukcyjnym mamy natomiast
(

m

n1, . . . , nk, nk+1

)

=
(
m

nk+1

)

·

(
m− nk+1
n1, . . . , nk

)

=

=
m!

nk+1! · (m− nk+1)!
·
(m− nk+1)!
n1! · . . . · nk!

=

=
m!

n1! · . . . · nk! · nk+1!
,

co kończy dowód.

Z tożsamości (1.45) wynika, że
(

m

n1, . . . , nk

)

=
(
m

n1

)

·

(
m− n1
n2

)

· . . . ·

(
m− n1 − . . .− nk−1

nk

)

. (1.47)

Paragraf ten zakończymy podaniem uogólnienia wzoru dwumianowego Newtona. Ten
wzór tłumaczy nazwę współczynnika wielomianowego. Mamy mianowicie wzór

(a1 + . . .+ ak)m =
∑

(n1,...,nk)

n1+...+nk=m

(
m

n1, . . . , nk

)

· an11 · . . . · a
nk
k . (1.48)

Dowód tego wzoru, podobny do dowodu wzoru (1.10), pozostawiamy jako ćwiczenie.

21. Jeszcze jeden dowód tożsamości Li Żeń-Szua

Przypomnijmy tożsamość Li Żeń-Szua:

k∑

i=0

(
k

i

)2(
n+ 2k − i
2k

)

=
(
n+ k
k

)2

. (1.42)

Udowodnimy ją przy dodatkowym założeniu, że k ≤ n. Dokładniej mówiąc, pokażemy
dowód kombinatoryczny tożsamości nieco ogólniejszej. Przypuśćmy zatem, że k ≤ l oraz
k ≤ n. Wówczas

k∑

i=0

(
k

i

)(
l

i

)(
n+ k + l − i
k + l

)

=
(
n+ k
k

)(
n+ l
l

)

. (1.49)

Pomnóżmy obie strony tej tożsamości przez
(
k+l
k

)
. Otrzymamy

k∑

i=0

(
k

i

)(
l

i

)(
n+ k + l − i
k + l

)(
k + l
k

)

=
(
n+ k
k

)(
n+ l
l

)(
k + l
k

)

. (1.50)
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Skorzystamy teraz ze współczynników wielomianowych. Stosując kilkakrotnie tożsamość
(1.45), otrzymujemy

(
n+ k + l − i

k − i, l − i, n− i, i, i

)

=
(
n+ k + l − i
n− i

)

·

(
k + l

k − i, l− i, i, i

)

=

=
(
n+ k + l − i
k + l

)

·

(
k + l
i

)

·

(
k + l − i
k − i, l − i, i

)

=

=
(
n+ k + l − i
k + l

)

·

(
k + l
i

)

·

(
k + l − i
k − i

)

·

(
l

l − i, i

)

=

=
(
n+ k + l − i
k + l

)

·

(
k + l
i

)

·

(
k + l − i
k − i

)

·

(
l

i

)

=

=
(
n+ k + l − i
k + l

)

·

(
l

i

)

·

(
k + l
i

)

·

(
k + l − i
k − i

)

=

=
(
n+ k + l − i
k + l

)

·

(
l

i

)

·

(
k + l
k

)

·

(
k

i

)

Tożsamość (1.50) jest zatem równoważna tożsamości

k∑

i=0

(
n+ k + l − i

k − i, l − i, n− i, i, i

)

=
(
n+ k
k

)(
n+ l
l

)(
k + l
k

)

. (1.51)

Udowodnimy teraz tożsamość (1.51) przy założeniu, że k = min{k, l, n}.

Niech A będzie zbiorem wszystkich trójek (π, ρ, σ), gdzie:
• π jest dowolnym ciągiem długości k+ l mającym k wyrazów równych 1 i l wyrazów
równych 2.
• ρ jest dowolnym ciągiem długości l+n mającym l wyrazów równych 2 i n wyrazów
równych 3.
• σ jest dowolnym ciągiem długości k+n mającym k wyrazów równych 1 i n wyrazów
równych 3.

Inaczej mówiąc, A = A1 × A2 ×A3, gdzie

A1 =
{
π ∈ {1, 2}[k+l] : |π−1(1)| = k, |π−1(2)| = l

}
,

A2 =
{
ρ ∈ {2, 3}[l+n] : |ρ−1(2)| = l, |ρ−1(3)| = n

}
,

A3 =
{
σ ∈ {1, 3}[k+n] : |σ−1(1)| = k, |σ−1(3)| = n

}
.

Oczywiście istnieje
(
k+l
k

)
ciągów π,

(
n+l
l

)
ciągów ρ oraz

(
n+k
k

)
ciągów σ:

|A1| =
(
k + l
k

)

, |A2| =
(
l + n
l

)

, |A3| =
(
k + n
k

)

.

Zatem

|A| =
(
n+ k
k

)

·

(
n+ l
l

)

·

(
k + l
k

)

.
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Niech teraz B będzie zbiorem wszystkich ciągów τ długości n+k+l−i, (gdzie i przebiega
zbiór {0, 1, . . . , k}) mających:
• k − i wyrazów równych 1,
• l − i wyrazów równych 2,
• n− i wyrazów równych 3,
• i wyrazów równych 4,
• i wyrazów równych 5.
Inaczej mówiąc, niech X oznacza zbiór wszystkich ciągów skończonych o wyrazach
w zbiorze [5]. Wtedy

B =
k⋃

i=0

Bi,

gdzie

Bi=
{
τ ∈ X : |τ−1(1)| = k−i, |τ−1(2)| = l−i, |τ−1(3)| = n−i, |τ−1(4)| = i, |τ−1(5)| = i

}

dla i = 0, 1, . . . , k. Oczywiście jeśli τ ∈ Bi, to τ : [n+ k+ l− i]→ [5]. Wprost z definicji
współczynników wielomianowych wynika, że

|Bi| =
(

n+ k + l − i
k − i, l− i, n− i, i, i

)

,

dla i = 0, 1, . . . , k. Zatem

|B| =
k∑

i=0

(
n+ k + l − i

k − i, l− i, n− i, i, i

)

.

Wystarczy teraz dowieść, że zbiory A i B mają tyle samo elementów. W tym celu
pokażemy, w jaki sposób można z trójki ciągów (π, ρ, σ) ∈ A utworzyć ciąg τ ∈ B tak,
by otrzymana odpowiedniość była wzajemnie jednoznaczna.

Przypuśćmy zatem, że mamy trójkę ciągów (π, ρ, σ) ∈ A. Pamiętajmy, że ciągi π i ρ
mają po k wyrazów równych 1, ciągi ρ i σ mają po l wyrazów równych 2 oraz ciągi π i σ
mają po n wyrazów równych 3. Niech ε oznacza ciąg pusty. Przyjmijmy na początku, że
τ = ε. W kolejnych krokach będziemy dopisywać wyrazy na końcu ciągu τ , skreślając
przy tym pewne wyrazy ciągów π, ρ, σ. Robimy to, kierując się następującymi regułami:

1) jeśli π1 = σ1 = 1, to z każdego z ciągów π i σ usuwamy pierwszy wyraz i na końcu
ciągu τ dopisujemy 1;

2) jeśli π1 = ρ1 = 2, to z każdego z ciągów π i ρ usuwamy pierwszy wyraz i na końcu
ciągu τ dopisujemy 2;

3) jeśli ρ1 = σ1 = 3, to z każdego z ciągów ρ i σ usuwamy pierwszy wyraz i na końcu
ciągu τ dopisujemy 3;

4) jeśli π1 = 1, ρ1 = 2 i σ1 = 3, to z każdego z ciągów π, ρ i σ usuwamy pierwszy
wyraz i na końcu ciągu τ dopisujemy 4;

5) jeśli π1 = 2, ρ1 = 3 i σ1 = 1, to z każdego z ciągów π, ρ i σ usuwamy pierwszy
wyraz i na końcu ciągu τ dopisujemy 5.
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Nietrudno zauważyć, że jeśli wszystkie ciągi π, ρ i σ są niepuste, to zachodzi dokładnie
jeden warunek opisany w punktach od 1) do 5) powyżej. Musimy zastanowić się, jak wy-
glądają dwa pozostałe ciągi, jeśli jeden z nich stanie się pusty (w wyniku dokonywanych
skreśleń pierwszych wyrazów). Przypuśćmy zatem, że w pewnym momencie w czasie
konstrukcji ciągu τ usuwamy jedyny wyraz któregoś z ciągów, np. z ciągu σ. Przypu-
śćmy, że do tego momentu włącznie i razy stosowaliśmy regułę 4) (usuwając pierwszy
wyraz każdego ciągu), j razy stosowaliśmy regułe 5) oraz p, q i r razy stosowaliśmy
odpowiednio reguły 1), 2) i 3). Zatem:
• z ciągu π usunęliśmy i+ p wyrazów równych 1 i j + q wyrazów równych 2;
• z ciągu ρ usunęliśmy i+ q wyrazów równych 2 i j + r wyrazów równych 3;
• z ciągu σ usunęliśmy j + p wyrazów równych 1 i i+ r wyrazów równych 3.
Ponieważ z ciągu σ usunęliśmy wszystkie wyrazy, więc j+p = k oraz i+r = n. W ciągu
π pozostało zatem k − (i + p) = (j + p) − (i + p) = j − i wyrazów równych 1 oraz
l − (j + q) wyrazów równych 2. W ciągu ρ pozostało natomiast l − (i + q) wyrazów
równych 2 oraz n− (j + r) = (i + r)− (j + r) = i − j wyrazów równych 3. Zauważmy
jednak, że i − j = −(j − i). Jeśli i 6= j, to jedna z liczb i − j i j − i jest ujemna,
co jest niemożliwe. Zatem i = j. To pokazuje, że w chwili, gdy usuniemy wszystkie
wyrazy ciągu σ, w pozostałych ciągach pozostaną już tylko wyrazy równe 2. Ponadto
liczba czwórek dopisanych do ciągu τ jest równa liczbie dopisanych piątek. Ponieważ
l− (j+ q) = l− (i+ q), więc w ciągach π i ρ zostało tyle samo dwójek. To znaczy, że od
tej chwili będziemy stosować już tylko regułę 2), do ciągu τ dopisując l−(j+q) dwójek.

Podobnie będzie, gdy wyczerpiemy wszystkie wyrazy ciągu π lub ρ. Jeśli zatem usu-
niemy wszystkie wyrazy któregoś z trzech ciągów, to od tego momentu do końca bę-
dziemy stosować reguły od 1) do 3). Może się też okazać, że usuniemy jednocześnie
pierwsze wyrazy z trzech ciągów długości 1; wtedy jednocześnie wszystkie trzy ciągi
staną się puste. Poprzednie rozumowanie obejmuje także ten przypadek; nigdzie nie za-
kładaliśmy, że liczba pozostałych dwójek jest różna od zera. Wykazaliśmy przy tym, że
w otrzymanym ciągu τ liczba czwórek jest równa liczbie piątek. Jeśli i razy dopisaliśmy
do ciągu τ czwórkę i tyle samo razy piątkę, to także k− i razy dopisaliśmy jedynkę (bo
jeszcze tyle jedynek musieliśmy usunąć z ciągu π), l− i razy dopisaliśmy dwójkę i n− i
razy trójkę. Otrzymany ciąg τ należy zatem do zbioru B.

Popatrzmy teraz na trzy przykłady zastosowania opisanej procedury. W kolejnych wier-
szach wyrazy usuwane z ciągów π, ρ i σ i dopisywane do ciągu τ są wytłuszczone. We
wszystkich przykładach k = 2, l = 3 i n = 4. A oto pierwszy przykład:

π ρ σ τ

(1, 2, 1, 2, 2) (3, 2, 2, 3, 3, 2, 3) (1, 3, 1, 3, 3, 3) (1)
(2, 1, 2, 2) (3, 2, 2, 3, 3, 2, 3) (3, 1, 3, 3, 3) (1, 3)
(2, 1, 2, 2) (2, 2, 3, 3, 2, 3) (1, 3, 3, 3) (1, 3, 2)
(1, 2, 2) (2, 3, 3, 2, 3) (1, 3, 3, 3) (1, 3, 2, 1)
(2, 2) (2, 3, 3, 2, 3) (3, 3, 3) (1, 3, 2, 1, 2)
(2) (3, 3, 2, 3) (3, 3, 3) (1, 3, 2, 1, 2, 3)
(2) (3, 2, 3) (3, 3) (1, 3, 2, 1, 2, 3, 3)
(2) (2, 3) (3) (1, 3, 2, 1, 2, 3, 3,2)
ε (3) (3) (1, 3, 2, 1, 2, 3, 3, 2,3)
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Z ciągów π = (1, 2, 1, 2, 2), ρ = (3, 2, 2, 3, 3, 2, 3) i σ = (1, 3, 1, 3, 3, 3) otrzymaliśmy ciąg
τ = (1, 3, 2, 1, 2, 3, 3, 2, 3). Zauważmy, że w ciągu τ nie ma ani jednej czwórki i piątki;
za każdym razem korzystaliśmy bowiem z reguł od 1) do 3). Gdy skreśliliśmy wszystkie
wyrazy ciągu π, w dwóch pozostałych ciągach mieliśmy po jednej trójce. A teraz drugi
przykład:

π ρ σ τ

(2, 2, 1, 2, 1) (3, 2, 3, 2, 3, 3, 2) (3, 1, 1, 3, 3, 3) (3)
(2, 2, 1, 2, 1) (2, 3, 2, 3, 3, 2) (1, 1, 3, 3, 3) (3, 2)
(2, 1, 2, 1) (3, 2, 3, 3, 2) (1, 1, 3, 3, 3) (3, 2, 5)
(1, 2, 1) (2, 3, 3, 2) (1, 3, 3, 3) (3, 2, 5, 1)
(2, 1) (2, 3, 3, 2) (3, 3, 3) (3, 2, 5, 1, 2)
(1) (3, 3, 2) (3, 3, 3) (3, 2, 5, 1, 2, 3)
(1) (3, 2) (3, 3) (3, 2, 5, 1, 2, 3, 3)
(1) (2) (3) (3, 2, 5, 1, 2, 3, 3,4)

Tym razem z ciągów π = (2, 2, 1, 2, 1), ρ = (3, 2, 3, 2, 3, 3, 2) i σ = (3, 1, 1, 3, 3, 3) otrzy-
maliśmy ciąg τ = (3, 2, 5, 1, 2, 3, 3, 4). Po jednym razie korzystaliśmy z reguł 4) i 5); to
dało po jednym wyrazie 4 i 5. Zauważmy, że w tym przykładzie jednocześnie wyczerpa-
liśmy wszystkie wyrazy trzech ciągów. Wreszcie popatrzmy na trzeci przykład:

π ρ σ τ

(1, 1, 2, 2, 2) (3, 2, 2, 3, 3, 3, 2) (3, 3, 3, 1, 3, 1) (3)
(1, 1, 2, 2, 2) (2, 2, 3, 3, 3, 2) (3, 3, 1, 3, 1) (3, 4)
(1, 2, 2, 2) (2, 3, 3, 3, 2) (3, 1, 3, 1) (3, 4, 4)
(2, 2, 2) (3, 3, 3, 2) (1, 3, 1) (3, 4, 4, 5)
(2, 2) (3, 3, 2) (3, 1) (3, 4, 4, 5, 3)
(2, 2) (3, 2) (1) (3, 4, 4, 5, 3, 5)
(2) (2) ε (3, 4, 4, 5, 3, 5, 2)

W tym przykładzie z ciągów π = (1, 1, 2, 2, 2), ρ = (3, 2, 2, 3, 3, 3, 2) i σ = (3, 3, 3, 1, 3, 1)
otrzymaliśmy ciąg τ = (3, 4, 4, 5, 3, 5, 2). Zauważmy, że w ciągu τ nie występuje wyraz
równy 1; mianowicie w tym przykładzie i = k = 2.

Z każdego ciągu τ ∈ B możemy w jednoznaczny sposób otrzymać trójkę ciągów (π, ρ, σ)
należącą do zbioru A. Najpierw przyjmujemy π = ρ = σ = ε. Później kierujemy się
następującymi regułami:
1) jeśli τ1 = 1, to na końcu ciągów π i σ dopisujemy jedynkę,
2) jeśli τ1 = 2, to na końcu ciągów π i ρ dopisujemy dwójkę,
3) jeśli τ1 = 3, to na końcu ciągów ρ i σ dopisujemy trójkę,
4) jeśli τ1 = 4, to na końcu ciągów π, ρ i σ odpowiednio dopisujemy jedynkę, dwójkę
i trójkę,

5) jeśli τ1 = 5, to na końcu ciągów π, ρ i σ odpowiednio dopisujemy dwójkę, trójkę
i jedynkę,

6) za każdym razem z ciągu τ usuwamy pierwszy wyraz.
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Działanie tej procedury zilustrujemy przykładami. Niech τ = (1, 3, 2, 1, 2, 3, 3, 2, 3). Tak
jak poprzednio wyrazy usuwane z ciągu τ i dopisywane do ciągów π, ρ i σ są wytłusz-
czone:

τ π ρ σ

(1, 3, 2, 1, 2, 3, 3, 2, 3) (1) ε (1)
(3, 2, 1, 2, 3, 3, 2, 3) (1) (3) (1, 3)
(2, 1, 2, 3, 3, 2, 3) (1, 2) (3, 2) (1, 3)
(1, 2, 3, 3, 2, 3) (1, 2, 1) (3, 2) (1, 3, 1)
(2, 3, 3, 2, 3) (1, 2, 1, 2) (3, 2, 2) (1, 3, 1)
(3, 3, 2, 3) (1, 2, 1, 2) (3, 2, 2, 3) (1, 3, 1, 3)
(3, 2, 3) (1, 2, 1, 2) (3, 2, 2, 3, 3) (1, 3, 1, 3, 3)
(2, 3) (1, 2, 1, 2, 2) (3, 2, 2, 3, 3, 2) (1, 3, 1, 3, 3)
(3) (1, 2, 1, 2, 2) (3, 2, 2, 3, 3, 2, 3) (1, 3, 1, 3, 3, 3)

Z ciągu τ = (1, 3, 2, 1, 2, 3, 3, 2, 3) odtworzyliśmy zatem tę samą trójkę ciągów (π, ρ, σ),
którą widzieliśmy w pierwszym przykładzie. Przykład ten ilustruje zatem procedurę
odwrotną do pierwszego przykładu. Następne przykłady będą w tym sensie odwrotne
do przykładu drugiego i trzeciego. A oto przykład drugi:

τ π ρ σ

(3, 2, 5, 1, 2, 3, 3, 4) ε (3) (3)
(2, 5, 1, 2, 3, 3, 4) (2) (3, 2) (3)
(5, 1, 2, 3, 3, 4) (2, 2) (3, 2, 3) (3, 1)
(1, 2, 3, 3, 4) (2, 2, 1) (3, 2, 3) (3, 1, 1)
(2, 3, 3, 4) (2, 2, 1, 2) (3, 2, 3, 2) (3, 1, 1)
(3, 3, 4) (2, 2, 1, 2) (3, 2, 3, 2, 3) (3, 1, 1, 3)
(3, 4) (2, 2, 1, 2) (3, 2, 3, 2, 3, 3) (3, 1, 1, 3, 3)
(4) (2, 2, 1, 2, 1) (3, 2, 3, 2, 3, 3, 2) (3, 1, 1, 3, 3, 3)

Wreszcie trzeci przykład:

τ π ρ σ

(3, 4, 4, 5, 3, 5, 2) ε (3) (3)
(4, 4, 5, 3, 5, 2) (1) (3, 2) (3, 3)
(4, 5, 3, 5, 2) (1, 1) (3, 2, 2) (3, 3, 3)
(5, 3, 5, 2) (1, 1, 2) (3, 2, 2, 3) (3, 3, 3, 1)
(3, 5, 2) (1, 1, 2) (3, 2, 2, 3, 3) (3, 3, 3, 1, 3)
(5, 2) (1, 1, 2, 2) (3, 2, 2, 3, 3, 3) (3, 3, 3, 1, 3, 1)
(2) (1, 1, 2, 2, 2) (3, 2, 2, 3, 3, 3, 2) (3, 3, 3, 1, 3, 1)

Nietrudno zauważyć, że z dowolnego ciągu τ ∈ B otrzymamy rzeczywiście trójkę cią-
gów (π, ρ, σ) należącą do zbioru A i że opisane dwie procedury są odwrotne do siebie.
Szczegóły dowodu pozostawiamy jako ćwiczenie. Widzimy zatem, że zbiory A i B są
równoliczne i w ten sposób dowód uogólnionej tożsamości Li Żeń-Szua (1.44) jest za-
kończony.
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Spis tożsamości kombinatorycznych
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m∑
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ZASADA WŁACZEŃ I WYŁĄCZEŃ

1. Przypomnienie
[n] = {1, . . . , n} dla n > 0,

Pk(n) = {A ⊆ [n] : |A| = k}.

Przyjmiemy również oznaczenie

P≥k(n) = {A ⊆ [n] : |A| ≥ k}.

Przypominamy, że w wykładzie 1 udowodniliśmy następujące dwie równości:

|A ∪B| = |A|+ |B| − |A ∩B| (2.1)

oraz

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|. (2.2)

Udowodnimy teraz twierdzenie będące uogólnieniem tych dwóch równości na przypadek
dowolnej liczby zbiorów skończonych.

2. Wzór włączeń i wyłączeń

Twierdzenie 2.1. Jeśli A1, . . . , An są zbiorami skończonymi, to

|A1 ∪ . . . ∪An| =
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.3)

Dowód. Wprowadźmy oznaczenie:

Sk(B1, . . . , Bm) =
∑

T∈Pk(m)

∣

∣

∣

⋂

j∈T

Bj

∣

∣

∣
.

Teza twierdzenia przybiera wtedy postać:

|A1 ∪ . . . ∪ An| =
n
∑

k=1

(−1)k+1Sk(A1, . . . , An).

Twierdzenia dowodzimy przez indukcję względem n. Dla n = 1 twierdzenie jest oczy-
wiste. Dla n = 2 i n = 3 było już udowodnione. Zakładamy teraz, że dla dowolnych n
zbiorów (gdzie n ≥ 2) twierdzenie jest prawdziwe i dowodzimy, że jest prawdziwe dla do-
wolnych n+1 zbiorów. Niech więc A1, . . . , An+1 będą dowolnymi zbiorami skończonymi.
Wówczas

|A1 ∪ . . . ∪An+1| = |(A1 ∪ . . . ∪An) ∪ An+1| =

= |A1 ∪ . . . ∪An|+ |An+1| − |(A1 ∪ . . . ∪An) ∩ An+1| =

= |A1 ∪ . . . ∪An|+ |An+1| − |(A1 ∩An+1) ∪ . . . ∪ (An ∩ An+1)|.
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Korzystamy teraz dwukrotnie z założenia indukcyjnego: dla zbiorów A1, . . . , An oraz
dla zbiorów A1 ∩An+1, . . . , An ∩An+1:

|A1 ∪ . . . ∪ An| =
n
∑

k=1

(−1)k+1Sk(A1, . . . , An),

|(A1 ∩An+1) ∪ . . . ∪ (An ∩ An+1)| =
n
∑

k=1

(−1)k+1Sk(A1 ∩ An+1, . . . , An ∩ An+1).

Zauważmy następnie, że

|A1 ∪ . . . ∪ An|+ |An+1| = S1(A1, . . . , An) + |An+1|+
n
∑

k=2

(−1)k+1Sk(A1, . . . , An) =

= |A1|+ . . .+ |An|+ |An+1|+
n
∑

k=2

(−1)k+1Sk(A1, . . . , An) =

= S1(A1, . . . , An+1) +
n
∑

k=2

(−1)k+1Sk(A1, . . . , An)

oraz

|(A1 ∩ An+1) ∪ . . . ∪ (An ∩An+1)| =
n
∑

k=1

(−1)k+1Sk(A1 ∩An+1, . . . , An ∩An+1) =

=
n−1
∑

k=1

(−1)k+1Sk(A1 ∩ An+1, . . . , An ∩ An+1)+

+(−1)n+1Sn(A1 ∩ An+1, . . . , An ∩ An+1) =

=
n−1
∑

k=1

(−1)k+1Sk(A1 ∩ An+1, . . . , An ∩ An+1)+

+(−1)n+1|(A1 ∩ An+1) ∩ . . . ∩ (An ∩An+1)| =

=
n−1
∑

k=1

(−1)k+1Sk(A1 ∩ An+1, . . . , An ∩ An+1) + (−1)n+1|A1 ∩ . . . ∩ An ∩An+1| =

=
n
∑

k=2

(−1)kSk−1(A1 ∩ An+1, . . . , An ∩ An+1)− (−1)n+2|A1 ∩ . . . ∩An ∩An+1| =

=
n
∑

k=2

(−1)kSk−1(A1 ∩ An+1, . . . , An ∩ An+1)− (−1)n+2Sn+1(A1, . . . , An+1) =

= −
n
∑

k=2

(−1)k+1Sk−1(A1 ∩ An+1, . . . , An ∩ An+1)− (−1)n+2Sn+1(A1, . . . , An+1).

Zatem

|A1 ∪ . . . ∪ An| = S1(A1, . . . , An+1) +
n
∑

k=2

(−1)k+1Sk(A1, . . . , An)+
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+
n
∑

k=2

(−1)k+1Sk−1(A1 ∩ An+1, . . . , An ∩ An+1) + (−1)n+2Sn+1(A1, . . . , An+1) =

= S1(A1, . . . , An+1) +
n
∑

k=2

(−1)k+1(Sk(A1, . . . , An) + Sn+1(A1, . . . , An+1))+

+(−1)n+2Sn+1(A1, . . . , An+1).

Następnie zauważmy, że

Sk(A1, . . . , An) + Sk−1(A1 ∩ An+1, . . . , An ∩An+1) = Sk(A1, . . . , An+1)

Stąd ostatecznie dostajemy

|A1 ∪ . . . ∪An| =

= S1(A1, . . . , An+1) +
n
∑

k=2

(−1)k+1Sk(A1, . . . , An+1) + (−1)n+2Sn+1(A1, . . . , An+1) =

=
n+1
∑

k=1

(−1)k+1Sk(A1, . . . , An+1),

co kończy dowód twierdzenia.
Wzór (2.3) nazywamy wzorem włączeń i wyłączeń.
Inny dowód. Przeglądamy kolejne składniki sumy stojącej po prawej stronie równości
i przy każdym elemencie iloczynu

⋂

j∈T

Aj rysujemy znak plus lub minus w zależności

od tego, czy liczba
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
występowała w sumie ze znakiem plus czy minus. Inaczej

mówiąc, jeśli zbiór T ma nieparzystą liczbę elementów, to rysujemy znak plus; jeśli zaś
zbiór T ma parzystą liczbę elementów, to rysujemy znak minus.
Zilustrujemy tę procedurę (w przypadku sumy trzech zbiorów A∪B∪C) serią rysunków.
Dowodzimy równości

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C| + |A ∩B ∩ C|.

Przeglądamy składniki sumy po prawej stronie i rysujemy znaki plus kolejno przy każ-
dym elemencie zbiorów A, B i C, potem znaki minus przy każdym elemencie zbiorów
A ∩B, A ∩ C i B ∩ C, wreszcie znaki plus przy każdym elemencie zbioru A ∩B ∩ C.
Rysunek 1: zbiory A, B i C wraz z zaznaczonymi przykładowymi elementami (po jednym
elemencie w każdej składowej).

A B

C
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Rysunek 2: przy każdym elemencie zbioru A rysujemy znak plus

A B

C

+ +

+

+

Rysunek 3: przy każdym elemencie zbioru B rysujemy znak plus

A B

C

+ +

+

+

++

+

+

Rysunek 4: przy każdym elemencie zbioru C rysujemy znak plus

A B

C

+ +

+

+

++

+

+

+

+

+

+

Rysunek 5: przy każdym elemencie zbioru A ∩B rysujemy znak minus

A B

C

+ +

+

+

++

+

+

+

+

+

+

−

−
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Rysunek 6: przy każdym elemencie zbioru A ∩ C rysujemy znak minus

A B

C

+ +

+

+

++

+

+

+

+

+

+

−

−

−

−

Rysunek 7: przy każdym elemencie zbioru B ∩ C rysujemy znak minus

A B

C

+ +

+

+

++

+

+

+

+

+

+

−

−

−

−

−

−

Rysunek 8: przy każdym elemencie zbioru A ∩B ∩ C rysujemy znak plus

A B

C

+ +

+

+

++

+

+

+

+

+

+

−

−

−

−

−

−

+

Zauważamy, że przy każdym elemencie sumy A ∪ B ∪ C liczba narysowanych plusów
jest o jeden większa od liczby narysowanych minusów: przy elementach należących do
jednego zbioru narysowaliśmy tylko jeden plus, przy elementach należących do dwóch
zbiorów narysowaliśmy dwa plusy i jeden minus, wreszcie przy elementach należących
do wszystkich trzech zbiorów narysowaliśmy cztery plusy i trzy minusy. To daje równość

(liczba plusów)− (liczba minusów) = |A ∪B ∪ C|.

Wykłady z kombinatoryki
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Nietrudno przy tym zauważyć, że w każdym z siedmiu powyższych kroków liczba nary-
sowanych znaków była równa liczbie elementów rozpatrywanego zbioru. Stąd dostajemy
równość

(liczba plusów)−(liczba minusów) = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|,

z której wynika równość (2.2).

Powróćmy do dowodu twierdzenia 2.1. Znów zauważamy, że prawa strona równości (2.3)
jest różnicą między liczbą plusów i liczbą minusów. Wystarczy zatem pokazać, że przy
każdym elemencie sumy zbiorów A1∪ . . .∪An narysowaliśmy o jeden plus więcej. Niech
x ∈ A1 ∪ . . . ∪ An. Niech następnie

M = {j : x ∈ Aj}.

Inaczej mówiąc, x ∈ Aj wtedy i tylko wtedy, gdy j ∈M . Oznaczmy m = |M |; oczywiście
m > 0. Niech teraz T ∈ Pk(n) i popatrzmy na zbiór

⋂

j∈T

Aj; jest to jeden ze zbiorów

występujących po prawej stronie równości (2.3). Jeśli T \M 6= ∅, to oczywiście mamy
x 6∈
⋂

j∈T

Aj. Przypuśćmy zatem, że T ⊆ M . Wtedy przy elemencie x rysowaliśmy znak

plus lub minus, w zależności od parzystości k: plus dla nieparzystych k, minus dla
parzystych k. Dla danego k liczba takich zbiorów T jest równa

(

m
k

)

. Liczby plusów
i minusów narysowanych przy x są zatem równe

liczba plusów =
∑

2 ∤ k

(

m

k

)

.

liczba minusów =
∑

k>0,2|k

(

m

k

)

,

skąd dostajemy

liczba plusów− liczba minusów =
m
∑

k=1

(−1)k+1
(

m

k

)

.

Z równości (przypominamy, że m > 0)

m
∑

k=0

(−1)k
(

m

k

)

= 0

wynika, że
(

m

0

)

+
m
∑

k=1

(−1)k
(

m

k

)

= 0,

czyli

1 = −
m
∑

k=1

(−1)k
(

m

k

)

=
m
∑

k=1

(−1)k+1
(

m

k

)

.
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Stąd wynika, że przy elemencie x narysowaliśmy o jeden plus więcej. Tak jest dla każdego
elementu x sumy A1 ∪ . . . ∪ An. To zaś oznacza, że suma po prawej stronie równości
będzie równa liczbie elementów sumy A1 ∪ . . . ∪ An, co kończy dowód.

3. Liczba funkcji z jednego zbioru skończonego na drugi zbiór skończony

Twierdzenie 2.2. Dane są dwa zbiory skończone A i B. Niech |A| = m i |B| = n.
Wtedy

|{f ∈ AB : f jest „na”}| =
m
∑

k=0

(−1)k
(

m

k

)

(m− k)n. (2.4)

Dowód. Bez zmniejszenia ogólności możemy przyjąć, że A = [m] i B = [n]. Definiujemy
zbiory A1, . . . , Am w następujący sposób:

Aj = {f ∈ AB : j 6∈ Rf}

dla j = 1, 2, . . . , m. Inaczej mówiąc

Aj = (A \ {j})B.

Korzystając ze wzoru włączeń i wyłączeń otrzymujemy

|A1 ∪ . . . ∪ Am| =
m
∑

k=1

(−1)k+1
∑

T∈Pk(m)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
.

Niech zatem T ∈ Pk(m). Wtedy

⋂

j∈T

Aj =
⋂

j∈T

(A \ {j})B = (A \ T )B,

skąd otrzymujemy
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=
∣

∣(A \ T )B
∣

∣ = (m− k)n.

Zatem

|A1 ∪ . . . ∪Am| =
m
∑

k=1

(−1)k+1
∑

T∈Pk(m)

(m− k)n =
m
∑

k=1

(−1)k+1
(

m

k

)

(m− k)n.

Do zakończenia dowodu wystarczy zauważyć, że suma zbiorów A1 ∪ . . .∪Am składa się
z tych funkcji f : B → A, które nie są „na”. Zatem

{f ∈ AB : f jest „na”} = AB \ (A1 ∪ . . . ∪Am),

Wykłady z kombinatoryki
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czyli
|{f ∈ AB : f jest „na”}| = mn − |A1 ∪ . . . ∪ Am| =

= mn −
m
∑

k=1

(−1)k+1
(

m

k

)

(m− k)n =

= mn +
m
∑

k=1

(−1)k
(

m

k

)

(m− k)n =

=
m
∑

k=0

(−1)k
(

m

k

)

(m− k)n,

c. b. d. o.

4. Liczba nieporządków

Permutacją zbioru skończonego A nazywamy funkcję różnowartościową π : A → A
przekształcającą zbiór A na siebie. Punktem stałym permutacji π nazywamy taki
element a zbioru A, dla którego π(a) = a. Nieporządkiem nazywamy permutację bez
punktów stałych. Zbiór wszystkich permutacji zbioru A oznaczymy symbolem S(A),
a zbiór nieporządków zbioru A symbolem D(A).
Powyższa definicja permutacji nie jest identyczna z definicją przyjętą w wykładzie pierw-
szym. Pokażemy teraz, że w pewnym sensie te dwie definicje opisują te same obiekty
kombinatoryczne. Przypuśćmy zatem, że mamy dany zbiór skończony A. Ustalmy pewne
uporządkowanie tego zbioru:

A = {a1, a2, . . . , an}.

Niech π : A → A będzie permutacją zbioru A w sensie powyższej definicji. Przekształ-
cenie π możemy wtedy utożsamić z ciągiem

(

π(a1), π(a2), . . . , π(an)
)

elementów zbioru
A. Oczywiście ten ciąg jest różnowartościowy, a więc jest permutacją zbioru A w sensie
definicji z wykładu pierwszego. Zwróćmy uwagę na to, że utożsamienie przekształcenia
π z ciągiem elementów zbioru A jest zależne od przyjętego na początku uporządkowania
zbioru A. Zauważmy też, że w przypadku, gdy A = [n], obie definicje pokrywają się.
Niech wreszcie Dn oznacza liczbę nieporządków zbioru n-elementowego, to znaczy np.
Dn = D([n]) dla n > 0. Przyjmujemy ponadto D0 = 1.
Twierdzenie 2.3 Niech |A| = n > 0. Wtedy

Dn = |D(A)| = n! ·
n
∑

k=0

(−1)k

k!
. (2.5)

Dowód. Definiujemy zbiory A1, . . . , An w następujący sposób:

Aj = {π ∈ S(A) : π(j) = j}

dla j = 1, . . . , n. Mamy wówczas

|A1 ∪ . . . ∪An| =
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
.
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Niech teraz T ∈ Pk(n). Wówczas
⋂

j∈T

Aj =
⋂

j∈T

{π : π(j) = j} = {π : ∀j ∈ T (π(j) = j)} = {π : π | T = id}.

Stąd wynika, że
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
= (n− k)!

Zatem

|A1 ∪ . . . ∪An| =
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

(n− k)! =

=
n
∑

k=1

(−1)k+1
(

n

k

)

· (n− k)! =
n
∑

k=1

(−1)k+1 ·
n!

k! · (n− k)!
· (n− k)! =

=
n
∑

k=1

(−1)k+1 ·
n!
k!
.

Następnie zauważamy, że suma zbiorów A1∪ . . .∪An składa się z tych permutacji, które
mają co najmniej jeden punkt stały. Zatem

D(A) = S(A) \ (A1 ∪ . . . ∪ An),

skąd wynika, że

|D(A)| = n!− |A1 ∪ . . . ∪ An| = n!−
n
∑

k=1

(−1)k+1 ·
n!
k!
=

= n! +
n
∑

k=1

(−1)k ·
n!
k!
=
n
∑

k=0

(−1)k ·
n!
k!
=

= n! ·
n
∑

k=0

(−1)k

k!
.

To kończy dowód twierdzenia.

Z powyższego twierdzenia wyprowadzimy wniosek dotyczący prawdopodobieństwa wy-
losowania nieporządku. Przypuśćmy, że losujemy permutację ustalonego zbioru n-ele-
mentowego A i pytamy o to, jakie jest prawdopodobieństwo tego, że wylosujemy niepo-
rządek. Zbiorem zdarzeń elementarnych Ω w tym przypadku jest zbiór S(A) wszystkich
permutacji zbioru A; przyjmujemy, że wylosowanie każdej permutacji jest jednakowo
prawdopodobne. Interesuje nas prawdopodobieństwo zdarzenia D(A) ⊆ Ω. To prawdo-
podobieństwo jest równe

P
(

D(A)
)

=
|D(A)|
n!

=
n
∑

k=0

(−1)k

k!
.
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Zauważmy, że

lim
n→∞

n
∑

k=0

(−1)k

k!
= e−1,

skąd wynika, że dla dużych n rozważane prawdopodobieństwo jest w przybliżeniu równe
e−1 ≈ 0,367879 (już dla n = 9 uzyskujemy dokładność przybliżenia 6 cyfr po przecinku).

5. Uogólnienie wzoru włączeń i wyłączeń

Przypuśćmy, że mamy dane zbiory skończone A1, . . . , An ⊆ X , gdzie X jest ustalonym
zbiorem skończonym. Przyjmiemy, że

⋂

j∈∅

Aj = X.

Korzystając z tej umowy, możemy wysłowić zasadę włączeń i wyłączeń w inny sposób.
Zastanówmy się, ile elementów zbioru X nie należy do żadnego ze zbiorów A1, . . . , An.
Otóż mamy

|X \ (A1 ∪ . . . ∪An)| = |X | −
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
∣

∣

∣

⋃

j∈∅

Aj

∣

∣

∣
+
n
∑

k=1

(−1)k
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
n
∑

k=0

(−1)k
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
.

Niech nadal A1, . . . , An ⊆ X . Przyjmiemy wtedy oznaczenie:

Dr(X,A1, . . . , An) =
{

x ∈ X : |{i ∈ [n] : x ∈ Ai}| = r
}

,

gdzie 0 ≤ r ≤ n. Inaczej mówiąc, Dr(X,A1, . . . , An) jest zbiorem tych elementów zbioru
X , które należą do zbiorów Ai dla dokładnie r indeksów i. Jeśli zbiory A1, . . . , An są
ponumerowane bez powtórzeń, toDr(X,A1, . . . , An) jest zbiorem tych elementów zbioru
X , które należą do dokładnie r zbiorów spośród A1, . . . , An. W dalszym ciągu, będziemy
pisać w skrócie, że element zbioru X należy do dokładnie r zbiorów spośród A1, . . . , An,
mając na myśli to, że istnieje dokładnie r indeksów i takich, że ten element należy do
zbioru Ai.

Pokazaliśmy przed chwilą, że

|D0(X,A1, . . . , An) =
n
∑

k=0

(−1)k
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.6)

Tę równość można uogólnić.
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Twierdzenie 2.4 Niech A1, . . . , An będą skończonymi podzbiorami zbioru skończonego
X . Wówczas dla dowolnego r = 0, 1, . . . , n mamy

|Dr(X,A1, . . . , An)| =
n
∑

k=r

(−1)k−r
(

k

r

)

∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.7)

Dowód. Niech R ∈ Pr(n). Wyznaczymy liczbę tych x ∈ X , które mają własność:

x ∈ Aj wtedy i tylko wtedy, gdy j ∈ R.

Inaczej mówiąc, wyznaczymy liczbę tych x ∈ X , które należą dokładnie do tych zbiorów
Aj , dla których j ∈ R.
Niech

B =
⋂

j∈R

Aj oraz Bj = B ∩Aj

dla j 6∈ R. Naszym celem jest wyznaczenie liczby elementów zbioru
⋂

j 6∈R

(B \Bj),

czyli obliczenie D0(B,Bi1, . . . , Bin−r), gdzie [n] \R = {i1, . . . , in−r}.
Ze wzoru (2.6) wynika, że

|D0(B,Bi1, . . . , Bin−r)| =
n−r
∑

k=0

(−1)k
∑

T∈Pk([n]\R)

∣

∣

∣

⋂

j∈T

Bj

∣

∣

∣
=

=
n−r
∑

k=0

∑

T∈Pk([n]\R)

(−1)k
∣

∣

∣

⋂

j∈T

(Aj ∩B)
∣

∣

∣
=

=
n−r
∑

k=0

∑

T∈Pk([n]\R)

(−1)k
∣

∣

∣

⋂

j∈T

(

Aj ∩
⋂

i∈R

Ai

)
∣

∣

∣
=

=
n−r
∑

k=0

∑

T∈Pk([n]\R)

(−1)k
∣

∣

∣

(

⋂

i∈R

Ai

)

∩
(

⋂

j∈T

Aj

)
∣

∣

∣
=

=
n−r
∑

k=0

∑

T∈Pk([n]\R)

(−1)k
∣

∣

∣

⋂

j∈T∪R

Aj

∣

∣

∣
=

=
n−r
∑

k=0

∑

T∈Pk+r([n])

R⊆T

(−1)k
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
n
∑

k=r

∑

T∈Pk([n])

R⊆T

(−1)k−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
∑

T

R⊆T⊆[n]

(−1)|T |−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
.
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Dla ustalonego zbioru R obliczyliśmy, ile jest takich x ∈ X , które należą do dokładnie
tych zbiorów Aj , dla których j ∈ R. Teraz chcemy obliczyć, ile jest takich x, które
należą do dokładnie r zbiorów Aj (dokładniej: chcemy obliczyć, ile jest takich x, dla
których |{i ∈ [n] : x ∈ Ai}| = r). W tym celu musimy zsumować otrzymane liczby dla
wszystkich r-elementowych podzbiorów R zbioru [n]. Mamy zatem

|Dr(X,A1, . . . , An)| =
∑

R∈Pr(n)

∑

T

R⊆T⊆[n]

(−1)|T |−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
∑

T∈P≥r(n)

∑

R∈Pr(T )

(−1)|T |−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
∑

T∈P≥r(n)

(

|T |

r

)

· (−1)|T |−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
n
∑

k=r

∑

T∈Pk(n)

(

k

r

)

· (−1)k−r
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
n
∑

k=r

(−1)k−r
(

k

r

)

∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
,

co kończy dowód twierdzenia.

6. Liczba permutacji mających r punktów stałych

W tym paragrafie obliczymy, ile jest permutacji zbioru n-elementowego mających do-
kładnie r punktów stałych. Niech

Dr(A) =
{

π ∈ S(A) : |{i ∈ A : π(i) = i}| = r
}

.

W szczególności D0(A) = D(A).

Twierdzenie 2.5 Niech |A| = n i niech 0 ≤ r ≤ n. Wtedy

|Dr(A)| =
n!
r!
·

n−r
∑

k=0

(−1)k

k!
. (2.8)

Dowód. Sposób I. Wybieramy najpierw zbiór r punktów stałych permutacji, a na-
stępnie permutujemy pozostałe elementy tak, by nie utworzyć nowego punktu stałego;
inaczej mówiąc permutacja pozostałych elementów jest nieporządkiem. Stąd wynika
wzór

Dr(A) =
(

n

r

)

·Dn−r =
n!

r! · (n− r)!
· (n− r)! ·

n−r
∑

k=0

(−1)k

k!
=
n!
r!
·

n−r
∑

k=0

(−1)k

k!
.

Sposób II. Korzystamy z twierdzenia 2.4. Definiujemy zbiory A1, . . . , An w następujący
sposób:

Aj = {π ∈ S(A) : π(j) = j}

Wykłady z kombinatoryki
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dla j = 1, . . . , n. Tak jak w dowodzie twierdzenia 2.3 stwierdzamy, że dla T ⊆ [n]
zachodzi równość

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
= (n− k)!

Z twierdzenia 2.4 otrzymujemy teraz

|Dr(A)| = Dr(S(A), A1, . . . , An) =
n
∑

k=r

(−1)k−r
(

k

r

)

∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
=

=
n
∑

k=r

(−1)k−r
(

k

r

)

∑

T∈Pk(n)

(n− k)! =

=
n
∑

k=r

(−1)k−r
(

k

r

)(

n

k

)

(n− k)! =

=
n
∑

k=r

(−1)k−r
(

k

r

)

n!
k! · (n− k)!

· (n− k)! =

=
n
∑

k=r

(−1)k−r
(

k

r

)

n!
k!
=

=
n
∑

k=r

(−1)k−r ·
k!

r! · (k − r)!
·
n!
k!
=

=
n
∑

k=r

(−1)k−r ·
n!

r! · (k − r)!
=

=
n!
r!
·

n
∑

k=r

(−1)k−r ·
1

(k − r)!
=

=
n!
r!
·

n−r
∑

k=0

(−1)k ·
1
k!
,

co kończy dowód twierdzenia.

7. Średnia liczba punktów stałych

Niech |A| = n. Przypuśćmy, że wybieramy losowo jedną permutację ze zbioru S(A).
Oznaczmy przez pr prawdopodobieństwo tego, że wylosowana permutacja będzie miała
dokładnie r punktów stałych. Z twierdzenia 2.5 wynika, że

pr =
Dr(A)
n!
=
1
r!
·

n−r
∑

k=0

(−1)k ·
1
k!
.

Niech zmienna losowa X będzie określona wzorem

X(π) = |{j ∈ A : π(j) = j}|.

Wykłady z kombinatoryki



14 Wykład 2

Zatem X(π) jest liczbą punktów stałych permutacji π. W tym paragrafie obliczymy
wartość średnią zmiennej X .

Z definicji wartości średniej mamy

E(X) =
n
∑

r=0

r · pr.

Mamy zatem

E(X) =
n
∑

r=0

r · pr =
n
∑

r=1

r · pr =
n
∑

r=1

r ·
1
r!
·
n−r
∑

k=0

(−1)k ·
1
k!
=

=
n
∑

r=1

1
(r − 1)!

·

n−r
∑

k=0

(−1)k ·
1
k!
=
n
∑

r=1

n−r
∑

k=0

(−1)k

(r − 1)! · k!
.

Korzystamy teraz ze wzoru

n
∑

r=1

n−r
∑

k=0

ar,k =
n
∑

j=1

j
∑

r=1

ar,j−r.

Mamy zatem

E(X) =
n
∑

r=1

n−r
∑

k=0

(−1)k

(r − 1)! · k!
=
n
∑

j=1

j
∑

r=1

(−1)j−r

(r − 1)! · (j − r)!
=

=
n
∑

j=1

j
∑

r=1

(−1)j−r · (j − 1)!
(j − 1)! · (r − 1)! · (j − r)!

=
n
∑

j=1

j
∑

r=1

(−1)j−r

(j − 1)!
·

(j − 1)!
(r − 1)! · (j − r)!

=

=
n
∑

j=1

j
∑

r=1

(−1)j−r

(j − 1)!
·

(

j − 1
r − 1

)

=
n
∑

j=1

j−1
∑

r=0

(−1)j−r−1

(j − 1)!
·

(

j − 1
r

)

=

=
n
∑

j=1

j−1
∑

r=0

(−1)j+r−1

(j − 1)!
·

(

j − 1
r

)

=
n
∑

j=1

(−1)j−1

(j − 1)!
·

j−1
∑

r=0

(−1)r ·
(

j − 1
r

)

=
n−1
∑

j=0

(−1)j

j!
·

j
∑

r=0

(−1)r ·
(

j

r

)

.

Korzystamy teraz z równości

j
∑

r=0

(−1)r ·
(

j

r

)

=
{

1 jeśli j = 0,
0 jeśli j > 0.

Stąd ostatecznie

E(X) =
n−1
∑

j=0

(−1)j

j!
·

j
∑

r=0

(−1)r ·
(

j

r

)

=
(−1)0

0!
= 1.
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Zasada włączeń i wyłączeń 15

Średnią liczbę punktów stałych permutacji można obliczyć znacznie prościej, korzystając
z następującej własności wartości średniej zmiennych losowych:

E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn).

Zdefiniujmy teraz n zmiennych losowych X1, . . . , Xn:

Xi(π) =
{

1 jeśli π(i) = i,
0 jeśli π(i) 6= i.

Nietrudno zauważyć, że wtedy X = X1 + . . .+Xn, gdzie X jest zmienną losową zdefi-
niowaną wyżej. Następnie łatwo obliczyć, że E(Xi) = P (X = 1) = 1n . Stąd dostajemy

E(X) = E(X1) + . . .+ E(Xn) = n ·
1
n
= 1.

8. Problem par małżeńskich

W tym paragrafie rozwiążemy następujący problem pochodzący od Lucasa (le problème
des ménages). Dany jest okrągły stół, wokół którego mamy posadzić na numerowanych
miejscach n par małżeńskich w taki sposób, by panie i panowie siedzieli naprzemian i by
żadna pani nie siedziała obok swojego męża. Lucas pytał o to, na ile sposobów możemy
te osoby posadzić wokół stołu z zachowaniem podanych reguł. Popatrzmy najpierw na
przykład. Oto okrągły stół z 12 miejscami (a więc tutaj n = 6):

1

2

3

4

5
6

7

8

9

10

11
12

Przede wszystkim widzimy, że panie muszą zająć albo miejca parzyste, albo nieparzyste.
Ponumerujmy więc oddzielnie liczbami od 1 do 6 miejsca parzyste i nieparzyste:

1

1

2

2

3
3

4

4

5

5

6
6

Wykłady z kombinatoryki



16 Wykład 2

Najpierw posadzimy panie. Ich miejsca możemy wybrać na 2 ·n! sposobów: musimy zde-
cydować, czy wybieramy miejsca parzyste, czy nieparzyste, a następnie na wybranych
miejscach mamy n! możliwości posadzenia n pań. Ponumerujmy panie: K1, K2, . . . , Kn,
przy czym przyjmujemy, że pani Ki siedzi na miejscu i. Dla ustalenia uwagi przypu-
śćmy, że panie posdziliśmy na miejscach parzystych, czyli białych na rysunku drugim.
Ponumerujmy następnie panów: M1,M2, . . . ,Mn, przy czym zakładamy, że pan Mi jest
mężem pani Ki. Przykładowy sposób posadzenia n panów widzimy na następnym ry-
sunku:

1

1

2

2

3
3

4

4

5

5

6
6

M3

K1

M5

K2

M6

K3

M2

K4

M1

K5

M4

K6

Widzimy, że usadzenie panów jest zgodne z wymaganiami, jeśli spełnione są następujące
warunki:
• pan M1 nie siedzi na żadnym z miejsc 1 i 2,
• pan M2 nie siedzi na żadnym z miejsc 2 i 3,
• pan M3 nie siedzi na żadnym z miejsc 3 i 4,
• pan M4 nie siedzi na żadnym z miejsc 4 i 5,
• pan M5 nie siedzi na żadnym z miejsc 5 i 6,
• pan M6 nie siedzi na żadnym z miejsc 6 i 1.
Ogólnie dla n par warunki te możemy sformułować w trzech punktach:
• żaden z panów Mi (dla i = 1, . . . , n) nie może siedzieć na miejscu i,
• żaden z panów Mi (dla i = 1, . . . , n− 1) nie może siedzieć na miejscu i+ 1,
• pan Mn nie może siedzieć na miejscu 1,
Niech teraz π(i) oznacza numer miejsca, na którym siedzi pan Mi. Naszym celem jest
znalezienie liczby µ(n) permutacji π ∈ S([n]), spełniających następujące warunki:
1) π(i) 6= i dla i = 1, . . . , n,
2) π(i) 6= i+ 1 dla i = 1, . . . , n− 1,
3) π(n) 6= 1.
Liczba M(n) wszystkich możliwych sposobów posadzenia n par małżeńskich będzie
równa

M(n) = 2 · n! · µ(n). (2.9)

Wykłady z kombinatoryki
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Definiujemy 2n zbiorów:

A2i−1 = {π ∈ S([n]) : π(i) = i} dla i = 1, . . . , n,

A2i = {π ∈ S([n]) : π(i) = i+ 1} dla i = 1, . . . , n− 1,

A2n = {π ∈ S([n]) : π(n) = 1}.

Wówczas

µ(n) = |S([n])\(A1∪. . .∪A2n)| = D0(S([n]), A1, . . . , A2n) =
2n
∑

k=0

(−1)k
∑

T∈Pk(2n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣

Niech T ∈ Pk(2n). Chcemy obliczyć

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
.

Zauważmy, że
⋂

j∈T

Aj = ∅,

wtedy i tylko wtedy, gdy spełniony jest co najmniej jeden z trzech warunków:

1) 2i− 1, 2i ∈ T dla pewnego i = 1, . . . , n,

2) 2i, 2i+ 1 ∈ T dla pewnego i = 1, . . . , n− 1,

3) 1, 2n ∈ T .

Przypuśćmy bowiem, że
π ∈
⋂

j∈T

Aj

oraz spełniony jest warunek pierwszy dla pewnego i. Wtedy π ∈ A2i−1 ∩ A2i, czyli
π(i) = i oraz π(i) = i + 1, co jest niemożliwe. Podobnie, jeśli spełniony jest warunek
drugi dla pewnego i, to π ∈ A2i ∩ A2i+1, czyli π(i) = i + 1 oraz π(i + 1) = i + 1.
To także jest niemożliwe. Wreszcie, jeśli 1, 2n ∈ T , to π ∈ A1 ∩ A2n, czyli π(1) = 1
oraz π(n) = 1, co także jest niemożliwe. Na odwrót, jeśli żaden z tych trzech warunków
nie jest spełniony, czyli w zbiorze T nie występują dwie kolejne liczby (liczby 2n i 1
traktujemy tu jako liczby kolejne), to w permutacji π mamy ustalone k wartości. Takie
permutacje istnieją i jest ich (n− k)!. Zauważmy, że wtedy oczywiście k ≤ n.

Wprowadźmy na użytek tego dowodu następujące oznaczenia. Oznaczmy przez g(n, k)
liczbę takich zbiorów B ∈ Pk(n), że:

a) jeśli i ∈ B, to i+ 1 6∈ B dla i = 1, . . . , n− 1,

b) jeśli n ∈ B, to 1 6∈ B.

Oznaczmy następnie przez h(n, k) liczbę zbiorów B ∈ Pk(n) spełniających tylko powyż-
szy warunek a):

a) jeśli i ∈ B, to i+ 1 6∈ B dla i = 1, . . . , n− 1,
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18 Wykład 2

Wtedy

µ(n) =
n
∑

k=0

(−1)k · (n− k)! · g(2n, k). (2.10)

Naszym celem jest zatem obliczenie g(2n, k).

Lemat 2.6. h(n, k) =
(

n−k+1
k

)

.

Dowód. Sposób I. Mamy policzyć, ile jest k-elementowych podzbiorów zbioru [n]
nie zawierających dwóch kolejnych liczb. Każdy k-elementowy podzbiór zbioru [n] jest
zbiorem wartości dokładnie jednej funkcji rosnącej f : [k] → [n]. Warunek, że ten
podzbiór nie zawiera dwóch kolejnych liczb jest równoważny następującej własności
funkcji f :

f(i+ 1)− f(i) ≥ 2 dla i = 1, 2, . . . , n− 1. (∗)

Dla dowolnej funkcji f : [k]→ [n] definiujemy funkcję g : [k]→ [n− k + 1] wzorem

g(i) = f(i)− i+ 1

dla i = 1, 2, . . . , k. Mamy zatem

g(1) = f(1),

g(2) = f(2)− 1,

g(3) = f(3)− 2,

. . . . . .

g(k − 1) = f(k − 1)− (k − 2),

g(k) = f(k)− (k − 1).

Nietrudno zauważyć, że funkcja f spełnia warunek (∗) wtedy i tylko wtedy, gdy funkcja
g jest rosnąca. Zatem funkcji f : [k]→ [n] spełniających warunek (∗) jest tyle, ile funkcji
rosnących g : [k]→ [n− k + 1], a więc

(

n−k+1
k

)

.

Sposób II. Rozumowanie będziemy ilustrować przykładem, w którym n = 13 i k = 4.
Narysujmy w jednej linii n− k kółeczek.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Tworzą one n−k+1 (w naszym przykładzie n−k+1 = 10) wolnych miejsc: jedno przed
wszystkimi kółeczkami, n−k− 1 miejsc między kolejnymi kółeczkami i jedno na końcu,
za wszystkimi kółeczkami. Z tych n − k + 1 miejsc wybierzmy k miejsc (w naszym
przykładzie będzie to miejsce pierwsze, miejsce między trzecim i czwartym kółkiem,
miejsce między siódmym i ósmym kółkiem oraz miejsce między ósmym i dziewiątym
kółkiem) i wstawmy w nie czarne kółka:

• ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦

Mamy razem n kółek, w tym k czarnych. Sposób wstawiania gwarantuje, że żadne dwa
czarne kółka nie będą stały obok siebie. Taki ciąg kółek koduje podzbiór zbioru [n]:

{i ∈ [n] : na i-tym miejscu stoi czarne kółko}.
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W naszym przykładzie jest to zbiór {1, 5, 10, 12}. Zauważmy wreszcie, że czarne kółka
możemy wstawić na

(

n−k+1
k

)

sposobów, co kończy dowód lematu.

Lemat 2.7. g(n, k) = n
n−k ·

(

n−k
k

)

.

Dowód. Zliczamy zbiory B ∈ Pk(n) spełniające warunki a) i b).

Najpierw zajmiemy się takimi zbiorami B, że 1 ∈ B. Wtedy 2 6∈ B oraz n 6∈ B.
Ponadto zbiór B \ {1} ∈ Pk−1({3, . . . , n − 1}) spełnia warunek a). Stąd wynika, że
istnieje h(n− 3, k − 1) takich zbiorów B.

Zajmijmy się następnie takimi zbiorami B, że 1 6∈ B. Wtedy zbiór B ∈ Pk({2, . . . , n})
spełnia warunek a). Istnieje zatem h(n− 1, k) takich zbiorów B. Zatem

g(n, k) = h(n− 3, k − 1) + h(n− 1, k) =

=
(

n− k − 1
k − 1

)

+
(

n− k

k

)

=

=
k

n− k
·

(

n− k

k

)

+
(

n− k

k

)

=

=
n

n− k
·

(

n− k

k

)

,

c. b. d. o.

Twierdzenie 2.8. Liczba sposobów posadzenia n par małżeńskich przy okrągłym stole
jest równa

M(n) = 2 · n! ·
n
∑

k=0

(−1)k ·
2n
2n− k

·

(

2n− k
k

)

· (n− k)! (2.11)

Dowód. Z równości (2.9) i (2.10) wynika, że liczba sposobów posadzenia n par małżeń-
skich przy okrągłym stole jest równa

M(n) = 2 · n! · µ(n) = 2 · n! ·
n
∑

k=0

(−1)k · (n− k)! · g(2n, k).

Korzystając z lematu 2.7 otrzymujemy

M(n) = 2 · n! ·
n
∑

k=0

(−1)k ·
2n
2n− k

·

(

2n− k
k

)

· (n− k)!,

c. b. d. o.

9. Sumy potęg liczb naturalnych

Przypomnijmy z wykładu 1 oznaczenie

Sk(n) =
n
∑

j=1

jk = 1k + . . .+ nk,
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gdzie n, k ≥ 1. Z wykładu 1 wiemy, że

S0(n) = n,

S1(n) =
(

n+ 1
2

)

=
n(n+ 1)
2
,

S2(n) =
1
4
·

(

2n+ 2
3

)

=
n(n+ 1)(2n+ 1)

6
,

S3(n) =
(

n+ 1
2

)2

= S1(n)2 =
n2(n+ 1)2

4
.

Wyprowadzimy teraz pewien wzór ogólny. Będzie to wzór rekurencyjny, pozwalający
obliczyć Sk(n), jeśli są znane wszytkie Sj(n) dla j < k.
Twierdzenie 2.9. Jeśli n, k ≥ 1, to

nk =
k
∑

j=1

(−1)j+1
(

k

j

)

Sk−j(n). (2.12)

Zanim udowodnimy to twierdzenie, przyjrzymy się jego początkowym przypadkom i po-
każemy, jak z niego można otrzymać wzory na Sk(n) dla k ≤ 3. Oczywiście

S0(n) = 10 + . . .+ n0 = n.

Teraz, korzystając z twierdzenia 2.9 dla k = 2 mamy

n2 =
2
∑

j=1

(−1)j+1
(

2
j

)

S2−j(n) =
(

2
1

)

S1(n)−
(

2
2

)

S0(n) = 2S1(n)− n,

skąd otrzymujemy
2S1(n) = n2 + n = n(n+ 1),

czyli

S1(n) =
n(n+ 1)
2
.

Następnie, dla k = 3 mamy

n3 =
3
∑

j=1

(−1)j+1
(

3
j

)

S3−j(n) =
(

3
1

)

S2(n)−
(

3
2

)

S1(n) +
(

3
3

)

S0(n) =

= 3S2(n)− 3 ·
n(n+ 1)
2

+ n,

skąd dostajemy

3S2(n) = n3 + 3 ·
n(n+ 1)
2

− n =
2n3 + 3n(n+ 1)− 2n

2
=

=
2n3 + 3n2 + 3n− 2n)

2
=
n(2n2 + 3n+ 1)

2
=

=
n(n+ 1)(2n+ 1)

2
,
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czyli

S2(n) =
n(n+ 1)(2n+ 1)

6
.

Wreszcie dla n = 4 mamy

n4 =
4
∑

j=1

(−1)j+1
(

4
j

)

S4−j(n) =

=
(

4
1

)

S3(n)−
(

4
2

)

S2(n) +
(

4
3

)

S1(n)−
(

4
4

)

S0(n) =

= 4S3(n)− 6 ·
n(n+ 1)(2n+ 1)

6
+ 4 ·

n(n+ 1)
2

− n =

= 4S3(n)− n(n+ 1)(2n+ 1) + 2n(n+ 1)− n,

skąd wynika, że

4S3(n) = n4 + n(n+ 1)(2n+ 1)− 2n(n+ 1) + n =

= n ·
(

n3 + (n+ 1)(2n+ 1)− 2(n+ 1) + 1
)

=

= n ·
(

(n3 + 1) + (n+ 1)(2n+ 1− 2)
)

=

= n ·
(

(n+ 1)(n2 − n+ 1) + (n+ 1)(2n− 1)
)

=

= n(n+ 1)(n2 − n+ 1 + 2n− 1) = n(n+ 1)(n2 + n) =

= n2(n+ 1)2,

czyli

S3(n) =
n2(n+ 1)2

4
.

Udowodnimy teraz twierdzenie 2.9.

Dowód. Weźmy zbiór

X = [n]k = {(x1, . . . , xk) : x1, . . . , xk ∈ [n]}.

Wtedy oczywiście |X | = nk. Definiujemy teraz następujące podzbiory zbioru X :

Am = {(x1, . . . , xk) ∈ X : ∀i (xi ≤ xm)}

dla m = 1, . . . , k. Inaczej mówiąc, do zbioru Am należą te ciągi, w których największy
wyraz znajduje się na m-tym miejscu. Oczywiście ciągi mające największy wyraz na
kilku miejscach, należą do kilku takich zbiorów Am. Na przykład, jeśli n = 5 i k = 7, to
(1, 3, 4, 2, 5, 4, 2) ∈ A5 oraz (1, 3, 4, 2, 1, 4, 2) ∈ A3 ∩ A6. Ogólnie, niech T ∈ Pj(k), gdzie
1 ≤ j ≤ k. Wtedy

⋂

m∈T

Am =
n
⋃

l=1

{(x1, . . . , xk) ∈ X : ∀m ∈ T (xm = l) oraz ∀m ∈ [k] \ T (xm ≤ l)}.

Wykłady z kombinatoryki



22 Wykład 2

Zauważmy następnie, że

|{(x1, . . . , xk) ∈ X : ∀m ∈ T (xm = l) oraz ∀m ∈ [k] \ T (xm ≤ l)}| = lk−j

oraz zbiory

{(x1, . . . , xk) ∈ X : ∀m ∈ T (xm = l) oraz ∀m ∈ [k] \ T (xm ≤ l)}

dla różnych l są rozłączne. Zatem

∣

∣

∣

⋂

m∈T

Aj

∣

∣

∣
=
n
∑

l=1

lk−j = Sk−j(n).

Wreszcie
X = A1 ∪ . . . ∪Ak,

a więc z zasady włączeń i wyłączeń otrzymujemy

|X | =
k
∑

j=1

(−1)j+1
∑

T∈Pj(k)

∣

∣

∣

⋂

m∈T

Am

∣

∣

∣
=

=
k
∑

j=1

(−1)j+1
∑

T∈Pj(k)

Sk−j(n) =

=
k
∑

j=1

(−1)j+1
(

k

j

)

Sk−j(n),

czyli

nk =
k
∑

j=1

(−1)j+1
(

k

j

)

Sk−j(n),

c. b. d. o.

10. Dwie tożsamości

Rozważania tego paragrafu będą w zasadzie powtórzeniem rozważań z paragrafu 3.
Zajmiemy się funkcjami f : [n]→ [m] i będziemy chcieli policzyć funkcje f spełniające
dla pewnego k warunek [k] ⊆ Rf . Definiujemy zbiory A1, . . . , Ak w następujący sposób:

Aj = {f ∈ [m][n] : j 6∈ Rf}

dla j = 1, . . . , k. Korzystając ze wzoru włączeń i wyłączeń, podobnie jak w paragrafie
3, otrzymujemy

|A1 ∪ . . . ∪Ak| =
k
∑

j=1

(−1)j+1
∑

T∈Pj(k)

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣
=
k
∑

j=1

(−1)j+1
∑

T⊆Pj(k)

(m− j)n =

=
k
∑

j=1

(−1)j+1
(

k

j

)

(m− j)n.
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Funkcje, które nas interesują, tworzą zbiór [m][n] \ (A1 ∪ . . .∪Ak). Zatem liczba takich
funkcji jest równa

mn −

k
∑

j=1

(−1)j+1
(

k

j

)

(m− j)n =
k
∑

j=0

(−1)j
(

k

j

)

(m− j)n.

W szczególności, jeśli k = n oraz m ≥ n, to istnieje n! takich funkcji. Zatem

n
∑

j=0

(−1)j
(

n

j

)

(m− j)n = n! dla m ≥ n. (2.13)

Zdefiniujmy teraz wielomian W (x) wzorem

W (x) =
n
∑

k=0

(−1)k
(

n

k

)

(x− k)n.

Jest to wielomian stopnia co najwyżej n. Z tożsamości (2.13) wynika jednak, że tę samą
wartość n! przyjmuje on w nieskończenie wielu punktach:

W (m) = n! dla m ≥ n.

Stąd wynika, że ten wielomian jest wielomianem stałym, czyli

n
∑

k=0

(−1)k
(

n

k

)

(x− k)n = n! (2.14)

Z rozumowaniem, które przeprowadziliśmy, pozwalającym przejść od tożsamości udo-
wodnionej dla liczb naturalnych do równości wielomianów, spotkamy się jeszcze w na-
stępnych wykładach.

11. Nierówności Bonferroniego

Udowodnimy teraz dwie nierówności, zwane nierównościami Bonferroniego. Oto
one:

|A1 ∪ . . . ∪ An| ≥

2r
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
(2.15)

oraz

|A1 ∪ . . . ∪ An| ≤
2r+1
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.16)

Powtarzamy drugi dowód zasady włączeń i wyłączeń polegający na przeglądaniu kolej-
nych składników sumy stojącej po prawej stronie nierówności i rysowaniu przy każdym
elemencie iloczynu

⋂

j∈T

Aj znaku plus lub minus w zależności od tego, czy liczba
∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
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występuje w sumie ze znakiem plus czy minus. Inaczej mówiąc, jeśli zbiór T ma nie-
parzystą liczbę elementów, to rysujemy znak plus; jeśli zaś zbiór T ma parzystą liczbę
elementów, to rysujemy znak minus.

Tak jak w poprzednim dowodzie zauważamy, że prawa strona równości (2.3) jest różnicą
między liczbą plusów i liczbą minusów. Musimy zatem oszacować różnicę między liczbą
plusów i minusów narysowanych przy każdym elemencie sumy zbiorów A1 ∪ . . . ∪An.

Zajmiemy się najpierw nierównością (2.15). Mamy teraz pokazać, że przy każdym ele-
mencie sumy zbiorów A1∪. . .∪An narysowaliśmy co najwyżej o jeden plus więcej. Niech
x ∈ A1 ∪ . . . ∪ An. Tak jak poprzednio, niech

M = {j : x ∈ Aj}.

Inaczej mówiąc, x ∈ Aj wtedy i tylko wtedy, gdy j ∈M . Oznaczmy m = |M |; oczywiście
m > 0. Niech teraz T ∈ Pk(n) i popatrzmy na zbiór

⋂

j∈T

Aj; jest to jeden ze zbiorów

występujących po prawej stronie równości (2.3). Jeśli T \M 6= ∅, to oczywiście mamy
x 6∈
⋂

j∈T

Aj. Przypuśćmy zatem, że T ⊆ M . Wtedy przy elemencie x rysowaliśmy znak

plus lub minus, w zależności od parzystości k: plus dla nieparzystych k, minus dla
parzystych k. Dla danego k liczba takich zbiorów T jest równa

(

m
k

)

. Liczby plusów
i minusów narysowanych przy x są zatem równe

liczba plusów =
r
∑

k=1

(

m

2k

)

.

liczba minusów =
r
∑

k=1

(

m

2k − 1

)

,

skąd dostajemy

liczba plusów− liczba minusów =
2r
∑

k=1

(−1)k+1
(

m

k

)

.

Tym razem korzystamy z równości (1.27) (przypominamy, że m > 0):

2r
∑

k=0

(−1)k
(

m

k

)

= (−1)2r
(

m− 1
2r

)

=
(

m− 1
2r

)

.

Mamy teraz dwie możliwości. Jeśli m− 1 < 2r, czyli m ≤ 2r (tzn. element x należy do
co najwyżej 2r zbiorów Aj), to tak jak poprzednio

liczba plusów− liczba minusów = 0.

Jeśli zaś m > 2r, to
(

m− 1
2r

)

≥ 1
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skąd wynika, że
(

m

0

)

+
2r
∑

k=1

(−1)k
(

m

k

)

≥ 1,

czyli
2r
∑

k=1

(−1)k
(

m

k

)

≥ 0.

Zatem
2r
∑

k=1

(−1)k+1
(

m

k

)

= −
2r
∑

k=1

(−1)k
(

m

k

)

≤ 0.

Stąd wynika, że przy elemencie x narysowaliśmy co najwyżej tyle plusów, ile minusów.
Zatem dla każdego elementu x sumy A1∪ . . .∪An w obu przypadkach narysowaliśmy co
najwyżej o jeden plus więcej, co dowodzi nierówności (2.15). Dowód nierówności (2.16)
jest analogiczny i pozostawimy go jako ćwiczenie.

Z powyższego dowodu wynika, że jeśli każdy element sumy A1 ∪ . . . ∪ An należy do co
najwyżej 2r zbiorów Aj , to nierówność (2.15) staje się równością. Jeśli natomiast istnieje
co najmniej jeden element należący do więcej niż 2r zbiorów Aj , to nierówność (2.15)
jest ostra. Podobnie jest z nierównością (2.16). Jeśli każdy element sumy A1 ∪ . . . ∪An
należy do co najwyżej 2r + 1 zbiorów Aj , to mamy równość; w przeciwnym przypadku
nierówność jest ostra.
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Spis tożsamości kombinatorycznych

|A ∪B| = |A|+ |B| − |A ∩B| (2.1)

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|. (2.2)

|A1 ∪ . . . ∪An| =
n
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.3)

|{f ∈ AB : f jest „na”}| =
m
∑

k=0

(−1)k
(

m

k

)

(m− k)n. (2.4)

|D(A)| = n! ·
n
∑

k=0

(−1)k

k!
. (2.5)

|D0(X,A1, . . . , An) =
n
∑

k=0

(−1)k
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.6)

|Dr(X,A1, . . . , An)| =
n
∑

k=r

(−1)k−r
(

k

r

)

∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.7)

|Dr(A)| =
n!
r!
·

n−r
∑

k=0

(−1)k

k!
. (2.8)

M(n) = 2 · n! · µ(n). (2.9)

µ(n) =
n
∑

k=0

(−1)k · (n− k)! · g(2n, k). (2.10)

M(n) = 2 · n! ·
n
∑

k=0

(−1)k ·
2n
2n− k

·

(

2n− k
k

)

· (n− k)! (2.11)

nk =
k
∑

j=1

(−1)j+1
(

k

j

)

Sk−j(n). (2.12)

n
∑

j=0

(−1)j
(

n

j

)

(m− j)n = n! dla m ≥ n. (2.13)

n
∑

k=0

(−1)k
(

n

k

)

(x− k)n = n! (2.14)

|A1 ∪ . . . ∪An| ≥

2m
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.15)

|A1 ∪ . . . ∪ An| ≤
2m+1
∑

k=1

(−1)k+1
∑

T∈Pk(n)

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣
. (2.16)
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Równania rekurencyjne 1

RÓWNANIA REKURENCYJNE

1. Ciągi arytmetyczne i geometryczne

Z najprostszymi równaniami rekurencyjnymi zetknęliśmy się już w szkole. Zacznijmy od
przypomnienia definicji ciągu arytmetycznego. Niech będą dane dwie liczby rzeczywiste
a i r. Ciągiem arytmetycznym nazywamy ciąg (an) liczb rzeczywistych określony
wzorami

a0 = a, an+1 = an + r dla n ≥ 0.
Ze szkoły znamy też wzór ogólny (lub wzór jawny) ciągu arytmetycznego (an):

an = a+ nr

dla n = 0, 1, 2, . . .

W podobny sposób definiujemy ciągi geometryczne. Załóżmy, że dane są liczby rze-
czywiste a i q. Ciągiem geometrycznym nazywamy ciąg (an) liczb rzeczywistych
zdefiniowany wzorami

a0 = a, an+1 = anq dla n ≥ 0.
Znów wzór ogólny ciągu geometrycznego (an) jest znany ze szkoły:

an = aqn

dla n = 0, 1, 2, . . .

2. Wieże Hanoi

Znaczenie równań rekurencyjnych w kombinatoryce polega na tym, że wielokrotnie
umiemy dość łatwo znaleźć rozwiązanie rekurencyjne zadania kombinatorycznego, pod-
czas gdy znalezienie wzoru ogólnego nie jest oczywiste. Z drugiej strony, znamy wiele
metod otrzymywania wzorów ogólnych z równań rekurencyjnych. Kilka takich metod
poznamy w tym i następnym wykładzie. Zacznijmy od przykładu: zadania o tzw. wie-
żach Hanoi.

Łamigłówka o nazwie „Wieże Hanoi” wygląda w następujący sposób. Mamy trzy pa-
łeczki. Na jedną z nich nadziano 64 krążki w kolejności od największego na dole do
najmniejszego na górze. Należy przenieść wszystkie krążki z jednej pałeczki na drugą,
przy czym wolno za każdym razem przenosić tylko jeden krążek i nie wolno kłaść więk-
szego krążka na mniejszy. W czasie przenoszenia wolno kłaść krążki na wszystkich trzech
pałeczkach. Ile najmniej ruchów (tzn. pojedynczych przeniesień krążków) potrzeba, by
przenieść wszystkie 64 krążki?

Oznaczmy przez Hn najmniejszą liczbę ruchów, które należy wykonać by przenieść n
krążków z jednej pałeczki na inną. Jest przy tym obojętne, z której pałeczki na którą
przenosimy te krążki. Również jest obojętne, czy na tych pałeczkach już leżą jakieś
krążki, byle były one większe od wszystkich krążków, które przenosimy. Oczywiście
H0 = 0. Przypuśćmy, że umiemy przenieść n krążków w minimalnej liczbie Hn ruchów.
Chcemy teraz przenieść n+1 krążków z pierwszej pałeczki na drugą. W którymś momen-
cie będziemy musieli przenieść największy krążek, leżący na samym dole na pierwszej
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pałeczce. Oczywiście musimy przedtem zdjąć z niego wszystkie mniejsze krążki. Nie
mogą one też leżeć na drugiej pałeczce, bo tam mamy położyć największy krążek. Mu-
simy zatem przenieść n krążków z pierwszej pałeczki na trzecią. Wykonamy w tym celu
Hn ruchów. Następnie przenosimy największy krążek (to jest jeden ruch) i wreszcie
przenosimy n krążków z trzeciej pałeczki na drugą (tu znów mamy Hn ruchów). Razem
wykonamy więc 2 ·Hn+1 ruchów. Widzimy, że z jednej strony jest to minimalna liczba
ruchów, które musimy wykonać, a z drugiej, że ta liczba ruchów jest też wystarczająca.
Zatem otrzymujemy równanie rekurencyjne:

H0 = 0, Hn+1 = 2 ·Hn + 1 dla n ≥ 0.

Obliczmy kilka początkowych wyrazów ciągu (Hn):

H0 = 0,

H1 = 2H0 + 1 = 1,

H2 = 2H1 + 1 = 3,

H3 = 2H2 + 1 = 7,

H4 = 2H3 + 1 = 15

i tak dalej. Łatwo domyślamy się wzoru ogólnego:

Hn = 2n − 1

dla n = 0, 1, 2, . . . Możemy teraz sprawdzić przez indukcję, że ten odgadnięty wzór
ogólny jest poprawny.

3. Równania rekurencyjne liniowe pierwszego rzędu o stałych współczynni-
kach

Niech będą dane liczby rzeczywiste a, b i c. Przypuśćmy następnie, że ciąg (an) został
określony za pomocą równania rekurencyjnego

a0 = a, an+1 = b · an + c dla n ≥ 0.

Ciąg (Hn) określony wyżej otrzymamy przyjmując a = 0, b = 2 i c = 1. Przyjmijmy
ponadto, że b 6= 1 (w przeciwnym razie mielibyśmy do czynienia z ciągiem arytmetycz-
nym). Obliczmy kilka początkowych wyrazów ciągu (an):

a0 = a,

a1 = ba0 + c = ab+ c,

a2 = ba1 + c = ab2 + bc+ c,

a3 = ba2 + c = ab3 + b2c+ bc+ c,

a4 = ba3 + c = ab4 + b3c+ b2c+ bc+ c,

a5 = ba4 + c = ab5 + b4c+ b3c+ b2c+ bc+ c
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i tak dalej. Znów domyślamy się wzoru ogólnego:

an = abn + c(1 + b+ b2 + . . .+ bn−1) = abn + c ·
bn − 1
b− 1

dla n = 0, 1, 2, . . . Sprawdzimy przez indukcję, że ten wzór jest poprawny.

Dla n = 0 mamy

a0 = ab0 + c ·
b0 − 1
b− 1 = a.

Przypuśćmy następnie, że nasz wzór jest spełniony dla pewnego n i obliczmy an+1:

an+1 = ban + c = b ·
(

abn + c · b
n − 1
b− 1

)

+ c = abn+1 + c · b
n+1 − b
b− 1 + c =

= abn+1 + c · b
n+1 − b+ b− 1
b− 1 = abn+1 + c · b

n+1 − 1
b− 1 ,

co kończy dowód indukcyjny.
Wzór ogólny tego ciągu można wyznaczyć też w inny sposób, wprowadzając ciąg po-
mocniczy (bn) zdefiniowany wzorem

bn = an+1 − an
dla n = 0, 1, 2, . . .Wówczas

bn+1 = an+2 − an+1 = (ban+1 + c)− (ban + c) = b · (an+1 − an) = b · bn,

skąd dostajemy
bn = b0 · bn

dla n = 0, 1, 2, . . . Zatem
an+1 = an + b0 · bn

dla n = 0, 1, 2, . . .Wypiszmy n początkowych równości:

a1 = a0 + b0 · b0,
a2 = a1 + b0 · b1,
a3 = a2 + b0 · b2,
an−1 = an−2 + b0 · bn−2,
an = an−1 + b0 · bn−1.

Po dodaniu stronami tych nierówności i skróceniu występujących po obu stronach wy-
razów a1, a2, . . . , an−1, otrzymamy

an = a0 + b0 · (b0 + b1 + b2 + . . .+ bn−1) = a0 + b0 ·
bn − 1
b− 1 =

= a+ (ab+ c− a) · b
n − 1
b− 1 = a+ a(b− 1) ·

bn − 1
b− 1 + c ·

bn − 1
b− 1 =

= a+ a(bn − 1) + c · b
n − 1
b− 1 = ab

n + c · b
n − 1
b− 1 .
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4. Równania rekurencyjne liniowe pierwszego rzędu o zmiennych współczyn-
nikach

Rozwiążemy najpierw zadanie o tzw. sortowaniu przez łączenie. Mamy 2n monet, każda
innej wagi. Dysponujemy wagą szalkową bez odważników. Naszym zadaniem będzie
ułożenie wszystkich monet w kolejności od najcięższej do najlżejszej. Będziemy to ro-
bili w następujący sposób. Najpierw podzielimy monety na dwie części po 2n−1 monet.
Następnie każdą z tych części uporządkujemy od najcięższej do najlżejszej. Potem po-
równamy najcięższe monety z obu części i cięższą z nich odłożymy jako najcięższą ze
wszystkich. Potem porównamy najcięższe monety obu części (jedna z tych części jest
teraz mniejsza, ubyła z niej jedna moneta). Cięższą monetę odkładamy na bok jako
drugą z kolei. I tak dalej. Trzeba jeszcze wyjaśnić, w jaki sposób porządkujemy obie
części. Otóż zrobimy to w taki sam sposób. Każdą z tych części podzielimy znów na
dwie części, uporządkujemy je i połączymy ze sobą. Każdą z tych mniejszych części
znów porządkujemy tak samo: dzielimy na dwie części i potem łączymy ze sobą. I tak
dalej. Wreszcie dojdziemy do części liczących tylko dwie monety i wtedy wystarczy
jedno ważenie, by taką małą część uporządkować. Ile potrzeba ważeń, by za pomocą tej
metody uporządkować wszystkie monety?

Oznaczmy przez Pn maksymalną liczbę ważeń potrzebnych do uporządkowania 2n mo-
net w sposób opisany w zadaniu. Oczywiście P0 = 0. Jeśli bowiem mamy 20, czyli 1
monetę, to nie musimy nic ważyć. Przypuśćmy teraz, że umiemy już uporządkować 2n

monet za pomocą Pn ważeń. Spróbujmy zatem uporządkować 2n+1 monet. Najpierw
dzielimy je na dwie części, po 2n monet każda. Następnie porządkujemy każdą z tych
części. Do uporządkowania każdej części potrzebujemy Pn ważeń. Wreszcie musimy po-
łączyć obie części. Zauważamy więc, że każde ważenie pozwala nam odłożyć na bok, jako
kolejną, tylko jedną monetę. Do uporządkowania wszystkich 2n+1 monet będziemy więc
potrzebowali co najwyżej 2n+1−1 ważeń. (Czasami to łączenie może zakończyć się wcze-
śniej, gdy przy odkładaniu monet na bok jedną z części wyczerpiemy dużo wcześniej niż
drugą; na pewno jednak nie będziemy potrzebowali większej liczby ważeń.) Łączna mak-
symalna liczba ważeń potrzebnych do uporządkowania wszystkich 2n+1 monet wynosi
więc 2 · Pn + 2n+1 − 1.
Ciąg liczb (Pn) jest zatem określony wzorami: rekurencyjnymi

P0 = 0, Pn+1 = 2 · Pn + 2n+1 − 1 dla n ≥ 0.

Znów obliczmy kilka początkowych wyrazów ciągu (Pn):

P0 = 0,

P1 = 2 · 0 + 21 − 1 = 1,
P2 = 2 · 1 + 22 − 1 = 5,
P3 = 2 · 5 + 23 − 1 = 17,
P4 = 2 · 17 + 24 − 1 = 49,
P5 = 2 · 49 + 25 − 1 = 129,
P6 = 2 · 129 + 26 − 1 = 321
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i tak dalej. Tu domyślenie się wzoru ogólnego jest trudniejsze. Można jednak zauważyć,
że

P0 − 1 = −1 = (−1) · 20,
P1 − 1 = 0 = 0 · 21,
P2 − 1 = 4 = 1 · 22,
P3 − 1 = 16 = 2 · 23,
P4 − 1 = 48 = 3 · 24,
P5 − 1 = 128 = 4 · 25,
P6 − 1 = 320 = 5 · 26

i tak dalej. Widzimy już wzór ogólny

Pn = (n− 1) · 2n + 1
dla n = 0, 1, 2, . . . Sprawdzenie poprawności tego wzoru przez indukcję jest prostym
ćwiczeniem.

5. Metoda czynnika sumacyjnego

Równanie rekurencyjne otrzymane w ostatnim paragrafie można rozwiązać w sposób
następujący. Rozważmy ciąg (Qn) określony wzorem

Qn =
Pn

2n
dla n ≥ 0.

Wówczas oczywiście Q0 = 0. Podzielmy teraz obie strony równania

Pn+1 = 2 · Pn + 2n+1 − 1
przez 2n+1. Otrzymamy

Pn+1

2n+1
=
Pn

2n
+ 1− 1

2n+1
,

czyli

Qn+1 = Qn + 1−
1
2n+1

dla n = 0, 1, 2, . . .Wypiszmy teraz otrzymane zależności dla początkowych wartości n:

Q1 = Q0 + 1−
1
21
,

Q2 = Q1 + 1−
1
22
,

Q3 = Q2 + 1−
1
23
,

Q4 = Q3 + 1−
1
24
,

. . . . . .

Qn−1 = Qn−2 + 1−
1
2n−1
,

Qn = Qn−1 + 1−
1
2n
.
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Dodajemy teraz te równości stronami i po skróceniu jednakowych składników występu-
jących po obu stronach, otrzymujemy

Qn = Q0 + n−
1
21
− 1
22
− 1
23
− . . .− 1

2n
.

Mnożymy obie strony przez 2n, otrzymując

Pn = n · 2n − (1 + 2 + 4 + . . .+ 2n−1) = n · 2n − (2n − 1) = (n− 1) · 2n + 1.

Powstaje pytanie, w jaki sposób dobieramy na początku ciąg (Qn) i liczbę, przez którą
dzielimy obie strony równania rekurencyjnego. Popatrzmy zatem na ten problem nieco
ogólniej. Przypuśćmy, że mamy dane trzy ciągi (an), (bn) i (cn) oraz, że ciąg (tn) jest
określony wzorami rekurancyjnymi

t0 = t, antn+1 = bntn + cn dla n ≥ 0.

Wybieramy następnie ciąg (sn) (tzw. czynnik sumacyjny) o tej własności, że

ansn = bn+1sn+1

dla n = 0, 1, 2, . . . Następnie mnożymy obie strony równania

antn+1 = bntn + cn

przez sn:
ansntn+1 = bnsntn + cnsn,

czyli
bn+1sn+1tn+1 = bnsntn + cnsn

dla n = 0, 1, 2, . . . Określamy teraz ciąg (un) wzorem

un = bnsntn

dla n = 0, 1, 2, . . . i wypisujemy n początkowych równań:

u1 = u0 + c0s0,

u2 = u1 + c1s1,

u3 = u2 + c2s2,

. . . . . .

un = un−1 + cn−1sn−1.

Dodajemy stronami otrzymane równości i po skróceniu dostajemy

un = u0 +
n−1
∑

k=0

cksk,
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czyli

tn =
1
bnsn

·
(

b0s0t+
n−1
∑

k=0

cksk

)

dla n = 0, 1, 2, . . .

W naszym przykładzie mieliśmy an = 1, bn = 2 oraz cn = 2n+1 − 1. Dobieraliśmy
czynnik sumacyjny sn tak, by ansn = bn+1sn+1, czyli sn = 2sn+1. W tym momencie
wybór

sn =
1
2n

jest już naturalny.

6. Równania rekurencyjne liniowe pierwszego rzędu o zmiennych współczyn-
nikach – c. d.

W ostatnim przykładzie mieliśmy do czynienia z ciągiem zdefiniowanym za pomocą
równania rekurencyjnego liniowego postaci

t0 = t, antn+1 = bntn + cn dla n ≥ 0,

w którym ciągi (an) i (bn) były stałe i tylko wyrazy ciągu (cn) zależały od n. Znamy
jednak dobrze ciąg zdefiniowany rekurencyjnie, w którym współczynnik bn zależy od n.
Jest to silnia:

0! = 1, (n+ 1)! = (n+ 1) · n! dla n ≥ 0.
W tym paragrafie przyjrzymy się zastosowaniu metody czynnika sumacyjnego do zna-
lezienia wzoru ogólnego dla ciągu zdefiniowanego podobnymi wzorami. Przypuśćmy, że
ciąg (an) jest zdefiniowany wzorami

a0 = 1, an+1 = (n+ 1) · an + 1 dla n ≥ 1.

Definiujemy ciąg (bn) wzorem

bn =
an

n!
dla n = 0, 1, 2, . . . Następnie dzielimy obie strony równania

an+1 = (n+ 1) · an + 1

przez (n+ 1)!. Otrzymujemy
an+1

(n+ 1)!
=
an

n!
+
1
n!

dla n = 0, 1, 2, . . ., czyli

bn+1 = bn +
1

(n+ 1)!

dla n = 0, 1, 2, . . . Podobnie jak w poprzednich paragrafach otrzymujemy stąd

bn = b0 +
1
1!
+
1
2!
+ . . .+

1
n!
=
1
0!
+
1
1!
+
1
2!
+ . . .+

1
n!
,
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czyli

an = n! ·
(

1
0!
+
1
1!
+ . . .+

1
n!

)

dla n = 0, 1, 2, . . . Dla dużych n mamy zatem an ≈ n! · e.

7. Suma odwrotności współczynników dwumianowych

Metodę czynnika sumacyjnego możemy zastosować także do obliczenia następujących
dwóch sum. Oznaczmy:

Sn =
n
∑

k=0

1
(

n

k

) , Tn =
n
∑

k=0

k
(

n

k

)

dla n = 0, 1, 2, . . .Wtedy:

Tn =
n
∑

k=0

n− k
(

n

k

) = n · Sn − Tn, czyli Tn =
n

2
· Sn.

Następnie:

Sn = 1 +
n
∑

k=1

1
(

n

k

) = 1 +
n
∑

k=1

1
n

k

(

n−1
k−1

) = 1 +
1
n
·
n
∑

k=1

k
(

n−1
k−1

) =

= 1 +
1
n
·
n
∑

k=0

k + 1
(

n−1
k

) = 1 +
1
n
· (Sn−1 + Tn−1) =

= 1 +
1
n
· Sn−1 +

1
n
· Tn−1 = 1 +

1
n
· Sn−1 +

n− 1
2n
· Sn−1 =

=
n+ 1
2n
· Sn−1 + 1

dla n = 1, 2, 3, . . . Mamy zatem równanie rekurencyjne postaci Sn = anSn−1 + 1, gdzie
an = n+1

2n . Takie równania umiemy rozwiązywać za pomocą czynnika sumacyjnego.
Dobieramy czynnik sn tak, by były spełnione równości snan = sn−1 dla wszystkich
n ≥ 1. Przyjmujemy

s0 = 1 oraz sn =
sn−1

an
dla n ≥ 1.

Wtedy otrzymujemy:
snSn = snanSn−1 + sn

czyli
snSn = sn−1Sn−1 + sn

dla n = 1, 2, 3, . . .. Przyjmując następnie Un = snSn, otrzymujemy równanie rekuren-
cyjne

U0 = 1, Un = Un−1 + sn dla n ≥ 1.
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To równanie rekurencyjne oczywiście ma rozwiązanie w postaci sumy:

Un = U0 +
n
∑

k=1

sk

dla n = 0, 1, 2, . . . Nietrudno zauważyć, że czynniki sumacyjne sn są równe

sn =
s0

a1a2 · . . . · an
=

1
a1a2 · . . . · an

=
n
∏

k=1

2k
k + 1

=
2n

n+ 1

dla n = 1, 2, 3, . . . Ponadto s0 = 1. Stąd otrzymujemy

Un = 1 +
n
∑

k−1

2k

k + 1
=
n
∑

k=0

2k

k + 1

dla n = 0, 1, 2, . . . Ostatecznie:

Sn =
1
sn
·
n
∑

k=0

2k

k + 1
=
n+ 1
2n
·
n
∑

k=0

2k

k + 1
=
n+ 1
2n+1

·
n
∑

k=0

2k+1

k + 1
=
n+ 1
2n+1

·
n+1
∑

k=1

2k

k

oraz

Tn =
n(n+ 1)
2n+2

·
n+1
∑

k=1

2k

k

dla n = 0, 1, 2, . . .

8. Co trzeci współczynnik dwumianowy

W tym paragrafie obliczymy sumę

Sn =
n
∑

k=0

(

3n
3k

)

=
∑

3|k

(

3n
k

)

dla n = 0, 1, 2, . . .Wdrugiej sumie wskaźnik k przebiega wszystkie liczby podzielne przez
3, dla których dodawany składnik jest niezerowy. Przypominamy tu, że każdy wiersz
trójkąta Pascala traktujemy jako składający się z nieskończenie wielu współczynników
dwumianowych, wśród których jest tylko skończenie wiele różnych od zera. Tej umowy
będziemy się trzymać we wszystkich rozważanych dalej sumach. Przystąpimy teraz do
ułożenia równania rekurencyjnego dla ciągu (Sn).

Przyjrzymy się dokładniej strukturze trójkąta Pascala. Mamy obliczyć sumę co trzeciego
wyrazu w co trzecim wierszu tego trójkąta. Pamiętamy, że każdy wyraz trójkąta Pascala
jest sumą dwóch wyrazów stojących bezpośrednio nad nim, z jego lewej i prawej strony.
Te wyrazy z kolei są sumami wyrazów stojących wyżej itd. Spróbujemy wyrazić sumę
co trzeciego wyrazu wiersza o numerze 3n + 3 za pomocą analogicznej sumy wyrazów
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wiersza o numerze 3n. Popatrzmy w tym celu na przykładowy fragment trójkąta Pascala
(wiersze od n = 9 do n = 12):

♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠

Na powyższym rysunku nie wpisaliśmy liczb. Zaznaczyliśmy tylko miejsca, na których
się znajdują dwoma znakami: ♠ i ♥. Okazuje się bowiem, że dla uzyskania równania
rekurencyjnego zupełnie nie jest istotne, jakie liczby dodajemy, ale ważne jest to, na
jakich miejscach się one znajdują. I tak symbolem ♠ są oznaczone te miejsca w trójkącie
Pascala, gdzie znajdują się liczby, które będziemy sumować. Symbolem ♥ oznaczone
są wszystkie pozostałe miejsca w tym trójkącie. Teraz popatrzmy, jak liczby stojące
na miejscach ♠ najniższego wiersza powstają z liczb stojących w wierszu położonym
najwyżej na naszym rysunku:

♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠ ♥ ♥ ♠

Symbole ♠ i ♥ są teraz w ramkach. Pojedyncza ramka oznacza, że dana liczba była
użyta jeden raz do obliczenia odpowiedniej liczby dolnego wiersza. Takimi są na przykład
liczby drugiego wiersza od dołu. Jednak w trzecim wierszu od dołu pojawia się już liczba,
która została użyta dwa razy: po jednym razie do obliczenia każdej z obramowanych
liczb drugiego wiersza od dołu. W najwyższym wierszu naszego rysunku niektóre liczby
mają nawet trzy ramki: te, które były potrzebne do obliczenia liczby w podwójnej ramce
niższego rzędu. Tak samo będzie dla każdej interesującej nas liczby najniższego rzędu.
Możemy to zapisać w postaci wzoru:

(

3n+ 3
3k

)

=
(

3n
3k − 3

)

+ 3 ·
(

3n
3k − 2

)

+ 3 ·
(

3n
3k − 1

)

+
(

3n
3k

)

Nietrudno teraz dostrzec zależność rekurencyjną (przyjmujemy, że sumowanie rozciąga
się na wszystkie niezerowe wyrazy danej sumy):

Sn+1 = 2 ·
∑

3|k

(

3n
k

)

+ 3 ·
∑

3 ∤ k

(

3n
k

)

= 3 ·
∑

k

(

3n
k

)

−
∑

3|k

(

3n
k

)

= 3 · 23n − Sn
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dla n = 0, 1, 2, . . .

Wzór ten możemy otrzymać też za pomocą bezpośrednich obliczeń:

(

3n+ 3
3k

)

=
(

3n+ 2
3k − 1

)

+
(

3n+ 2
3k

)

=

=
(

3n+ 1
3k − 2

)

+
(

3n+ 1
3k − 1

)

+
(

3n+ 1
3k − 1

)

+
(

3n+ 1
3k

)

=

=
(

3n+ 1
3k − 2

)

+ 2 ·
(

3n+ 1
3k − 1

)

+
(

3n+ 1
3k

)

=

=
(

3n
3k − 3

)

+
(

3n+ 1
3k − 2

)

+ 2 ·
(

3n
3k − 2

)

+ 2 ·
(

3n
3k − 1

)

+
(

3n
3k − 1

)

+
(

3n
3k

)

=

=
(

3n
3k − 3

)

+ 3 ·
(

3n
3k − 2

)

+ 3 ·
(

3n
3k − 1

)

+
(

3n
3k

)

Stąd wynika, że (pamiętamy, że sumowanie rozciąga się na wszystkie niezerowe wyrazy
danej sumy):

Sn+1 =
∑

k

(

3n+ 3
3k

)

=
∑

k

(

3n
3k − 3

)

+3 ·
∑

k

(

3n
3k − 2

)

+3 ·
∑

k

(

3n
3k − 1

)

+
∑

k

(

3n
3k

)

.

Teraz należy zauważyć, że

∑

k

(

3n
3k − 3

)

=
∑

k

(

3n
3k

)

.

W obu sumach występują bowiem te same składniki niezerowe
(

3n
k

)

wiersza o numerze
3n: te mianowicie, dla których liczba k jest podzielna przez 3. Mamy zatem

Sn+1 =
∑

k

(

3n+ 3
3k

)

=

= 2 ·
∑

k

(

3n
3k − 3

)

+ 3 ·
∑

k

(

3n
3k − 2

)

+ 3 ·
∑

k

(

3n
3k − 1

)

=

= 3 ·
∑

k

(

3n
k

)

−
∑

3|k

(

3n
k

)

=

= 3 · 23n − Sn

dla n = 0, 1, 2, . . .

Nietrudno zauważyć, że S0 = 1. Pozostaje nam wyprowadzenie wzoru ogólnego na Sn
ze wzorów rekurencyjnych

S0 = 1, Sn+1 = 3 · 23n − Sn = 3 · 8n − Sn dla n ≥ 0.
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Możemy to osiągnąć bardzo prosto wyrażając Sn+2 za pomocą Sn:

Sn+2 = 3 · 8n+1 − Sn+1 = 3 · 8n+1 − 3 · 8n + Sn,

czyli
Sn+2 = Sn + 21 · 8n.

Teraz już łatwo zauważyć, że dla liczby nieparzystej n mamy

Sn = S1 + 21 · (81 + 83 + . . .+ 8n−2)

i ze wzoru na sumę ciągu geometrycznego otrzymujemy

Sn = 2 + 21 ·
8n − 8
82 − 1 = 2 +

8n − 8
3
=
8n − 2
3
.

Dla n parzystych skorzystamy ze wzoru rekurencyjnego:

Sn = 3 · 8n−1 − Sn−1 = 3 · 8n−1 −
8n−1 − 2
3

=
9 · 8n−1 − 8n−1 + 2

3
=
8n + 2
3
.

Łącząc razem otrzymane wzory dla n parzystych i n nieparzystych dostajemy wzór

Sn =
n
∑

k=0

(

3n
3k

)

=
8n + 2 · (−1)n

3
.

Równanie rekurencyjne

S0 = 1, Sn+1 = 3 · 8n − Sn dla n ≥ 0

można rozwiązać też za pomocą czynnika sumacyjnego. Zdefiniujmy ciąg (Tn) wzorem:

Tn = (−1)n · Sn

dla n = 0, 1, 2, . . . i pomnóżmy obie strony równania

Sn+1 = 3 · 8n − Sn

przez (−1)n+1. Otrzymamy

(−1)n+1 · Sn+1 = 3 · (−1)n+1 · 8n + (−1)n · Sn,

czyli
Tn+1 = Tn − 3 · (−1)n · 8n = Tn − 3 · (−8)n.

Stąd już łatwo stwierdzimy, że (pamiętając, że T0 = 1):

Tn = T0 − 3 · (−8)0 − 3 · (−8)1 − . . .− 3 · (−8)n−1 =
= T0 − 3 ·

(

1 + (−8)2 + (−8)2 + . . .+ (−8)n−1
)

=

= T0 − 3 ·
(−8)n − 1
−8− 1 = 1 +

(−8)n − 1
3

=
(−8)n + 2
3

.
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Ponieważ Tn = (−1)n · Sn, więc

Sn = (−1)n ·
(−8)n + 2
3

=
8n + 2 · (−1)n

3

dla n = 0, 1, 2, . . .
Dowód kombinatoryczny. Równanie rekurencyjne

S0 = 1, Sn+1 = 3 · 8n − Sn dla n ≥ 0

można też otrzymać za pomocą rozumowania kombinatorycznego. Mamy bowiem

Sn =
∣

∣

{

A ⊆ [3n] : 3 | |A|
}∣

∣

dla n = 0, 1, 2, . . .Możemy teraz zastanowić się, jak wyglądają podzbiory zbioru [3n+3]
o liczbie elementów podzielnej przez 3. Te podzbiory możemy pogrupować w cztery
zbiory:
1) A ⊆ [3n], gdzie 3 | |A|,
2) A = B ∪ {3n+ 1, 3n+ 2, 3n+ 3}, gdzie B ⊆ [3n] i 3 | |B|,
3) A = B ∪ {3n + 1} lub A = B ∪ {3n + 2} lub A = B ∪ {3n + 3}, gdzie B ⊆ [3n]
i |B| ≡ 2 (mod 3),

4) A = B∪{3n+1, 3n+2} lub A = B∪{3n+1, 3n+3} lub A = B∪{3n+2, 3n+3},
gdzie B ⊆ [3n] i |B| ≡ 1 (mod 3).

W pierwszej i drugiej grupie mamy po Sn zbiorów, w trzeciej i czwartej mamy łącznie
3 · (23n − Sn) zbiorów. Stąd otrzymujemy równanie

Sn+1 = 2Sn + 3 · 23n − 3Sn = 3 · 8n − Sn.

Rozwiązanie algebraiczne. Zadanie obliczenia sumy Sn można rozwiązać metodami
algebry. W tym celu weźmy zespolony pierwiastek trzeciego stopnia z jedności:

ε3 = 1.

Wtedy ε jest pierwiastkiem równania x3 − 1 = 0, czyli (x − 1)(x2 + x + 1) = 0. Stąd
wynika, że nierzeczywisty pierwiastek tego równania spełnia równanie

ε2 + ε+ 1 = 0.

Obliczymy teraz dwoma sposobami sumę

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n.

Najpierw skorzystamy ze wzoru dwumianowego Newtona:

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n =

=
3n
∑

k=0

(

3n
k

)

ε0·k +
3n
∑

k=0

(

3n
k

)

ε1·k +
3n
∑

k=0

(

3n
k

)

ε2·k =

=
3n
∑

k=0

(

3n
k

)

(ε0 + εk + ε2k).
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Popatrzmy teraz, jak wyglądają sumy

1 + εk + ε2k

dla różnych k. Oczywiście dla liczb k podzielnych przez 3 dodajemy do siebie trzy
jedynki. Zatem suma jest równa 3. Niech teraz k = 3l + 1. Wtedy

1 + εk + ε2k = 1 + ε3l · ε+ ε6l · ε2 = 1 + ε+ ε2 = 0.

Podobnie dla k = 3l + 2 stwierdzimy, że ta suma równa jest 0. Zatem, kontynuując
przerwane obliczenia, dostajemy

3n
∑

k=0

(

3n
k

)

(ε0 + εk + ε2k) =
n
∑

k=0

3
(

3n
3k

)

= 3 ·
n
∑

k=0

(

3n
3k

)

.

Następnie obliczymy tę samą sumę bez odwoływania się do wzoru Newtona. Mamy
wtedy:

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n =

= (1 + 1)3n + (1 + ε)3n + (1 + ε2)3n =

= 23n + (−ε2)3n + (−ε)3n =
= 23n + (−1)3nε6n + (−1)3nε3n =
= 23n + (−1)n(ε3)n + (−1)n(ε3)n =
= 23n + (−1)n + (−1)n =
= 23n + 2 · (−1)n.

W tym dowodzie korzystaliśmy z oczywistych równości:

(−1)3n = (−1)n, 1 + ε = −ε2, 1 + ε2 = −ε.

Porównując wyniki obu obliczeń, otrzymamy:

3 ·
n
∑

k=0

(

3n
3k

)

= 8n + 2 · (−1)n,

czyli ostatecznie
n
∑

k=0

(

3n
3k

)

=
8n + 2 · (−1)n

3
.

9. Nieporządki

W tym paragrafie rozwiążemy znane nam już zadanie o liczbie nieporządków. Mamy
zadanie:
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• Piszemy n listów i adresujemy n kopert. Na ile sposobów możemy włożyć te listy
do kopert tak, by żaden list nie trafił do właściwej koperty?

Ponumerujmy listy i koperty liczbami od 1 do n; zakładamy przy tym, że list o numerze
k powinien trafić do koperty o numerze k. Popatrzmy teraz na ciąg numerów listów
włożonych do kopert: a1 jest numerem listu włożonego do koperty z numerem 1, a2
jest numerem listu w kopercie z numerem 2 i tak dalej. Ogólnie ak jest numerem listu
włożonego do koperty o numerze k. Oczywiście ciąg liczb (a1, a2, . . . , an) jest permutacją
zbioru liczb od 1 do n. Będziemy używać znanego oznaczenia permutacji: permutację
(a1, a2, . . . , an−1, an) oznaczamy symbolem

(

1 2 . . . n− 1 n

a1 a2 . . . an−1 an

)

wskazując w ten sposób w górnym wierszu numery kopert i pod nimi w dolnym wierszu
numery listów, które trafiły do kolejnych kopert.

Przypomnijmy, że liczba k jest punktem stałym permutacji (a1, . . . , an), jeśli ak = k,
tzn. jeśli liczba ak stoi na swoim, tzn. k-tym miejscu. Interesuje nas liczba nieporząd-
ków, czyli tych permutacji, które nie mają punktów stałych, tzn. permutacji (a1, . . . , ak)
takich, że żadna liczba ak nie stoi na swoim miejscu:

Dn =
∣

∣

{

(a1, . . . , an) : ∀k
(

ak 6= k
)}∣

∣.

Przyjrzyjmy się, w jaki sposób możemy pogrupować nieporządki. Popatrzmy na n-tą
kopertę. Mógł do niej trafić jeden z n−1 listów: każdy z wyjątkiem n-tego. Niech zatem
będzie to list o numerze k. Mamy teraz dwa przypadki.

Przypadek 1. List o numerze n trafił do koperty z numerem k. Inaczej mówiąc, listy
z numerami n i k „zamieniły się” kopertami. Mamy więc sytuację:

(

1 2 3 . . . k . . . n− 1 n
a1 a2 a3 . . . n . . . an−1 k

)

Oczywiście wtedy pozostałe listy (a jest ich n − 2) muszą też być „wymieszane”, czyli
ich numery muszą tworzyć nieporządek zbioru pozostałych liczb:

(

1 2 3 . . . k − 1 k + 1 . . . n− 1
a1 a2 a3 . . . ak−1 ak+1 . . . an−1

)

.

Tak włożyć te n− 2 listy do kopert można na Dn−2 sposobów. Inaczej mówiąc, istnieją
Dn−2 nieporządki n liczb, w których na n tym miejscu stoi dana liczba k i na k-tym
miejscu stoi liczba n. Uwzględniając liczbę możliwych k (jest ich n − 1) widzimy, że
w tym przypadku mamy łącznie (n− 1)Dn−2 sposobów włożenia listów do kopert.
Popatrzmy na przykład. Przypuśćmy, że listy o numerach 5 i 2 zamieniły się miejscami.
Istnieją 2 nieporządki zbioru liczb {1, 3, 4}:

(

1 3 4
3 4 1

) (

1 3 4
4 3 1

)

.
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Z nich powstają 2 nieporządki liczb od 1 do 5, w których 2 i 5 zamieniły się miejscami:

(

1 3 4
3 4 1

)

−→
(

1 2 3 4 5
3 5 4 1 2

)

,

(

1 3 4
4 3 1

)

−→
(

1 2 3 4 5
4 5 1 3 2

)

.

Przypadek 2. List o numerze n trafił do koperty z numerem l, przy czym k 6= l. Mamy
więc sytuację:

(

1 2 3 . . . l . . . n− 1 n
a1 a2 a3 . . . n . . . an−1 k

)

.

Wtedy na chwilę przekładamy listy: list o numerze n wkładamy do właściwej (tzn.
n-tej) koperty, a list o numerze k wkładamy do koperty z numerem l (czyli zamieniamy
miejscami k-ty i n-ty list):

(

1 2 3 . . . l . . . n− 1 n
a1 a2 a3 . . . k . . . an−1 n

)

.

Po tej zamianie mamy jeden list (o numerze n) we właściwej kopercie i pozostałe n− 1
listów dokładnie wymieszanych, tzn. ich numery tworzą nieporządek n−1 liczb od 1 do
n− 1:

(

1 2 3 . . . l . . . n− 1
a1 a2 a3 . . . k . . . an−1

)

.

Odwrotnie, jeśli mamy nieporządek liczb od 1 do n−1, to wkładamy list z numerem n do
n-tej koperty, a następnie zamieniamy listy z numerami k i n, otrzymując nieporządek
n numerów listów. Mamy Dn−1 nieporządków liczb od 1 do n − 1 i z każdego takiego
nieporządku dostajemy jeden nieporządek n liczb, w którym na miejscu n-tym stoi
liczba k. Uwzględniając liczbę możliwych k, dostajemy w tym przypadku (n− 1)Dn−1
sposobów włożenia listów.

Popatrzmy na przykład. Istnieje 9 nieporządków liczb od 1 do 4:

(

1 2 3 4
2 1 4 3

) (

1 2 3 4
2 3 4 1

) (

1 2 3 4
2 4 1 3

)

(

1 2 3 4
3 1 4 2

) (

1 2 3 4
3 4 1 2

) (

1 2 3 4
3 4 2 1

)

(

1 2 3 4
4 1 2 3

) (

1 2 3 4
4 3 1 2

) (

1 2 3 4
4 3 2 1

)

Z każdego z tych dziewięciu nieporządków otrzymamy jeden nieporządek liczb od 1 do
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5, w którym na miejscu piątym stoi liczba 2:

(

1 2 3 4
2 1 4 3

)

−→
(

1 2 3 4 5
2 1 4 3 5

)

−→
(

1 2 3 4 5
5 1 4 3 2

)

,

(

1 2 3 4
2 3 4 1

)

−→
(

1 2 3 4 5
2 3 4 1 5

)

−→
(

1 2 3 4 5
5 3 4 1 2

)

,

(

1 2 3 4
2 4 1 3

)

−→
(

1 2 3 4 5
2 4 1 3 5

)

−→
(

1 2 3 4 5
5 4 1 3 2

)

,

(

1 2 3 4
3 1 4 2

)

−→
(

1 2 3 4 5
3 1 4 2 5

)

−→
(

1 2 3 4 5
3 1 4 5 2

)

,

(

1 2 3 4
3 4 1 2

)

−→
(

1 2 3 4 5
3 4 1 2 5

)

−→
(

1 2 3 4 5
3 4 1 5 2

)

,

(

1 2 3 4
3 4 2 1

)

−→
(

1 2 3 4 5
3 4 2 1 5

)

−→
(

1 2 3 4 5
3 4 5 1 2

)

,

(

1 2 3 4
4 1 2 3

)

−→
(

1 2 3 4 5
4 1 2 3 5

)

−→
(

1 2 3 4 5
4 1 5 3 2

)

,

(

1 2 3 4
4 3 1 2

)

−→
(

1 2 3 4 5
4 3 1 2 5

)

−→
(

1 2 3 4 5
4 3 1 5 2

)

,

(

1 2 3 4
4 3 2 1

)

−→
(

1 2 3 4 5
4 3 2 1 5

)

−→
(

1 2 3 4 5
4 3 5 1 2

)

,

Łącznie mamy w obu przypadkach (n− 1) · (Dn−2 +Dn−1) sposobów włożenia listów.
Ponieważ D1 = 0 oraz D2 = 1, więc otrzymujemy równanie rekurencyjne:

D1 = 0, D2 = 1, Dn = (n− 1) ·
(

Dn−2 +Dn−1
)

dla n > 2.

Zwróćmy uwagę na to, że otrzymaliśmy równanie rekurencyjne drugiego rzędu: do
obliczenia kolejnego wyrazu ciągu musimy znać dwa poprzednie wyrazy. Zajmiemy się
teraz poszukiwaniem wzoru ogólnego na liczbę nieporządków.

Definiujemy nowy ciąg:
En = Dn − nDn−1

dla n ≥ 2. Wtedy mamy:

En = Dn − nDn−1 = −(Dn−1 − (n− 1)Dn−2) = −En−1.

Ciąg (En) jest więc ciągiem geometrycznym o ilorazie −1, którego początkowym wyra-
zem jest E2. Mamy zatem

En = E2 · (−1)n−2.

Ponieważ E2 = D2 − 2D1 = 1, więc ostatecznie otrzymujemy

En = (−1)n,
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czyli
Dn = nDn−1 + (−1)n.

Otrzymane nowe równanie rekurencyjne ciągu (Dn) umiemy już rozwiązać metodą czyn-
nika sumacyjnego. Podzielmy obie strony ostatniego równania przez n!:

Dn

n!
=
nDn−1

n!
+
(−1)n
n!
,

czyli
Dn

n!
=
Dn−1

(n− 1)! +
(−1)n
n!
.

Definiujemy ciąg (Gn) wzorem

Gn =
Dn

n!
dla n = 1, 2, 3, . . .Wtedy

Gn = Gn−1 +
(−1)n
n!
,

skąd łatwo wynika, że

Gn = G1 +
(−1)2
2!
+
(−1)3
3!
+
(−1)4
4!
+ . . .+

(−1)n
n!
.

Ponieważ G1 = 0, więc ostatni wzór możemy zapisać w postaci

Gn = 1 +
(−1)1
1!
+
(−1)2
2!
+
(−1)3
3!
+ . . .+

(−1)n
n!
.

Stąd otrzymujemy ostatecznie

Dn = n!
(

1 +
(−1)1
1!
+
(−1)2
2!
+
(−1)3
3!
+ . . .+

(−1)n
n!

)

= n! ·
n
∑

k=0

(−1)k
k!

dla n = 1, 2, 3, . . .Dla dużych n mamy znane już przybliżenie Dn ≈ n!·e−1 ≈ 0,367879n.

10. Sortowanie szybkie

Analizując średni czas działania algorytmu tzw. sortowania szybkiego (ang. quicksort)
dochodzimy do następującego równania rekurencyjnego:

C0 = 0, Cn = n− 1 +
2
n
·
n−1
∑

k=0

Ck dla n ≥ 1.

Zauważmy, że każdy wyraz Cn (dla n ≥ 1) ciągu określonego tym równaniem zależy od
wszystkich wyrazów poprzednich. Pierwszym krokiem na drodze do znalezienia wzoru
ogólnego będzie zmniejszenie rzędu rekurencji. Pomnóżmy obie strony równania

Cn = n− 1 +
2
n
·
n−1
∑

k=0

Ck
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przez n. Otrzymamy równanie

nCn = n(n− 1) + 2
n−1
∑

k=0

Ck.

Podstawmy w tym równaniu n+ 1 w miejsce n:

(n+ 1)Cn+1 = n(n+ 1) + 2
n
∑

k=0

Ck.

Następnie odejmijmy stronami otrzymane równania:

(n+ 1)Cn+1 − nCn = n(n+ 1)− n(n− 1) + 2Cn,

czyli
(n+ 1)Cn+1 = (n+ 2)Cn + 2n.

Otrzymaliśmy równanie rekurencyjne liniowe pierwszego rzędu, które możemy rozwiązać
metodą czynnika sumacyjnego. Podzielmy teraz obie strony otrzymanego równania przez
(n+ 1)(n+ 2)

Cn+1

n+ 2
=
Cn

n+ 1
+

2n
(n+ 1)(n+ 2)

i wprowadźmy ciąg pomocniczy (Dn) określony wzorem

Dn =
Cn

n+ 1

dla n = 0, 1, 2, . . . Mamy wówczas

Dn+1 = Dn +
2n

(n+ 1)(n+ 2)
= Dn +

4
n+ 2

− 2
n+ 1

dla n = 0, 1, 2, . . . Stąd dostajemy

Dn = D0 +
n−1
∑

k=0

4
k + 2

−
n−1
∑

k=0

2
k + 1

.

Ponieważ C0 = 0, więc D0 = 0. Przyjmijmy następnie oznaczenie

H0 = 0, Hn =
n
∑

k=1

1
k
dla n ≥ 0.

Liczby Hn nazywamy liczbami harmonicznymi. Wówczas

n−1
∑

k=0

4
k + 2

= 4 ·
n+1
∑

k=2

1
k
= 4 · (Hn+1 − 1)
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oraz
n−1
∑

k=0

2
k + 1

= 2 ·
n
∑

k=1

1
k
= 2Hn.

Stąd wynika, że

Dn = 4(Hn+1 − 1)− 2Hn = 2Hn+1 + 2(Hn+1 −Hn)− 4 = 2Hn+1 +
2
n+ 1

− 4.

Ponieważ Hn+1 = Hn + 1
n+1
, więc

Dn = 2Hn +
4
n+ 1

− 4 = 2Hn −
4n
n+ 1

.

Stąd ostatecznie otrzymujemy

Cn = (n+ 1)Dn = 2(n+ 1)Hn − 4n

dla n = 0, 1, 2, . . .

11. Ciąg Fibonacciego

Ciąg liczb Fibonacciego pojawił się po raz pierwszy w książce Leonarda z Pizy (zwanego
Fibonaccim) Liber abaci przy okazji zadania o rozmnażaniu królików. Zobaczymy teraz
inne zadanie kombinatoryczne prowadzące do tego samego ciągu.

Zadanie. Żaba skacze z kamienia na kamień. Kamienie leżą jeden za drugim i są ponu-
merowane liczbami naturalnymi od zera; żaba startuje z kamienia zerowego. W jednym
skoku potrafi ona przeskoczyć z jednego kamienia na następny lub o dwa kamienie da-
lej. Żaba może wykonywać po sobie skoki różnych długości. Na przykład, na czwarty
kamień może dostać się skacząc cztery razy na odległość jednego kamienia lub skacząc
dwa razy, za każdym razem na odległość dwóch kamieni, lub też skacząc raz na odległość
dwóch kamieni i dwa razy na odległość jednego kamienia. Tę ostatnią możliwość może
zrealizować na trzy sposoby, skok podwójny może być pierwszym, drugim lub trzecim
skokiem. Oto możliwe drogi żaby na czwarty kamień:

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
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Łącznie ma więc pięć różnych sposobów dostania się na czwarty kamień. A ile istnieje
sposobów dostania się na n-ty kamień?

Oznaczmy przez Fn liczbę dróg żaby na n-ty kamień. Oczywiście F1 = 1. Na kamień
z numerem 1 żaba może dostać się tylko w jeden sposób – ma wykonać jeden pojedynczy
skok:

0 1

Następnie F2 = 2. Na kamień z numerem 2 żaba może dostać się dwoma sposobami –
wykonać dwa skoki pojedyncze lub jeden podwójny:

0 1 2

0 1 2

Zobaczmy teraz, na ile sposobów żaba może się dostać na kamień o numerze n + 2.
Ma ona Fn różnych dróg na kamień o numerze n i Fn+1 dróg na kamień o numerze
n+1. Ponieważ ostatni skok żaby jest skokiem podwójnym z kamienia o numerze n lub
pojedynczym z kamienia o numerze n + 1, więc łącznie istnieje Fn + Fn+1 dróg żaby
na kamień n+ 2. A więc Fn+2 = Fn+1 + Fn. Zatem na trzeci kamień żaba może dostać
się na 1 + 2 = 3 sposoby, na czwarty na 2 + 3 = 5 sposobów i tak dalej. Zauważmy, że
jeśli przyjmiemy F0 = 1 (co jest całkiem naturalne: istnieje jeden sposób dostania się
na kamień o numerze 0, mianowicie nie robić nic), to okaże się, że F2 = F0+F1. Zatem
ciąg (Fn) jest określony wzorami

F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn dla n ≥ 0.

Otrzymane równanie rekurencyjne jest równaniem drugiego rzędu; widzieliśmy już ta-
kie równania przy okazji nieporządków. Jest to tzw. równanie liniowe (kolejny wyraz
jest kombinacją liniową poprzednich) jednorodne (nie ma „wyrazu wolnego”) o stałych
współczynnikach (w powyższym wzorze są one równe 1). Istnieje dość prosta metoda
znajdowania wzoru ogólnego dla ciągów określonych równaniami liniowymi jednorod-
nymi o stałych współczynnikach. W następnym paragrafie pokażemy tę metodę dla
ciągów określonych takimi równaniami drugiego rzędu.

12. Równania rekurencyjne liniowe jednorodne drugiego rzędu o stałych
współczynnikach

Mówimy, że ciąg (tn) liczb zespolonych spełnia równanie rekurencyjne liniowe, jedno-
rodne o stałych współczynnikach, jeśli istnieją liczby ak, ak−1, . . . , a1, a0 takie, że ak 6= 0,
a0 6= 0 oraz dla wszystkich liczb naturalnych n zachodzi równość

ak · tn+k + ak−1 · tn+k−1 + . . .+ a1 · tn+1 + a0 · tn = 0. (4.1)

Mówimy też, że to równanie rekurencyjne jest równaniem rzędu k.
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Jeśli ciąg liczb zespolonych (tn) spełnia równanie rekurencyjne rzędu k, to każdy wyraz
tego ciągu, począwszy od ak, jest jednoznacznie określony za pomocą k poprzednich
wyrazów. Na przykład, dla ciągu określonego równaniem (4.1) mamy

tn+k = −
ak−1

ak
· tn+k−1 − . . .−

a1

ak
· tn+1 −

a0

ak
· tn. (4.2)

Jeśli będziemy znali pierwsze k wyrazów tego ciągu, to za pomocą równości (4.2) bę-
dziemy mogli wyznaczyć wszystkie następne wyrazy tego ciągu. Zauważmy również, że
z warunku ak 6= 0 wynika, iż możemy ograniczyć się do rozpatrywania równań reku-
rencyjnych postaci (4.1), w których ak = 1. Wystarczy bowiem obie strony naszego
równania rekurencyjnego podzielić przez ak, by otrzymać równanie równoważne.

Zauważamy następnie, że jeśli dwa ciągi liczb zespolonych (tn) i (un) spełniają równanie
rekurencyjne (4.1), to ciąg (vn) określony wzorem

vn = c · tn + d · un

(dla n = 0, 1, 2, . . .) też spełnia to równanie. Mianowicie

akvn+k + ak−1 · vn+k−1 + . . .+ a1 · vn+1 + a0 · vn =
= c · (aktn+k + ak−1 · tn+k−1 + . . .+ a1 · tn+1 + a0 · tn)+
+ d · (akun+k + ak−1 · un+k−1 + . . .+ a1 · un+1 + a0 · un) =
= c · 0 + d · 0 = 0.

Stąd wynika, że ciągi liczb zespolonych spełniające równanie rekurencyjne (4.1) tworzą
podprzestrzeń liniową przestrzeni wszystkich ciągów o wyrazach zespolonych. Ponieważ
wyrazy t0, t1, . . . , tk−1 wyznaczają jednoznacznie cały ciąg, więc ta podprzestrzeń ma
wymiar k. Stąd wynika, że jeśli znajdziemy k liniowo niezależnych rozwiązań równania
(4.1), to każde rozwiązanie równania będzie pewną kombinacją liniową tych k rozwiązań.
W przypadku k = 2 chcemy zatem znaleźć dwa liniowo niezależne rozwiązania.

Nietrudno zauważyć, że równania rekurencyjne jednorodne rzędu 1 definiują ciągi geo-
metryczne:

tn+1 = q · tn.
Próbujemy znaleźć ciągi geometryczne spełniające równanie rzędu 2. Przypuśćmy więc,
że mamy dany ciąg liczb zespolonych (tn) spełniający równanie

tn+2 + a · tn+1 + b · tn = 0. (4.3)

Szukamy takiego ilorazu q, różnego od zera, by ciąg określony wzorem tn = qn spełniał
równanie (4.3). Ten iloraz q musiałby zatem spełniać równanie:

qn+2 + aqn+1 + bqn = 0,

czyli
q2 + aq + b = 0. (4.4)
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A zatem, jeśli liczba q jest ilorazem ciągu geometrycznego spełniającego równanie re-
kurencyjne (4.3), to jest ona pierwiastkiem równania kwadratowego (4.4). Nietrudno
zauważyć, że i na odwrót, jeśli liczba q jest pierwiastkiem równania kwadratowego (4.4),
to ciąg geometryczny określony wzorem tn = qn spełnia równanie rekurencyjne (4.3).
Równanie

x2 + ax+ b = 0 (4.5)

jest zwykle nazywane równaniem charakterystycznym równania rekurencyjnego
(4.3). Mamy teraz dwa przypadki w zależności od liczby rozwiązań równania charakte-
rystycznego.

Przypadek 1. Równanie charakterystyczne (4.5) ma dwa różne pierwiastki (rzeczywiste
lub zespolone) q1 i q2. Wtedy mamy dwa ciągi geometryczne spełniające równanie (4.3).
Rozwiązanie ogólne równania rekurencyjnego (4.3) ma zatem postać

tn = c · qn1 + d · qn2

dla n = 0, 1, 2, . . .Współczynniki c i d wyznaczamy z układu równań otrzymanego przez
wstawienie n = 0 i n = 1 do rozwiązania ogólnego. Przyjmując n = 0, otrzymujemy
równanie

c+ d = t0.

Przyjmując n = 1, otrzymujemy równanie

q1c+ q2d = t1.

Układ równań
{

c+ d = t0
q1c+ q2d = t1

zawsze ma rozwiązanie, gdyż
∣

∣

∣

∣

1 1
q1 q2

∣

∣

∣

∣

= q2 − q1 6= 0.

Zatem dwa początkowe wyrazy ciągu (tn) pozwalają wyznaczyć jednoznacznie liczby c
i d, a więc określają jednoznacznie cały ciąg (tn).

Popatrzmy na kilka przykładów. Rozwiążmy najpierw równanie rekurencyjne

t0 = 3, t1 = 7, tn+2 − 5tn+1 + 6tn = 0 dla n ≥ 0.

Równanie charakterystyczne x2 − 5x + 6 = 0 ma dwa pierwiastki rzeczywiste x1 = 2
oraz x2 = 3. Stąd wynika, że ciąg (tn) jest określony wzorem ogólnym

tn = c · 2n + d · 3n

dla n = 0, 1, 2, . . .Współczynniki c i d wyznaczamy z układu równań powstałego przez
podstawienie n = 0 i n = 1:

{

c+ d = 3

2c+ 3d = 7
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Rozwiązując ten układ równań, otrzymujemy c = 2 i d = 1. Zatem

tn = 2n+1 + 3n

dla n = 0, 1, 2, . . .

Możemy teraz wyznaczyć wzór ogłny dla ciągu liczb Fibonacciego. Równanie rekuren-
cyjne ciągu Fn ma postać

F0 = 1, F1 = 1, Fn+2 − Fn+1 − Fn = 0 dla n ≥ 0.

Jego równanie charakterystyczne

x2 − x− 1 = 0

ma dwa pierwiastki

α =
1 +
√
5

2
oraz β =

1−
√
5

2
.

Zatem rozwiązanie ogólne rozważanego równania rekurencyjnego ma postać

Fn = c · αn + d · βn

dla pewnych współczynników c i d. Współczynniki te wyznaczamy z układu równań

{

c+ d = 1

αc+ βd = 1

Ten układ równań ma następujące rozwiązanie:

c =
α√
5
, d = − β√

5
.

Stąd otrzymujemy

Fn =
αn+1 − βn+1√

5
=
1√
5
·





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1


 .

Otrzymany wzór ogólny jest nazywany wzorem Bineta.

Rozwiążmy jeszcze jedno równanie rekurencyjne

t0 = 1, t1 = 4, tn+2 − 2tn+1 + 2tn = 0 dla n ≥ 0.

Równanie charakterystyczne x2 − 2x+ 2 = 0 ma dwa pierwiastki zespolone

x1 = 1 + i oraz x2 = 1− i.
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Stąd wynika, że ciąg (tn) jest określony wzorem ogólnym

tn = c · (1 + i)n + d · (1− i)n

dla n = 0, 1, 2, . . .Współczynniki c i d wyznaczamy z układu równań powstałego przez
podstawienie n = 0 i n = 1:

{

c+ d = 2

(1 + i)c+ (1− i)d = 2

Rozwiązując ten układ równań, otrzymujemy

c =
1− 3i
2

oraz d =
1 + 3i
2
.

Zatem
tn =

1− 3i
2
· (1 + i)n + 1 + 3i

2
· (1− i)n

dla n = 0, 1, 2, . . .

Jest oczywiste, że ciąg (tn) ma wyrazy rzeczywiste (nawet całkowite). Otrzymany wzór
odwołuje się jednak do liczb urojonych. Okazuje się, że dość łatwo możemy z powyższych
wzorów zespolonych otrzymać postać rzeczywistą rozwiązania. Mamy bowiem

1 + i =
√
2 ·
(

cos
π

4
+ i · sin π

4

)

,

1− i =
√
2 ·
(

cos
π

4
− i · sin π

4

)

.

Ze wzoru de Moivre’a otrzymujemy

tn =
1− 3i
2
· (1 + i)n + 1 + 3i

2
· (1− i)n =

=
1− 3i
2
·
(
√
2
)n ·

(

cos
nπ

4
+ i · sin nπ

4

)

+
1 + 3i
2
·
(
√
2
)n ·

(

cos
nπ

4
− i · sin nπ

4

)

=

=

(√
2
)n

2
·
(

(1− 3i)
(

cos
nπ

4
+ i · sin nπ

4

)

+ (1 + 3i)
(

cos
nπ

4
− i · sin nπ

4

))

=

=
(
√
2
)n ·

(

cos
nπ

4
+ 3 sin

nπ

4

)

.

Pokażemy teraz, że tę postać rzeczywistą możemy uzyskać także nieco inną metodą.

Rozpatrujemy zatem przypadek, gdy równanie charakterystyczne (4.5) ma współczyn-
niki rzeczywiste, ale nie ma pierwiastków rzeczywistych (czyli ma dwa sprzężone pier-
wiastki zespolone). Oznacza to, że w równaniu (4.5) mamy a2 < 4b. Stąd wynika, że
b > 0. Niech więc b = r2. Wtedy

( a

2r

)2

=
a2

4b
< 1.
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Zatem
∣

∣

∣

a

2r

∣

∣

∣
< 1.

Stąd wynika, że istnieje liczba ϕ taka, że

a

2r
= − cosϕ.

Równanie rekurencyjne (4.3) przyjmuje teraz postać

tn+2 − 2r cosϕ · tn+1 + r2tn = 0. (4.6)

Można teraz sprawdzić, że ciąg (tn) określony wzorem

tn = rn(c · cosnϕ+ d · sinnϕ)

(dla n = 0, 1, 2, . . .) jest rozwiązaniem ogólnym równania (4.6). W dowodzie korzysta
się z następujących tożsamości trygonometrycznych:

2 cosα cosβ = cos(α+ β) + cos(α− β)

oraz
2 cosα sinβ = sin(α+ β) + sin(β − α).

Szczegóły tego dowodu pozostawiamy jako ćwiczenie.

Przypadek 2. Równanie charakterystyczne (4.5) ma jeden pierwiastek podwójny q.
Mamy wtedy tylko jeden ciąg geometryczny (qn) spełniający równanie rekurencyjne
(4.3). Potrzebne jest drugie rozwiązanie. Sprawdzimy, że takim drugim rozwiązaniem
jest ciąg liczb postaci n · qn. Mianowicie równanie charakterystyczne naszego równania
rekurencyjnego ma postać

x2 + ax+ b = 0.

Takie równanie ma jeden pierwiastek podwójny, gdy a2 = 4b i ten pierwiastek jest równy

x = −a
2
.

Ponieważ q jest tym pierwiastkiem podwójnym, więc

2q + a = 0.

Teraz sprawdzamy, że ciąg (nqn) spełnia równanie rekurencyjne (4.3):

tn+2 + atn+1 + btn = 0,

czyli
(n+ 2)qn+2 + a(n+ 1)qn+1 + bnqn = 0.
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Przekształcamy to równanie w sposób równoważny:

4(n+ 2)qn+2 + 4a(n+ 1)qn+1 + 4bnqn = 0,

4(n+ 2)qn+2 + 4a(n+ 1)qn+1 + a2nqn = 0,

qn ·
(

4(n+ 2)q2 + 4a(n+ 1)q + a2n
)

= 0,

qn ·
(

n(4q2 + 4aq + a2) + 4q(2q + a)
)

= 0,

qn ·
(

n(2q + a)2 + 4q(2q + a)
)

= 0,

qn · (2q + a) ·
(

n(2q + a) + 4q
)

= 0.

Ostatnie równanie jest spełnione, gdyż

2q + a = 0.

Teraz mamy już dwa niezależne rozwiązania równania rekurencyjnego (4.3):

tn = qn oraz tn = nqn,

a więc mamy rozwiązanie ogólne:

tn = c · qn + d · nq̇n,

czyli
tn = (c+ dn) · qn

dla n = 0, 1, 2, . . .Współczynniki c i d wyznaczamy – podobnie, jak w przypadku 1 – z
układu równań otrzymanego przez podstawienie n = 0 i n = 1 do wzoru ogólnego:

{

c = t0
(c+ d)q = t1

Znów dowolne wartości t0 i t1 wyznaczają jednoznacznie współczynniki c i d, a więc
tym samym rozwiązanie równania rekurencyjnego.

Popatrzmy na jeden przykład. Rozwiążmy równanie rekurencyjne

t0 = 1, t1 = 6, tn+2 − 4tn+1 + 4tn = 0 dla n ≥ 0.

Równanie charakterystyczne x2−4x+4 = 0 ma jeden podwójny pierwiastek rzeczywisty
x = 2. Stąd wynika, że ciąg (tn) jest określony wzorem ogólnym

tn = c · 2n + d · n · 2n = (c+ dn) · 2n

dla n = 0, 1, 2, . . .Współczynniki c i d wyznaczamy z układu równań powstałego przez
podstawienie n = 0 i n = 1:

{

c = 3

(c+ d) · 2 = 6
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Rozwiązując ten układ równań, otrzymujemy c = 1 i d = 2. Zatem

tn = (2n+ 1) · 2n

dla n = 0, 1, 2, . . .

13. Równania rekurencyjne liniowe jednorodne wyższych rzędów o stałych
współczynnikach

Rozpatrzone wyżej dwa przypadki dają w sumie pełną analizę równania rekurencyj-
nego (4.3)czyli równania liniowego jednorodnego o stałych współczynnikach, rzędu 2.
Przypadek ogólny równań jednorodnych wyższych rzędów rozpatruje się podobnie. Dla
równania (4.1) w analogiczny sposób definiujemy jego równanie charakterystyczne:

akx
k + ak−1xk−1 + . . .+ a1x+ a0 = 0. (4.7)

Następnie znajdujemy jego wszystkie pierwiastki (uwzględniając pierwiastki zespolone
i wielokrotne)

r1, r2, . . . , rk.

Przypuśćmy najpierw, że wszystkie pierwiastki są różne (tzn. wszystkie mają krotność
1). Wtedy rozwiązanie ogólne ma postać

tn = c1rn1 + c2r
n

2 + . . .+ ckr
n

k
. (4.8)

Przypuśćmy następnie, że niektóre pierwiastki równania (4.7) pokrywają się (czyli mamy
do czynienia z pierwiastkiem wielokrotnym). Dla ustalenia uwagi, niech na przykład
r1 = r2 = . . . = rl = r, tzn. r jest pierwiastkiem krotności l. Wtedy zamiast sumy

c1r
n

1 + . . .+ clr
n

l

w rozwiązaniu (4.8) będziemy mieli sumę

rn(c1 + c2n+ c3n2 + . . .+ clnl−1).

W taki sam sposób postępujemy dla każdego pierwiastka wielokrotnego, rzeczywistego
lub zespolonego. Szczegółowe sformułowanie tego twierdzenia i jego dowod odłożymy
do następnego wykładu.

14. Równania rekurencyjne liniowe niejednorodne drugiego rzędu o stałych
współczynnikach

Zajmiemy się teraz równaniami niejednorodnymi. Przypuśćmy więc, że mamy równanie
niejednorodne rzędu k:

ak · tn+k + ak−1 · tn+k−1 + . . .+ a1 · tn+1 + a0 · tn = f(n). (4.9)

Zajmiemy się najpierw równaniami, w których funkcja f ma szczególną postać:

f(n) = cn · w(n),
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gdzie c jest liczbą zespoloną, a w(n) jest wielomianem stopnia d zmiennej n. Wtedy ciąg
(tn) spełnia pewne równanie rekurencyjne jednorodne rzędu k+d+1, którego wielomian
charakterystyczny ma postać

(akxk + ak−1xk−1 + . . .+ a1x+ a0)(r − c)d+1 = 0.

Takie równania już potrafimy rozwiązać. Musimy tylko zwrócić uwagę na to, że do
rozwiązania tego równania potrzebujemy k + d + 1 wartości początkowych. Mamy zaś
podane tylko k wartości początkowych (bo równanie (4.9) jest rzędu k). Pozostałe d+1
wartości musimy sami wyznaczyć z równania (4.9). Pozostaje więc tylko uzasadnić,
że równanie (2) rzeczywiście sprowadza się w taki sposób do równania jednorodnego.
Nie przeprowadzimy tu dowodu w całej ogólności, ograniczymy się tylko do jednego
przypadku, gdy równanie (4.9) jest rzędu 2 i wielomian w(n) jest stopnia 1. Mamy
zatem równanie

tn+2 + atn+1 + btn = cn(pn+ q). (4.10)

Podstawiamy w nim za n kolejno n+ 1 i n+ 2:

tn+3 + atn+2 + btn+1 = cn+1(p(n+ 1) + q). (4.11)

tn+4 + atn+3 + btn+2 = cn+2(p(n+ 2) + q). (4.12)

Następnie mnożymy równanie (4.10) przez c2, równanie (4.11) przez (−2c) i dodajemy
otrzymane równania do równania (4.12). Nietrudno sprawdzić, że po prawej stronie
otrzymamy zero i całe równanie będzie miało postać

tn+4 + (a− 2c)tn+3 + (b− 2ac+ c2)tn+2 + (ac2 − 2bc)tn+1 + bc2tn = 0. (4.13)

Równanie charakterystyczne tego równania rekurencyjnego ma postać

x4 + (a− 2c)x3 + (b− 2ac+ c2)x2 + (ac2 − 2bc)x+ bc2 = 0. (4.14)

Teraz wystarczy zuważyć, że lewa strona równania (4.14) rozkłada się na czynniki

x4 + (a− 2c)x3 + (b− 2ac+ c2)x2 + (ac2 − 2bc)x+ bc2 = (x2 + ax+ b)(x− c)2.

Zatem rzeczywiście ciąg (tn) spełnia równanie rekurencyjne jednorodne, którego rów-
nanie charakterystyczne ma żądaną postać.

W podobny sposób można rozwiązać nieco bardziej skomplikowane równania niejedno-
rodne. Jeśli funkcja f w równaniu (4.9) ma postać

f(n) = cn1 · w1(n) + cn2 · w2(n) + . . . ,

gdzie w1(n), w2(n), . . . są wielomianami stopni odpowiednio d1, d2, . . ., to ciąg (tn) speł-
nia równanie rekurencyjne jednorodne, którego równaniem charakterystycznym jest

(akxk + ak−1xk−1 + . . .+ a1x+ a0)(x− c1)d1+1(x− c2)d2+1 . . .
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Dowód tego stwierdzenia pominiemy.

15. Układy równań rekurencyjnych

Rozwiązywanie układów równań rekurencyjnych omówimy na jednym przykładzie. Roz-
wiążemy układ równań



















t0 = 2

u0 = 3

tn+1 = 6tn + 4un
un+1 = tn + 3un

Sprowadzimy ten układ równań do jednego równania liniowego drugiego rzędu. Najpierw
w równaniu

tn+1 = 6tn + 4un

podstawimy n+ 1 w miejsce n. Otrzymamy

tn+2 = 6tn+1 + 4un+1 = 6tn+1 + 4 · (tn + 3un) = 6tn+1 + 4tn + 12un.

Teraz podstawiamy 4un = tn+1 − 6tn:

tn+2 = 6tn+1 + 4tn + 3 · (tn+1 − 6tn) = 6tn+1 + 4tn + 3tn+1 − 18tn = 9tn+1 − 14tn.

Otrzymaliśmy równanie rekurencyjne

tn+2 − 9tn+1 + 14tn = 0.

Jego równaniem charakterystycznym jest:

x2 − 9x+ 14 = 0,

czyli
(x− 2)(x− 7) = 0.

Stąd wynika, że ciąg (tn) jest określony wzorem ogólnym

tn = c · 7n + d · 2n

dla n = 0, 1, 2, . . .Współczynniki c i d obliczamy z układu równań
{

c+ d = t0 = 2

7c+ 2d = t1 = 24

Otrzymujemy c = 4 i d = −2. A więc

tn = 4 · 7n − 2 · 2n = 4 · 7n − 2n+1

dla n = 0, 1, 2, . . .Wzór ogólny ciągu (un) otrzymujemy z równania tn+1 = 6tn + 4un:

4un = tn+1 − 6tn = 4 · 7n+1 − 2n+2 − 24 · 7n + 2n+1 = 4 · 7n + 4 · 2n+1,
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czyli
un = 7n + 2n+1

dla n = 0, 1, 2, . . .

Ten układ równań, dzięki wyjątkowemu doborowi współczynników, można też rozwią-
zać prościej, nie odwołując się do rozwiązywania równań liniowych drugiego rzędu. Za-
uważmy bowiem, że

{

t0 + u0 = 5

tn+1 + un+1 = 7 · (tn + un),
skąd dostajemy tn + un = 5 · 7n dla n = 0, 1, 2, . . . Następnie

tn+1 = 4(tn + un) + 2tn = 2tn + 20 · 7n.

Teraz zauważamy, że

tn+2 − 7tn+1 = 2tn+1 + 20 · 7n+1 − 14tn − 20 · 7n+1 = 2 · (tn+1 − 7tn).

Stąd wynika, że

tn+1 − 7tn = (t1 − 7t0) · 2n = (24− 14) · 2n = 10 · 2n.

Zatem
tn+1 = 2tn + 20 · 7n = 7tn + 10 · 2n,

czyli
5tn = 20 · 7n − 10 · 2n.

Ostatecznie
tn = 4 · 7n − 2n+1

dla n = 0, 1, 2, . . .Wzór ogólny ciągu (un) otrzymujemy teraz z równości tn+un = 5·7n:

un = 5 · 7n − tn = 5 · 7n − 4 · 7n + 2n+1 = 7n + 2n+1

dla n = 0, 1, 2, . . .

16. Liczby Catalana

Przypomnijmy z wykładu 1, że liczbą Catalana Cn nazywamy liczbę funkcji niemaleją-
cych f : [n]→ [n] spełniających warunek

f(k) ≤ k dla k = 1, 2, . . . , n.

Warunek ten nazwiemy w skrócie warunkiem Catalana (spełnionym w zbiorze [n]).
Przyjmujemy ponadto, że C0 = 1. Poznaliśmy wzór ogólny:

Cn =
1
n+ 1

·
(

2n
n

)

dla n = 0, 1, 2, . . .
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W tym paragrafie poznamy równanie rekurencyjne, za pomocą którego można zdefi-
niować ciąg liczb Catalana. Główny pomysł wyjaśnimy najpierw na wykresie. Niech
f : [n] → [n] będzie funkcją niemalejącą spełniającą warunek Catalana. Oto wykres
takiej funkcji f (na rysunku przyjęto n = 15).

1 k n

1

k

n

x

y

Warunek Catalana oznacza, że punkty tworzące ten wykres nie mogą leżeć ponad prostą
o równaniu y = x. Niech k będzie największą liczbą x taką, że f(x) = x (na rysunku
mamy k = 10). Taka liczba istnieje, bo z warunku Catalana wynika, że f(1) = 1. Prosta
pionowa o równaniu x = k dzieli ten wykres na dwie części: na lewo od niej mamy
wykres funkcji niemalejącej f | [k− 1] : [k− 1]→ [k− 1] spełniającej warunek Catalana
(w zbiorze [k − 1]):

1 k

1

k

x

y

Oczywiście istnieje Ck−1 takich funkcji. Zastanówmy się teraz, co się dzieje na prawo
od prostej x = k. Po pierwsze zauważamy, że f(k+1) = k. Z warunku Catalana wynika
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bowiem, że f(k+1) ≤ k+1. Z drugiej strony liczba k była największą liczbą x taką, że
f(x) = x. Zatem f(k + 1) < k + 1. Ponieważ funkcja f jest niemalejąca oraz f(k) = k,
więc f(k+1) ≥ k. Łącznie to daje f(k+1) = k. Ponieważ dla x > k mamy f(x) < x, więc
punkty wykresu funkcji f leżące na prawo od prostej x = k nie mogą leżeć nad prostą
o równaniu y = x−1. Odpowiednio przesuwając osie układu współrzędnych, otrzymamy
wykres pewnej funkcji niemalejącej g : [n− k]→ [n− k] spełniającej warunek Catalana
(w zbiorze [n− k]):

1 k n

1

k

n

x

y

1

1

n−k

n−k

x

y

Istnieje Cn−k takich funkcji. Zatem każdy wykres funkcji niemalejącej f : [n] → [n]
spełniającej warunek Catalana w zbiorze [n] wyznacza jednoznacznie parę funkcji nie-
malejących spełniających warunek Catalana: jedną określoną w zbiorze [k − 1] i drugą
określoną w zbiorze [n−k]. Odwrotnie, każda taka para funkcji wyznacza jednoznacznie
funkcję f . Musimy bowiem przyjąć f(k) = k i umieścić odpowiednio wysoko wykres
drugiej funkcji (wiemy przy tym, jak wysoko: pierwsza wartość jest bowiem równa k).
Ponieważ k może być dowolną z liczb od 1 do n, więc otrzymujemy równanie rekuren-
cyjne

Cn =
n
∑

k=1

Ck−1 · Cn−k =
n−1
∑

k=0

Ck · Cn−k−1

dla n = 1, 2, 3, . . .
Podamy teraz ścisłą definicję obu funkcji wyznaczonych przez funkcję f . Pierwszą funk-
cją jest oczywiście f | [k − 1]. Drugą funkcję g : [n− k]→ [n− k] definiujemy wzorem

g(x) = f(x+ k)− k + 1 dla x ∈ [n− k].

Oczywiście funkcja g jest niemalejąca. Ponadto

g(x) < x+ k − k + 1 = x+ 1,
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czyli g(x) ≤ x. To wynika z określenia liczby k: dla x ≥ 1 mamy bowiem f(x+k) < x+k.
Funkcja g spełnia więc rzeczywiście warunek Catalana w zbiorze [n− k]. Wyznaczenie
wzoru definiującego funkcję f , gdy znane są funkcje f | [k − 1] i g pozostawiamy jako
ćwiczenie.

Podsumowując, liczby Catalana mogą być zdefiniowane następującymi wzorami reku-
rencyjnymi:

C0 = 1, Cn =
n−1
∑

k=0

CkCn−k−1 dla n ≥ 1.

Korzystając z powyższego równania rekurencyjnego obliczymy kilka początkowych liczb
Catalana:

C0 = 1,

C1 = C20 = 1,

C2 = C0C1 + C1C0 = 2C0C1 = 2,

C3 = C0C2 + C1C1 + C2C0 = 2 + 1 + 2 = 5,

C4 = C0C3 + C1C2 + C2C1 + C3C0 = 5 + 2 + 2 + 5 = 14,

C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C1 = 14 + 5 + 4 + 5 + 14 = 42.

Pokażemy jeszcze jeden przykład zadania prowadzącego do liczb Catalana. Niech • bę-
dzie działaniem niełącznym w pewnym zbiorze A. Wtedy wynik n-krotnego wykonania
tego działania na elementach a1, a2, . . . , an+1 zależy od rozmieszczenia nawiasów. Na
przykład dla n = 3 mamy 5 sposobów rozmieszczenia nawiasów, gdy wykonujemy dzia-
łanie • na elementach a, b, c, d ∈ A:

a •
(

b • (c • d)
)

, a •
(

(b • c) • d
)

, (a • b) • (c • d),
(

a • (b • c)
)

• d,
(

(a • b) • c
)

• d.

Dla n = 4 mamy 14 sposobów rozmieszczenia nawiasów:

a •
(

b • (c • (d • e))
)

(a • b) •
(

c • (d • e)
) (

a • (b • c)
)

• (d • e)
(

a • (b • (c • d))
)

• e
a •
(

b • ((c • d) • e)
)

(a • b) •
(

(c • d) • e
) (

(a • b) • c
)

• (d • e)
(

a • ((b • c) • d)
)

• e
a •
(

(b • c) • (d • e)
) (

(a • b) • (c • d)
)

• e
a •
(

(b • (c • d)) • e
) (

(a • (b • c)) • d
)

• e
a •
(

((b • c) • d) • e
) (

((a • b) • c) • d
)

• e
Domyślamy się, że liczba rozmieszczeń nawiasów jest liczbą Catalana. Wykażemy, że
tak jest.

NiechBn będzie liczbą rozmieszczeń nawiasów przy n wykonywanych działaniach. Przyj-
mujemy, że B0 = 1. Mamy teraz n ≥ 1 i n + 1 elementów a1, a2, . . . , an+1 zbioru A.
Ostatnie działanie, które mamy wykonać dzieli te n+ 1 elementów na dwie grupy:

(a1 . . . ak+1) • (ak+2 . . . an+1).

W pierwszej grupie musimy wykonać k działań, w drugiej n−k− 1 działań. Oczywiście
może być k = 0, gdy lewa grupa składa się tylko z jednego elementu:

a1 • (a2 . . . an+1).
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W prawej grupie musimy wykonać wtedy n − 1 działań. Z drugiej strony lewa grupa
może składać się z co najwyżej n elementów; w prawej będzie wtedy tylko jeden element:

(a1 . . . an) • an+1.

W lewej grupie mamy wtedy do wykonania n−1 działań, w prawej ani jednego. Podział

(a1 . . . ak+1) • (ak+2 . . . an+1)

może być dokonany na BkBn − k − 1 sposobów: możemy rozmieścić nawiasy w lewej
grupie na Bk sposobów i na Bn − k − 1 sposobów w prawej. Stąd dostajemy równanie

Bn = B0Bn−1 +B1Bn−2 + . . .+Bn−1B0 =
n−1
∑

k=0

BkBn−k−1

dla n = 1, 2, 3, . . . Otrzymaliśmy zatem to samo równanie co w przypadku liczb Cata-
lana. Stąd wynika, że Bn = Cn dla n = 0, 1, 2, . . .

Znamy wiele zadań prowadzących do liczb Catalana. Oto jeszcze dwa z nich. Istnieje
14 drzew mających 4 wierzchołki takich, że każdy wierzchołek ma co najwyżej 2 leżące
bezpośrednio niżej (można od niego iść w lewo, w prawo, w obie strony lub w żadną):

Ogólnie: istnieje Cn drzew mających n wierzchołków o powyższej własności.

Liczby od 1 do 8 można na 14 sposobów ustawić w tablicy o 4 kolumnach i dwóch
wierszach tak, by w każdej kolumnie i w każdym wierszu liczby były ustawione malejąco
(licząc od góry i od lewej strony:
[

8 7 6 5
4 3 2 1

] [

8 7 6 4
5 3 2 1

] [

8 7 6 3
5 4 2 1

] [

8 7 6 2
5 4 3 1

] [

8 7 5 4
6 3 2 1

]

[

8 7 5 3
6 4 2 1

] [

8 7 5 2
6 4 3 1

] [

8 7 4 3
6 5 2 1

] [

8 7 4 2
6 5 3 1

] [

8 6 5 4
7 3 2 1

]

[

8 6 5 3
7 4 2 1

] [

8 6 5 2
7 4 3 1

] [

8 6 4 3
7 5 2 1

] [

8 6 4 2
7 5 3 1

]
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Ogólnie: istnieje Cn tablic o n kolumnach i 2 wierszach, w których liczby od 1 do 2n
są ustawione zgodnie z powyższymi regułami (tzn. w obu wierszach liczby tworzą ciągi
malejące, a w każdej kolumnie liczba większa stoi nad mniejszą).

Wykazanie, że w obu powyższych zadaniach poszukiwana liczba (drzew i tablic) jest
liczbą Catalana, jest nietrudnym ćwiczeniem.

17. Zadanie olimpijskie

Na zawodach II stopnia XLIII Olimpiady Matematycznej zawodnicy mieli do rozwiąza-
nia następujące zadanie:

• Ciągi (xn) i (yn) są określone następująco: x0 = y0 = 1,

xn+1 =
xn + 2
xn + 1

, yn+1 =
y2
n
+ 2
2yn

dla n = 0, 1, 2, . . .

Udowodnij, że dla każdej liczby całkowitej n ≥ 0 zachodzi równość yn = x2n−1.
Jedna z metod rozwiązania tego zadania polega na znalezieniu wzorów ogólnych obu
ciągów i porównaniu tych wzorów dla odpowiednich indeksów. Wyznaczenie wzoru ogól-
nego ciągu (xn) można sprowadzić do równania rekurencyjnego liniowego. Zdefiniujmy
bowiem dwa ciągi (an) i (bn) wzorami: a0 = b0 = 1,

an+1 = an + 2bn, bn+1 = an + bn dla n = 0, 1, 2, . . .

Wówczas łatwo dowodzimy przez indukcję, że

xn =
an

bn
dla n = 0, 1, 2, . . .

Podobnie jak w paragrafie 15 sprowadzamy układ równań rekurencyjnych do równania
drugiego rzędu

an+2 − 2an+1 − an = 0.
Równanie charakterystyczne x2 − 2x− 1 = 0 ma dwa pierwiastki

x1 = 1 +
√
2, x2 = 1−

√
2.

Stąd łatwo otrzymujemy rozwiązanie ogólne

an =
(1 +
√
2)n+1 + (1−

√
2)n+1

2

oraz

bn =
(1 +
√
2)n+1 − (1−

√
2)n+1

2
√
2

i ostatecznie otrzymujemy

xn =
an

bn
=
√
2 · (1 +

√
2)n+1 + (1−

√
2)n+1

(1 +
√
2)n+1 − (1−

√
2)n+1

.
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Uzyskanie wzoru ogólnego dla ciągu (yn) jest bardziej skomplikowane. Ciąg ten jest bo-
wiem zdefiniowany za pomocą równania nieliniowego i nie widać żadnej ogólnej metody
rozwiązywania takich równań rekurencyjnych. Posłużymy się następującym pomysłem.
Najpierw obliczamy

yn+1 −
√
2 =
y2
n
+ 2
2yn

−
√
2 =
y2
n
− 2
√
2yn + 2
2yn

=
(yn −

√
2)2

2yn

i podobnie

yn+1 +
√
2 =
(yn +

√
2)2

2yn
.

Stąd wynika, że

yn+1 −
√
2

yn+1 +
√
2
=
(yn −

√
2)2

(yn +
√
2)2
=

(

yn −
√
2

yn +
√
2

)2

.

Zdefiniujmy ciąg (cn) wzorem

cn =
yn −
√
2

yn +
√
2
.

Wówczas
cn+1 = c2n,

skąd wynika, że

cn = c2
n

0 =

(

1−
√
2

1 +
√
2

)2n

.

Teraz już łatwo dostajemy

yn =
√
2 · 1 + cn
1− cn

=
√
2 · (1 +

√
2)2

n

+ (1−
√
2)2

n

(1 +
√
2)2n − (1−

√
2)2n
.

Porównując otrzymane wzory ogólne dostajemy yn = x2
n−1.

Zadanie można też łatwo rozwiązać bezpośrednio przez indukcję. Najpierw dowodzimy
przez indukcję równość pomocniczą:

x2n+1 =
x2
n
+ 2
2xn

dla n = 0, 1, 2, . . . Sprawdzenie warunku początkowego (dla n = 0) jest oczywiste.
Przyjmijmy więc, że dla pewnego n mamy równość

x2n+1 =
x2n + 2
2xn

i dowodzimy, że

x2n+3 =
x2n+1 + 2
2xn+1

.
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Przekształcamy najpierw lewą stronę:

x2n+3 =
x2n+2 + 2
x2n+2 + 1

=
x2n+1+2
x2n+1+1

+ 2
x2n+1+2
x2n+1+1

+ 1
=
(x2n+1 + 2) + 2(x2n+1 + 1)
(x2n+1 + 2) + (x2n+1 + 1)

=

=
3x2n+1 + 4
2x2n+1 + 3

=
3 · x

2
m
+2

2xm
+ 4

2 · x2m+2
2xm
+ 3
=
3(x2
m
+ 2) + 8xm

2(x2m + 2) + 6xm
=

=
3x2
m
+ 8xm + 6

2x2
m
+ 6xm + 4

.

Następnie przekształcamy prawą stronę:

x2
m+1 + 2
2xm+1

=

(

xm+2
xm+1

)2

+ 2

2 · xm+2
xm+1

=
(xm + 2)2 + 2(xm + 1)2

2(xm + 2)(xm + 1)
=

=
x2
m
+ 4xm + 4 + 2x2m + 4xm + 2
2(x2
m
+ 3xm + 2)

=
3x2
m
+ 8xm + 6

2x2
m
+ 6xm + 4

.

W ten sposób nasza równość pomocnicza została udowodniona. Teraz dowodzimy przez
indukcję, że yn = x2n−1. Znów sprawdzenie warunku początkowego (dla n = 0) jest
oczywiste. W kroku indukcyjnym mamy:

yn+1 =
y2
n
+ 2
2yn

=

(

x2n−1
)2
+ 2

2x2n−1
= x2(2n−1)+1 = x2n+1−1,

co kończy dowód.

18. Zadanie z zawodów matematycznych

Na XXI Austriacko-Polskich Zawodach Matematycznych zawodnicy rozwiązywali na-
stępujące zadanie:

• Rozważamy n punktów P1, P2, . . . , Pn położonych w tej kolejności na jednej linii
prostej. Malujemy każdy z tych punktów na jeden z następujących kolorów: biały,
czerwony, zielony, niebieski, fioletowy. Kolorowanie nazwiemy dopuszczalnym, je-
śli dla dowolnych dwóch kolejnych punktów Pi, Pi+1 (i = 1, 2, . . . , n − 1) oba są
tego samego koloru lub co najmniej jeden z nich jest biały. Ile jest dopuszczalnych
kolorowań?

Najpierw ustalmy terminologię. Powiemy, że punkt jest kolorowy, jeśli został poma-
lowany na kolor różny od białego; w przeciwnym razie nazywamy ten punkt białym.
Definiujemy dwa ciągi (bn) i (kn) w następujący sposób: bn jest liczbą dopuszczalnych
kolorowań n punktów takich, że punkt Pn jest biały, kn zaś jest liczbą dopuszczalnych
kolorowań takich, że punkt Pn jest kolorowy. Wówczas oczywiście

b1 = 1, k1 = 4.
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Następnie bn+1 = bn + kn, bo jeśli punkt Pn+1 jest biały, to kolorowanie poprzednich
n punktów jest dowolnym dopuszczalnym kolorowaniem zakończonym punktem białym
lub dowolnym kolorowym. Natomiast kn+1 = 4bn+kn, bo jeśli punkt Pn+1 jest kolorowy,
to kolorowanie poprzednich n punktów jest kolorowaniem dopuszczalnym zakończonym
punktem białym (i wtedy mamy 4 możliwości wyboru koloru dla Pn+1) lub kolorowym
tego samego koloru co Pn+1.

Układ równań rekurencyjnych

b1 = 1, k1 = 4, bn+1 = bn + kn, kn+1 = 4bn + kn

rozwiązujemy tak jak w paragrafie 15, otrzymując ostatecznie liczbę kolorowań dopusz-
czalnych równą

bn + kn = bn+1 =
3n+1 + (−1)n+1

2
.

To zadanie można rozwiązać bez układania równań rekurencyjnych. Nazwijmy blokiem
ciąg punktów tego samego koloru. Kolorowanie dopuszczalne dzieli punkty P1, . . . , Pn
na k bloków (gdzie k = 1, 2, . . . , n), wśród których co drugi jest biały, pozostałe zaś
kolorowe. Chcemy policzyć wszystkie sposoby takiego podziału na bloki. Zauważmy
najpierw, że istnieje

(

n−1
k−1

)

sposobów podziału n punktów na k bloków, bez uwzględnia-
nia kolorów. Musimy bowiem w wolne miejsca między punktami wstawić k − 1 kresek
oddzielających bloki od siebie. Teraz będziemy rozpatrywać dwa przypadki:

1. Przypuśćmy najpierw, że liczba n jest parzysta: n = 2m. Ten przypadek dzielimy
na dwa podprzypadki:
1a. Liczba bloków jest parzysta (k = 2l, gdzie l = 1, 2, . . . , m). Mamy wtedy l
bloków białych i l bloków kolorowych. Możemy dla nich wybrać kolory na 4l

sposobów. Uwzględniając to, czy pierwszy blok jest biały, czy kolorowy, mamy
w tym przypadku 2 · 4l sposobów wyboru kolorów bloków kolorowych.

1b. Liczba bloków jest nieparzysta (k = 2l−1, gdzie l = 1, 2, . . . , m). Jeśli pierwszy
blok jest biały, to mamy 4l−1 możliwości wyboru kolorów dla bloków koloro-
wych; jeśli zaś pierwszy blok jest kolorowy, to mamy 4l możliwości wyboru
kolorów. Łącznie mamy w tym przypadku 54 · 4l możliwości wyboru kolorów.

Łacznie liczba kolorowań dopuszczalnych wynosi w tym przypadku

m
∑

l=1

(

2m− 1
2l − 1

)

· 2 · 4l +
m
∑

l=1

(

2m− 1
2l − 2

)

· 5
4
· 4l.

Zauważmy teraz, że

2 · 4l = 9− 1
4
· 22l = 9 + (−1)

2l−1

2
· 22l−1

oraz
5
4
· 4l = 9 + 1

8
· 22l = 9 + (−1)

2l−2

2
· 22l−2.

Wykłady z kombinatoryki



40 Wykład 4

Stąd wynika, że w przypadku 1 mamy następującą liczbę kolorowań dopuszczalnych:

m
∑

l=1

(

2m− 1
2l − 1

)

· 2 · 4l +
m
∑

l=1

(

2m− 1
2l − 2

)

· 5
4
· 4l =

=
m
∑

l=1

(

2m− 1
2l − 1

)

· 9 + (−1)
2l−1

2
· 22l−1 +

m
∑

l=1

(

2m− 1
2l − 2

)

· 9 + (−1)
2l−2

2
· 22l−2 =

=
2m−1
∑

l=0

(

2m− 1
l

)

· 9 + (−1)
l

2
· 2l =

=
9
2
·
2m−1
∑

l=0

(

2m− 1
l

)

2l +
1
2
·
2m−1
∑

l=0

(

2m− 1
l

)

(−2)l =

=
9
2
· (1 + 2)2m−1 + 1

2
· (1− 2)2m−1 = 9 · 3

2m−1 − 1
2

=
3n+1 − 1
2
.

2. Przypuśćmy następnie, że liczba n jest nieparzysta: n = 2m + 1. Ten przypadek
znów dzielimy na dwa podprzypadki:
2a. Liczba bloków jest parzysta (k = 2l, gdzie l = 1, 2, . . . , m). Mamy wtedy l
bloków białych i l bloków kolorowych. Możemy dla nich wybrać kolory na 4l

sposobów. Uwzględniając to, czy pierwszy blok jest biały, czy kolorowy, mamy
w tym przypadku 2 · 4l sposobów wyboru kolorów bloków kolorowych.

2b. Liczba bloków jest nieparzysta (k = 2l − 1, gdzie l = 1, 2, . . . , m + 1). Jeśli
pierwszy blok jest biały, to mamy 4l−1 możliwości wyboru kolorów dla blo-
ków kolorowych; jeśli zaś pierwszy blok jest kolorowy, to mamy 4l możliwości
wyboru kolorów. Łącznie mamy w tym przypadku 54 · 4l możliwości wyboru
kolorów.

Łacznie liczba kolorowań dopuszczalnych wynosi w tym przypadku

m
∑

l=1

(

2m
2l − 1

)

· 2 · 4l +
m+1
∑

l=1

(

2m
2l − 2

)

· 5
4
· 4l.

Podobnie jak w przypadku 1 pokazujemy, że ta liczba jest równa

3n+1 + 1
2
.

W obu przypadkach mamy zatem 1
2 · (3n+1 + (−1)n+1) kolorowań dopuszczalnych.
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Funkcje tworzące 1

FUNKCJE TWORZĄCE

1. Określenie funkcji tworzących za pomocą szeregów potęgowych

Przypuśćmy, że dany jest ciąg (an) liczb zespolonych. Funkcją tworzącą dla ciągu
(an) nazywamy funkcję A(z) określoną za pomocą wzoru

A(z) =

∞
∑

n=0

anz
n.

Przyjmujemy przy tym, że szereg potęgowy po prawej stronie powyższej równości ma
dodatni promień zbieżności r i wtedy funkcja A(z) jest określona wewnątrz koła o środku
w zerze i promieniu r. Nie będziemy teraz zajmować się ciągami, dla których rozważany
szereg potęgowy ma zerowy promień zbieżności (np. ciągami takimi jak an = n

n). Z teo-
rii funkcji analitycznych wiadomo, że dla danej funkcji analitycznej A(z) współczynniki
definiującego ją szeregu potęgowego są wyznaczone jednoznacznie.

Wykorzystanie funkcji tworzących do znajdowania wzorów ogólnych polega na wykona-
niu następujących kroków:

• zdefiniowanie funkcji tworzącej dla danego ciągu określonego rekurencyjnie,
• wykorzystanie równań rekurencyjnych do utworzenia równania na funkcję tworzącą,
• rozwiązanie równania i znalezienie wzoru funkcji tworzącej,
• rozwinięcie znalezionej funkcji tworzącej w szereg potęgowy i porównanie współ-
czynników.

Prześledzimy teraz tę metodę na dwóch przykładach: liczb Fibonacciego i liczb Catalana.

2. Liczby Fibonacciego

Przypomnijmy definicję liczb Fibonacciego:

F0 = F1 = 1, Fn = Fn−1 + Fn−2 dla n ≥ 2.
Pokażemy teraz, w jaki sposób można otrzymać wzór ogólny na liczby Fibonacciego,
korzystając z tzw. funkcji tworzących.

Definiujemy funkcję tworzącą dla ciągu liczb Fibonacciego wzorem

F (x) =

∞
∑

n=0

Fnz
n.

Mamy teraz

F (x) =

∞
∑

n=0

Fnz
n = F0 + F1z +

∞
∑

n=2

Fnz
n = 1 + z +

∞
∑

n=0

(Fn−1 + Fn−2)z
n =

= 1 + z +
∞
∑

n=2

Fn−1z
n +

∞
∑

n=2

Fn−2z
n = 1 + z +

∞
∑

n=1

Fnz
n+1 +

∞
∑

n=0

Fnz
n+2 =

= 1 + z + z ·
∞
∑

n=1

Fnz
n + z2 ·

∞
∑

n=0

Fnz
n = 1 + z + z ·

(

F (z)− 1
)

+ z2 · F (z) =

= 1 + z + zF (z)− z + z2F (z) = 1 + zF (z) + z2F (z).
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Otrzymaliśmy równanie
F (z) = 1 + zF (z) + z2F (z),

z którego dostajemy wzór na F (z):

F (z) · (1− z − z2) = 1,

czyli

F (z) =
1

1− z − z2 .

Teraz otrzymaną funkcję tworzącą rozwijamy w szereg potęgowy. W tym celu rozkła-
damy ułamek

1

1− z − z2

na ułamki proste. Najpierw znajdujemy liczby zespolone α i β takie, że

1− z − z2 = (1− αz)(1− βz) = 1− (α+ β)z + (αβ)z2.

W tym celu rozwiązujemy układ równań

{

α+ β = 1

αβ = −1

Otrzymujemy

α =
1 +
√
5

2
oraz β =

1−
√
5

2
.

Następnie szukamy liczb zespolonych c i d takich, że

1

1− z − z2 =
c

1− αz +
d

1− βz .

Po wymnożeniu otrzymujemy

1

1− z − z2 =
c(1− βz) + d(1− αz)
(1− αz)(1− βz) =

c+ d− (αd+ βc)z
1− z − z2 .

Otrzymujemy następny układ równań:

{

c+ d = 1

βc+ αd = 0

Rozwiązując ten układ równań, otrzymujemy:

c =
α√
5
oraz d = − β√

5
.
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Funkcje tworzące 3

Mamy zatem

F (z) =
α√
5
· 1

1− αz −
β√
5
· 1

1− βz .

Korzystamy teraz ze znanego rozwinięcia w szereg potęgowy. Mianowicie dla dowolnej
liczby zespolonej γ mamy

1

1− γz =
∞
∑

n=0

γnzn.

Stąd dostajemy rozwinięcie funkcji F (z) w szereg potęgowy

F (z) =
α√
5
·
∞
∑

n=0

αnzn − β√
5
·
∞
∑

n=0

βnzn =
∞
∑

n=0

αn+1 − βn+1√
5

· zn.

Korzystając z jednoznaczności rozwinięcia funkcji analitycznej w szereg potęgowy, do-
stajemy

Fn =
αn+1 − βn+1√

5
=
1√
5
·





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1


 .

Otrzymany wzór jest nazywany wzorem Bineta.

3. Liczby Catalana

Przypomnijmy, że liczby Catalana Cn spełniają następujące równanie rekurencyjne:

C0 = 1, Cn =

n−1
∑

k=0

CkCn−1−k = C0Cn−1 + C1Cn−2 + . . .+ Cn−1C0 dla n ≥ 1.

W szczególności dla początkowych wartości n mamy:

C0 = 1,

C1 = C
2
0 = 1,

C2 = C0C1 + C1C0 = 2,

C3 = C0C2 + C1C1 + C2C0 = 5,

C4 = C0C3 + C1C2 + C2C1 + C3C0 = 14.

Definiujemy funkcję tworzącą C(z) dla liczb Catalana wzorem

C(z) =
∞
∑

n=0

Cnz
n.

Mamy teraz

(

C(z)
)2
= C20 + (C0C1 + C1C0)z + (C0C2 + C1C1 + C2C0)z

2 + . . . =

= C1 + C2z + C3z
2 + . . .
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Dokładniej:
(

C(z)
)2
=

∞
∑

n=0

n
∑

k=0

CkCn−kz
n =

∞
∑

n=0

Cn+1z
n.

Zatem

z ·
(

C(z)
)2
=

∞
∑

n=0

Cn+1z
n+1 =

∞
∑

n=1

Cnz
n = C(z)− C0 = C(z)− 1.

Otrzymaliśmy więc równanie kwadratowe z niewiadomą C(z):

z ·
(

C(z)
)2 − C(z) + 1 = 0.

Rozwiązując to równanie otrzymujemy

C(z) =
1±
√
1− 4z
2z

.

Musimy wiedzieć, jaki znak należy wziąć w liczniku. Wiemy jednak, że C(0) = C0 = 1.
Mamy natomiast

lim
x→0+

1 +
√
1− 4x
2x

= +∞

oraz

lim
x→0

1 +
√
1− 4x
2x

= lim
x→0

4x

2x
(

1 +
√
1− 4x

) = 1.

Stąd wynika, że należy wziąć znak minus:

C(z) =
1−
√
1− 4z
2z

.

Teraz musimy rozwinąć funkcję C(z) w szereg potęgowy. Skorzystamy ze wzoru New-
tona. W tym celu dla dowolnej liczby rzeczywistej α i dowolnej liczby naturalnej n ≥ 1
definiujemy

(

α

n

)

=
α(α− 1)(α− 2) · . . . · (α− n+ 1)

n!
.

Przyjmujemy ponadto
(

α

0

)

= 1.

Wówczas mamy następujący wzór Newtona

(1 + z)α =

∞
∑

n=0

(

α

n

)

zn,
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Funkcje tworzące 5

przy czym szereg potęgowy po prawej stronie ma dodatni promień zbieżności (równy
1). Ze wzoru Newtona wynika, że

√
1− 4z =

∞
∑

n=0

(1
2

n

)

(−4z)n = 1 +
∞
∑

n=1

(−1)n
(1
2

n

)

4nzn,

skąd dostajemy

1−
√
1− 4z = −

∞
∑

n=1

(−1)n
(1
2

n

)

4nzn.

Ostatecznie

C(z) = −1
2
·
∞
∑

n=1

(−1)n
( 1
2

n

)

4nzn−1 =
1

2
·
∞
∑

n=0

(−1)n
( 1

2

n+ 1

)

4n+1zn.

Obliczymy teraz występujące w powyższym wzorze współczynniki dwumianowe:

(1
2

n

)

=
(1/2) · (1/2− 1) · (1/2− 2) · . . . · (1/2− n+ 1)

n!
=

=
1 · (1− 2) · (1− 4) · . . . · (1− 2n+ 2)

2n · n! =

=
(−1)n−1 · (2− 1) · (4− 1) · . . . · (2n− 3)

2n · n! =

=
(−1)n−1 · 1 · 3 · 5 · . . . · (2n− 3)

2n · n! =

=
(−1)n−1 · 1 · 3 · 5 · . . . · (2n− 3) · 2 · 4 · 6 · . . . · (2n− 2)

2n · n! · 2 · 4 · 6 · . . . · (2n− 2) =

=
(−1)n−1 · (2n− 2)!
2n · n! · 2n−1 · (n− 1)! =

=
(−1)n−1 · (2n− 2)!
22n−1 · n! · (n− 1)! .

Stąd
( 1

2

n+ 1

)

=
(−1)n · (2n)!

22n+1 · (n+ 1)! · n! =
(−1)n

2 · (n+ 1) · 4n ·
(

2n

n

)

.

Podstawiamy obliczoną wartość współczynnika dwumianowego do wzoru na C(z):

C(z) =
1

2
·
∞
∑

n=0

(−1)n · (−1)n
2 · (n+ 1) · 4n ·

(

2n

n

)

· 4n+1 · zn =
∞
∑

n=0

1

n+ 1
·
(

2n

n

)

zn.

Stąd ostatecznie dostajemy

Cn =
1

n+ 1
·
(

2n

n

)

.
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4. Wykładnicze funkcje tworzące i liczby Bella

Niech (an) będzie nieskończonym ciągiem liczb zespolonych. Wykładniczą funkcją
tworzącą dla ciągu (an) nazywamy funkcję A(z) określoną za pomocą wzoru

A(z) =
∞
∑

n=0

an
n!
zn.

W tym paragrafie wyprowadzimy wzór na wykładniczą funkcję tworzącą dla liczb Bella.

Przypomnijmy teraz wzór rekurencyjny dla liczb Bella:

B0 = 1, Bn+1 =
n
∑

k=0

(

n

k

)

Bk dla n ≥ 0.

Niech B(z) będzie wykładniczą funkcją tworzącą dla liczb Bella:

B(z) =
∞
∑

n=0

Bn
n!
zn.

Mamy wówczas

B(z) = 1 +
∞
∑

n=1

Bn
n!
zn = 1 +

∞
∑

n=0

Bn+1
(n+ 1)!

zn+1.

Różniczkujemy otrzymany szereg wyraz po wyrazie:

B′(z) =

∞
∑

n=0

Bn+1
(n+ 1)!

· (n+ 1)zn =
∞
∑

n=0

Bn+1
n!
zn =

∞
∑

n=0

n
∑

k=0

(

n

k

)

·Bk ·
zn

n!
=

=

∞
∑

n=0

n
∑

k=0

Bk
k! · (n− k)!z

n =

∞
∑

n=0

n
∑

k=0

(

Bk
k!
zk · z

n−k

(n− k)!

)

=

=

(

∞
∑

n=0

Bn
n!
zn

)

·
(

∞
∑

n=0

zn

n!

)

= B(z) · ez.

Otrzymaliśmy równanie
B′(z) = B(z) · ez,

czyli
(lnB(z))′ = ez.

Stąd
B(z) = ee

z+C

dla pewnej stałej C. Porównując wartości dla z = 0, otrzymujemy C = −1. Ostatecznie

B(z) = ee
z
−1.
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5. Pierścień szeregów formalnych

Będziemy zajmować się zbiorem wszystkich nieskończonych ciągów o wyrazach zespo-
lonych P = C

N. Elementy zbioru P będziemy oznaczać małymi literami greckimi i na-
zywać formalnymi szeregami potęgowymi lub w skrócie szeregami formalnymi.
Naszym zamysłem jest, by szereg α odpowiadał prawdziwemu szeregowi potęgowemu:

α = (a0, a1, a2, . . . , an . . .) odpowiada szeregowi

∞
∑

n=0

anx
n.

Pojęcie szeregu formalnego związane jest z tym, że nie zwracamy uwagi na zbież-
ność szeregu. Wszelkie działania na szeregach będziemy traktować czysto formalnie, nie
zastanawiając się nad tym, czy rozważane sumy odpowiadają jakimkolwiek liczbom ze-
spolonym. Okaże się, że takie działania będą miały dobrze określony sens algebraiczny
oraz szereg formalny α rzeczywiście okaże się nieskończoną sumą elementów postaci
anx

n.

Zdefiniujemy trzy ważne podzbiory P. Niech

α = (a0, a1, a2, . . . , an, . . .) ∈ P.

Wówczas:
α ∈ PR ⇔ ∀n ∈ N (an ∈ R),

α ∈ P0 ⇔ a0 = 0,
α ∈ P1 ⇔ a0 = 1.

Zbiór P jest więc zbiorem wszystkich szeregów formalnych o wyrazach zespolonych, PR

jest jego podzbiorem składającym się z szeregów formalnych o wyrazach rzeczywistych,
P0 i P1 podzbiorami składającymi się z szeregów formalnych, których wyraz wolny jest
odpowiednio równy 0 lub 1.

Wprowadzimy teraz działania na szeregach formalnych w taki sposób, by nadały one
zbiorowi P strukturę pierścienia przemiennego bez dzielników zera (czyli tzw. dziedziny
całkowitości). Zaczniemy od dodawania szeregów formalnych. Niech

α = (a0, a1, a2, . . . , an, . . .) oraz β = (b0, b1, b2, . . . , bn, . . .).

Sumą α+ β szeregów formalnych nazwiemy szereg

α+ β = (a0 + b0, a1 + b1, a2 + b2, . . . , an + bn, . . .).

Inaczej mówiąc, szeregi formalne dodajemy „po współrzędnych”. Nietrudno zauważyć,
że działanie dodawania szeregów formalnych jest przemienne i łączne:

α+ β = β + α oraz α+ (β + γ) = (α+ β) + γ

dla dowolnych α, β, γ ∈ P. Przyjmijmy następnie

ζ = (0, 0, 0, . . . , 0, . . .)
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oraz
−α = (−a0,−a1,−a2, . . . ,−an, . . .).

Wówczas łatwo sprawdzić, że

α+ ζ = ζ + α = α oraz α+ (−α) = (−α) + α = ζ.

Szereg ζ jest więc zerem, a szereg −α jest szeregiem przeciwnym do szeregu α. Zbiór
P jest zatem grupą abelową ze względu na działanie dodawania. Zdefiniujemy teraz
mnożenie szeregów formalnych. Tak jak poprzednio, niech

α = (a0, a1, a2, . . . , an, . . .) oraz β = (b0, b1, b2, . . . , bn, . . .).

Iloczynem α · β szeregów formalnych nazwiemy szereg

γ = (c0, c1, c2, . . . , cn, . . .)

określony wzorami

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, . . . ,

czyli ogólnie za pomocą tzw. wzoru Cauchy’ego

cn =

n
∑

k=0

akbn−k = a0bn + a1bn−1 + a2bn−2 + . . .+ an−1b1 + anb0

dla n = 0, 1, 2, . . .Wykażemy, że zbiór P z działaniami dodawania i mnożenia jest pier-
ścieniem przemiennym. Przemienność mnożenia jest oczywista i wynika z przemienności
mnożeń we wzorze Cauchy’ego. Pokażemy teraz, że mnożenie szeregów formalnych jest
łączne.

Niech dane będą trzy szeregi formalne α, β i γ:

α = (a0, a1, a2, . . . , an, . . .),

β = (b0, b1, b2, . . . , bn, . . .),

γ = (c0, c1, c2, . . . , cn, . . .).

Chcemy udowodnić, że
(α · β) · γ = α · (β · γ).

W tym celu definiujemy następujące szeregi formalne:

δ = α · β = (d0, d1, d2, . . . , dn, . . .),
ε = δ · γ = (e0, e1, e2, . . . , en, . . .),
ϕ = β · γ = (f0, f1, f2, . . . , fn, . . .),
η = α · ϕ = (h0, h1, h2, . . . , hn, . . .),
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gdzie zgodnie ze wzorem Cauchy’ego mamy

dn =

n
∑

k=0

akbn−k, en =

n
∑

k=0

dkcn−k, fn =

n
∑

k=0

bkcn−k, hn =

n
∑

k=0

akfn−k

dla n = 0, 1, 2, . . . Naszym celem jest udowodnienie, że ε = η, czyli, że en = hn dla
n = 0, 1, 2, . . .W tym celu skorzystamy z równości pomocniczej:

n
∑

k=0

k
∑

l=0

pk,l =
n
∑

l=0

n
∑

k=l

pk,l =
n
∑

l=0

n−l
∑

k=0

pk+l,l =
n
∑

k=0

n−k
∑

l=0

pk+l,k.

Dowód tej tożsamości pozostawimy jako ćwiczenie. Mamy teraz:

en =

n
∑

k=0

dkcn−k =

n
∑

k=0

(

k
∑

l=0

albk−l

)

· cn−k =
n
∑

k=0

k
∑

l=0

albk−lcn−k =

n
∑

k=0

n−k
∑

l=0

akblcn−k−l

dla n = 0, 1, 2, . . . Z drugiej strony mamy

hn =
n
∑

k=0

akfn−k =
n
∑

k=0

ak ·
(

n−k
∑

l=0

blcn−k−l

)

=
n
∑

k=0

n−k
∑

l=0

akblcn−k−l = en

dla n = 0, 1, 2, . . .W ten sposób dowód łączności mnożenia jest zakończony.

Definiujemy teraz szereg formalny ι wzorem

ι = (i0, i1, i2, . . . , in, . . .) = (1, 0, 0, . . . , 0, . . .),

czyli
i0 = 1 oraz in = 0

dla n = 1, 2, 3, . . . Nietrudno zauważyć teraz, że

ι · α = α · ι = α

dla dowolnego szeregu formalnego α. Szereg ι jest zatem jedynką w zbiorze P. Dowo-
dzimy teraz rozdzielności mnożenia względem dodawania. Niech

α = (a0, a1, a2, . . . , an, . . .),

β = (b0, b1, b2, . . . , bn, . . .),

γ = (c0, c1, c2, . . . , cn, . . .).

Wówczas równość
α · (β + γ) = α · β + α · γ

wynika z równości

n
∑

k=0

ak(bn−k + cn−k) =
n
∑

k=0

akbn−k +
n
∑

k=0

akcn−k
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dla n = 0, 1, 2, . . .

Zbiór P jest zatem pierścieniem przemiennym z jedynką. Pozostaje wykazać, że jest
dziedziną całkowitości. Niech więc α 6= ζ oraz β 6= ζ, gdzie

α = (a0, a1, a2, . . . , an, . . .) oraz β = (b0, b1, b2, . . . , bn, . . .).

Chcemy pokazać, że α · β 6= ζ. Niech γ = α · β, gdzie

γ = (c0, c1, c2, . . . , cn, . . .).

Ponieważ α 6= ζ, więc istnieje liczba n taka, że an 6= 0. Niech n0 będzie najmniejszą
taką liczbą n:

an0 6= 0 oraz a0 = a1 = . . . = an0−1 = 0.
Podobnie istnieje liczba m0 taka, że

bm0 6= 0 oraz b0 = b1 = . . . = bm0−1 = 0.

Mamy teraz

cn0+m0 =

n0+m0
∑

k=0

akbn0+m0−k =

n0−1
∑

k=0

akbn0+m0−k + an0bm0 +

n0+m0
∑

k=n0+1

akbn0+m0−k.

Dla k = 0, 1, . . . , n0 − 1 mamy ak = 0, a więc

n0−1
∑

k=0

akbn0+m0−k = 0.

Następnie

n0+m0
∑

k=n0+1

akbn0+m0−k =

m0
∑

k=1

an0+kbm0−k =

m0−1
∑

k=0

an0+m0−kbk.

Ponieważ dla k = 0, 1, . . . , m0 − 1 mamy bk = 0, więc

n0+m0
∑

k=n0+1

akbn0+m0−k =

m0−1
∑

k=0

an0+m0−kbk = 0.

Zatem
cn0+m0 = an0 · bm0 6= 0,

co dowodzi, że γ 6= ζ. Pierścień P nie ma zatem dzielników zera, a więc jest dziedziną
całkowitości. Zerem tego pierścienia jest szereg formalny ζ, a jedynką szereg formalny
ι. Pokażemy teraz, że ciało liczb zespolonych C może być traktowane jako podciało
pierścienia P.
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6. Włożenie C w P

Definiujemy przekształcenie h : C→ P wzorem

h(z) = (z, 0, 0, . . . , 0, . . .).

Inaczej mówiąc, h(z) jest szeregiem αz zdefiniowanym wzorami

αz = (a0, a1, a2, . . . , an, . . .),

gdzie
a0 = z oraz an = 0

dla n = 1, 2, 3, . . .. W szczególności ζ = h(0) oraz ι = h(1). Przekształcenie h jest
oczywiście różnowartościowe. Nietrudno pokazać, że jest ono homomorfizmem C w P.
Utożsamiając liczbę zespoloną z z szeregiem formalnym h(z) możemy przyjąć, że ciało
liczb zespolonych jest podciałem pierścienia P. Od tej pory zamiast szeregu formalnego
αz będziemy pisać po prostu z. W szczególności zamiast ζ będziemy pisać 0, a zamiast
ι będziemy pisać 1.

Odnotujmy jeszcze jedną własność omawianego włożenia, z której będziemy często ko-
rzystać. Niech

α = (a0, a1, a2, . . . , an, . . .).

Wówczas dla dowolnej liczby zespolonej z mamy

z · α = (za0, za1, za2, . . . , zan, . . .).

Wzór ten wynika natychmiast ze wzoru Cauchy’ego.

7. Rodziny sumowalne

Przypuśćmy, że mamy dany ciąg α0, α1, α2, . . . , αm, . . . szeregów formalnych:

α0 = (a
(0)
0 , a

(0)
1 , a

(0)
2 , . . . , a

(0)
n , . . .),

α1 = (a
(1)
0 , a

(1)
1 , a

(1)
2 , . . . , a

(1)
n , . . .),

α2 = (a
(2)
0 , a

(2)
1 , a

(2)
2 , . . . , a

(2)
n , . . .),

. . . . . .

αm = (a
(m)
0 , a

(m)
1 , a

(m)
2 , . . . , a

(m)
n , . . .),

. . . . . .

dla m = 0, 1, 2, . . . Mówimy, że ten ciąg tworzy rodzinę sumowalną, jeśli dla każdego

n istnieje tylko skończenie wiele liczb m takich, że a
(m)
n 6= 0. Wówczas dla każdego n

definiujemy an wzorem

an =

∞
∑

m=0

a(m)n .
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Suma po prawej stronie ma sens, bo tylko dla skończenie wielu indeksów m sumowany
składnik jest różny od zera. Definiujemy teraz

∞
∑

m=0

αm = (a0, a1, a2, . . . , an, . . .).

Inaczej:
∞
∑

m=0

αm =

(

∞
∑

m=0

a
(m)
0 ,

∞
∑

m=0

a
(m)
1 ,

∞
∑

m=0

a
(m)
2 , . . . ,

∞
∑

m=0

a(m)n , . . .

)

.

Zauważmy, że suma rodziny sumowalnej nie zależy od kolejności sumowania. To znaczy,
że jeśli mamy dane dwa ciągi szeregów formalnych różniące się tylko kolejnością wyrazów
(tzn. jeden jest permutacją drugiego), to sumy obu ciągów będą równe.

8. Szeregi potęgowe

Definiujemy szereg formalny ξ wzorem

ξ = (0, 1, 0, 0, 0, . . . , 0, . . .),

czyli
ξ = (x0, x1, x2, . . . , xn, . . .),

gdzie
x0 = 0, , x1 = 1, xn = 0 dla n ≥ 2.

Nietrudno zauważyć, że
ξ2 = (0, 0, 1, 0, 0, 0, . . . , 0, . . .),

ξ3 = (0, 0, 0, 1, 0, 0, . . . , 0, . . .),

ξ4 = (0, 0, 0, 0, 1, 0, . . . , 0, . . .)

i tak dalej. Ogólnie
ξm = (x0, x1, x2, . . . , xn, . . .),

gdzie

xn =

{

1 gdy n = m,
0 gdy n 6= m

dla n = 0, 1, 2, . . . i m = 1, 2, 3, . . .. Przyjmujemy również ξ0 = 1. Przypuśćmy teraz, że
dany jest szereg formalny α:

α = (a0, a1, a2, . . . , an, . . .).

Przyjmijmy następnie

α0 = a0 · ξ0 = (a0, 0, 0, 0, 0, . . . , 0, . . .),
α1 = a1 · ξ1 = (0, a1, 0, 0, 0, . . . , 0, . . .),
α2 = a2 · ξ2 = (0, 0, a2, 0, 0, . . . , 0, . . .)
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i tak dalej. Ogólnie

αm = am · ξm = (a(m)0 , a
(m)
1 , a

(m)
2 , . . . , a

(m)
n , . . .),

gdzie

a(m)n =

{

an gdy n = m,
0 gdy n 6= m

dla n,m = 0, 1, 2, . . .

Nietrudno zauważyć, że rodzina α0, α1, α2, . . . jest sumowalna oraz

α =

∞
∑

m=0

αm =

∞
∑

m=0

am · ξm.

Szereg formalny α może więc być traktowany jako suma szeregu potęgowego, w którym
współczynnikami przy kolejnych potęgąch ξ są wyrazy szeregu formalnego α.

W odróżnieniu od szeregów potęgowych zmiennej zespolonej, nie wolno nam podstawiać
w miejsce ξ liczb zespolonych. Otrzymalibyśmy bowiem sumę nieskończenie wielu sze-
regów formalnych (niekoniecznie sumowalną) lub nieskończenie wielu liczb zespolonych
(przy czym szereg nie musiałby być zbieżny). Jedynym wyjątkiem jest podstawienie
zera. Formalizuje się to podstawienie za pomocą homomorfizmu Z : P→ C określonego
wzorem

Z(α) = a0, gdzie α = (a0, a1, a2, . . . , an, . . .).

Sprawdzenie, że przekształcenie Z rzeczywiście jest homomorfizmem, pozostawiamy jako
ćwiczenie.

9. Elementy odwracalne pierścienia P

Udowodnimy teraz następujące twierdzenie:

Twierdzenie 5.1. Szereg formalny α jest odwracalny w pierścieniu P wtedy i tylko
wtedy, gdy a0 = Z(α) 6= 0 (czyli wtedy i tylko wtedy, gdy α 6∈ P0).

Dowód. Przypuśćmy najpierw, że szereg formalny α jest odwracalny. Niech β będzie
takim szeregiem formalnym, że α · β = 1. Wtedy

Z(α) · Z(β) = Z(α · β) = Z(1) = 1,
skąd wynika, że Z(α) 6= 0.
Przypuśćmy teraz, że na odwrót, Z(α) 6= 0. Niech

α = (a0, a1, a2, . . . , an, . . .).

Definiujemy szereg formalny β = (b0, b1, b2, . . . , bn, . . .) w następujący sposób:

b0 = (a0)
−1,

b1 = (−a1b0) · (a0)−1,
b2 = (−a2b0 − a1b1) · (a0)−1,
. . . . . .

bn = (−anb0 − an−1b1 − . . .− a1bn−1) · (a0)−1,
. . . . . .
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Nietrudno teraz zauważyć, że a0b0 = 1 oraz

a0bn + a1bn−1 + a2bn−2 + . . .+ anb0 = 0,

co dowodzi, że α · β = 1.
Szereg β oznaczamy symbolem α−1 i nazywamy szeregiem odwrotnym do α. Ponie-
waż dla dowolnych szeregów formalnych α i β zachodzi równość

(α · β) · (α−1 · β−1) = 1,

więc mamy równość
(α · β)−1 = α−1 · β−1.

Popatrzmy teraz na przykłady szeregów formalnych odwracalnych. Niech szereg α będzie
dany wzorem

α = 1− aξ = (1,−a, 0, 0, 0, . . . , 0, . . .),

gdzie a ∈ C. Niech następnie

β =
∞
∑

n=0

anξn = (1, a, a2, a3, . . . , an, . . .).

Ponieważ Z(α) = Z(β) = 1 6= 0, więc szeregi α i β są odwracalne. Niech szereg

γ = (c0, c1, c2, . . . , cn, . . .)

będzie ich iloczynem: γ = α · β. Mamy wówczas

c0 = a0 · b0 = 1 · 1 = 1

oraz

cn =
n
∑

k=0

akbn−k = a0bn + a1bn−1 = 1 · an + (−a) · an−1 = an − an = 0

dla n = 1, 2, 3, . . . A więc α · β = 1, czyli

(1− aξ) ·
∞
∑

n=0

anξn = 1.

Inaczej mówiąc

1 + aξ + a2ξ2 + a3ξ3 + . . .+ anξn + . . . =

∞
∑

n=0

anξn = (1− aξ)−1. (5.1)
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Udowodnimy następnie, że dla dowolnego d ≥ 1 zachodzi równość

(1− aξ)−d =
∞
∑

n=0

(

d+ n− 1
d− 1

)

anξn. (5.2)

Tej równości będziemy dowodzić przez indukcję względem d. Dla d = 1 mamy pokazać,
że

(1− aξ)−1 =
∞
∑

n=0

(

n

0

)

anξn =
∞
∑

n=0

anξn.

To jest dokładnie równość udowodniona wyżej.

W kroku indukcyjnym mamy wykazać, że

(1− aξ)−d−1 =
∞
∑

n=0

(

d+ n

d

)

anξn,

czyli

(1− aξ)−d · (1− aξ)−1 =
∞
∑

n=0

(

d+ n

d

)

anξn.

Z założenia indukcyjnego wiemy, że

(1− aξ)−d =
∞
∑

n=0

(

d+ n− 1
d− 1

)

anξn.

Musimy zatem udowodnić, że
(

∞
∑

n=0

(

d+ n− 1
d− 1

)

anξn

)

· (1− aξ)−1 =
∞
∑

n=0

(

d+ n

d

)

anξn,

czyli
∞
∑

n=0

(

d+ n− 1
d− 1

)

anξn =

(

∞
∑

n=0

(

d+ n

d

)

anξn

)

· (1− aξ).

Przekształcamy prawą stronę:
(

∞
∑

n=0

(

d+ n

d

)

anξn

)

· (1− aξ) =
∞
∑

n=0

(

d+ n

d

)

anξn −
∞
∑

n=0

(

d+ n

d

)

an+1ξn+1 =

=
∞
∑

n=0

(

d+ n

d

)

anξn −
∞
∑

n=1

(

d+ n− 1
d

)

anξn =

=

∞
∑

n=0

(

d+ n

d

)

anξn −
∞
∑

n=0

(

d+ n− 1
d

)

anξn =

=
∞
∑

n=0

((

d+ n

d

)

−
(

d+ n− 1
d

))

anξn =

=

∞
∑

n=0

(

d+ n− 1
d− 1

)

anξn,
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co kończy dowód indukcyjny.

10. Równania rekurencyjne liniowe jednorodne o stałych współczynnikach –

przykład

W tym paragrafie pokażemy na przykładzie, w jaki sposób za pomocą funkcji tworzących
możemy otrzymać wzór ogólny ciągu określonego równaniem rekurencyjnym liniowym
jednorodnym o stałych współczynnikach. Wybrany przykład będzie pokazywał wszyst-
kie istotne fragmenty dowodu ogólnego, który pokażemy w następnym paragrafie.

Mamy dany ciąg (an) zdefiniowany równaniem rekurencyjnym szóstego rzędu:

an+6 − 5an+5 − 15an+4 + 85an+3 + 10an+2 − 372an+1 + 360an = 0 (5.3)

dla n = 0, 1, 2, . . . Poszukujemy rozwiązania ogólnego. Przyjrzyjmy się najpierw równa-
niu charakterystycznemu naszego równania rekurencyjnego:

x6 − 5x5 − 15x4 + 85x3 + 10x2 − 372x+ 360 = 0

lub inaczej
(x− 2)3 · (x+ 3)2 · (x− 5) = 0.

Równanie charakterystyczne ma 3 pierwiastki: pierwiastek potrójny x = 2, pierwiastek
podwójny x = −3 i pierwiastek pojedynczy x = 5. Pokażemy, że rozwiązanie ogólne
równania rekurencyjnego (5.3) ma następującą postać:

an = (u0 + u1n+ u2n
2) · 2n + (v0 + v1n) · (−3)n + w0 · 5n dla n ≥ 0, (5.4)

gdzie u0, u1, u2, v0, v1, w0 ∈ C. Wprowadźmy wygodne oznaczenie: Cd[x] oznacza zbiór
wielomianów zmiennej zespolonej x stopnia mniejszego od d (a więc stopnia co najwyżej
d− 1). Podobnie Cd[ξ] oznacza zbiór wielomianów stopnia mniejszego od d zmiennej ξ
(jako podzbiór pierścienia wszystkich szeregów formalnych P):

Cd[ξ] = {α = (a0, a1, . . . , an, . . .) ∈ P : ∀n ≥ d (an = 0)}.

Wtedy rozwiązanie ogólne równania (5.3) można przedstawić w postaci

an = u(n) · 2n + v(n) · (−3)n + w(n) · 5n dla n ≥ 0,

gdzie u(x) ∈ C3[x], v(x) ∈ C2[x] i w(x) ∈ C1[x]. Zwracamy uwagę na związek mię-
dzy krotnościami pierwiastków równania charakterystycznego a stopniami wielomianów
u(x), v(x) i w(x).

Będziemy w dalszym ciągu traktować pierścień P szeregów formalnych jak przestrzeń
liniową nad ciałem C. Zdefiniujemy cztery podprzestrzenie przestrzeni P. Oto pierwsza
z nich:

V1 = {α = (an) ∈ P : an+6−5an+5−15an+4+85an+3+10an+2−372an+1+360an = 0}.
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W poprzednim wykładzie sprawdziliśmy, że ciągi spełniające równanie rekurencyjne
liniowe jednorodne o stałych współczynnikach rzeczywiście tworzą podprzestrzeń liniową
przestrzeni wszystkich ciągów o wyrazach zespolonych, a więc przestrzeni P. Ponieważ
pierwsze 6 wyrazów ciągu α można dobierać dowolnie, a wszystkie następne są przez
nie wyznaczone jednoznacznie, więc

V1 ∼= C
6,

czyli
dimV1 = 6.

Przed zdefiniowaniem drugiej podprzestrzeni wybierzmy dwa szeregi formalne:

δ = (1,−5,−15, 85, 10,−372, 360, 0, 0, 0, . . . , 0, . . .) =
= 1− 5ξ − 15ξ2 + 85ξ3 + 10ξ4 − 372ξ5 + 360ξ6 =
= (1− 2ξ)3 · (1 + 3ξ)2 · (1− 5ξ)

oraz

γ = δ−1 = (1−5ξ−15ξ2+85ξ3+10ξ4−372ξ5+360ξ6)−1 = (1−2ξ)−3(1+3ξ)−2(1−5ξ)−1.

Teraz definiujemy

V2 = {α ∈ P : ∃π ∈ C6[ξ] (α = π · γ)} = {α ∈ P : αδ ∈ C6[ξ]}.

Sprawdzenie, że V2 jest podprzestrzenią P pozostawimy jako ćwiczenie. Ponieważ ele-
menty V2 są wyznaczone jednoznacznie przez elementy C6[ξ], więc łatwo pokazujemy,
że

V2 ∼= C
6,

czyli
dimV2 = 6.

Mamy dwie przestrzenie liniowe tego samego wymiaru. Pokażemy, że V2 ⊆ V1. Przypu-
śćmy zatem, że mamy dany szereg formalny

α = (a0, a1, a2, . . . , an, . . .) ∈ V2.

Zatem π = αδ ∈ C6[ξ]. Niech zatem

π = (p0, p1, p2, p3, p4, p5, 0, 0, 0, . . . , 0, . . .),

(tzn. pn = 0 dla n ≥ 6). Mamy zatem równość

(a0, a1, a2, . . . , an, . . .) · (1,−5,−15, 85, 10,−372, 360, 0, 0, 0, . . . , 0, . . .) =
= (p0, p1, p2, p3, p4, p5, 0, 0, 0, . . . , 0, . . .).
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Stąd wynika, że

1 · a6 − 5 · a5 − 15 · a4 + 85 · a3 + 10 · a2 − 372 · a1 + 360 · a0 = p6 = 0,
1 · a7 − 5 · a6 − 15 · a5 + 85 · a4 + 10 · a3 − 372 · a2 + 360 · a1 = p7 = 0

i ogólnie

1 · an+6 − 5 · an+5 − 15 · an+4 + 85 · an+3 + 10 · an+2 − 372 · an+1 + 360 · an = pn+6 = 0

dla n ≥ 0. A więc α ∈ V1. Pokazaliśmy zatem, że

V2 ⊆ V1 oraz dimV1 = dimV2,

czyli V1 = V2.

Definiujemy trzecią podprzestrzeń P:

V3 =
{

α ∈ P : ∃π, ρ, σ
(

α = π · (1− 2ξ)−3 + ρ · (1 + 3ξ)−2 + σ · (1− 5ξ)−1
)}

,

przy czym π ∈ C3[ξ], ρ ∈ C2[ξ] oraz σ ∈ C1[ξ]. Nietrudno pokazać, że

V3 ∼= C3[ξ]× C2[ξ]× C1[ξ] ∼= C
6,

a więc V3 jest też podprzestrzenia przestrzeni P oraz dimV3 = 6. Pokażemy, że V3 ⊆ V2.
Przypuśćmy zatem, że

α = (a0, a1, a2, . . . , an, . . .) ∈ V3.
Zatem

α = π · (1− 2ξ)−3 + ρ · (1 + 3ξ)−2 + σ · (1− 5ξ)−1

dla pewnych

π = (p0 + p1ξ + p2ξ
2) ∈ C3[ξ], ρ = (r0 + r1ξ) ∈ C2[ξ], σ = s0 ∈ C1[ξ].

Chcemy pokazać, że αδ ∈ C6[ξ]. Mamy

α · δ =
(

π · (1− 2ξ)−3 + ρ · (1 + 3ξ)−2 + σ · (1− 5ξ)−1
)

· (1− 2ξ)3(1 + 3ξ)2(1− 5ξ) =
= π(1 + 3ξ)2(1− 5ξ) + ρ(1− 2ξ)3(1− 5ξ) + σ(1− 2ξ)3(1 + 3ξ)2 =
= π(1 + ξ − 21ξ2 − 45ξ3) + ρ(1− 11ξ + 42ξ2 − 68ξ3 + 40ξ4)+
+ σ(1− 15ξ2 + 10ξ3 + 60ξ4 − 72ξ5) =
= (p0 + p1ξ + p2ξ

2) · (1 + ξ − 21ξ2 − 45ξ3)+
+ (r0 + r1ξ) · (1− 11ξ + 42ξ2 − 68ξ3 + 40ξ4)+
+ s0 · (1− 15ξ2 + 10ξ3 + 60ξ4 − 72ξ5) =
= (p0 + r0 + s0) + (p0 + p1 − 11r0 + r1)ξ+
+ (−21p0 + p1 + p2 + 42r0 − 11r1 − 15s0)ξ2+
+ (−45p0 − 21p1 + p2 − 68r0 + 42r1 + 10s0)ξ3+
+ (−45p1 − 21p2 + 40r0 − 68r1 + 60s0)ξ4 + (−45p2 + 40r1 − 72s0)ξ5 ∈ C6[ξ].
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Zatem α ∈ V2. Pokazaliśmy więc, że α ∈ V2 i tym samym pokazaliśmy, że V3 ⊆ V2.
Ponieważ dimV2 = dimV3 = 6, więc V2 = V3.

Definiujemy czwartą podprzestrzeń liniową przestrzeni P:

V4 =
{

α = (an) ∈ P : ∃u0, u1, u2, v0, v1, w0 ∈ C

∀n ∈ N
(

an = (u0 + u1n+ u2n
2) · 2n + (v0 + v1n) · (−3)n + w0 · 5n

)}

.

Dowód, że V4 rzeczywiście jest podprzestrzenią liniową P zostawiamy jako ćwiczenie.
Ponieważ każdy szereg α ∈ V4 jest wyznaczony jednoznacznie przez liczby zespolone u0,
u1, u2, v0, v1, w0, więc V4 ∼= C

6, czyli dimV4 = 6. Pokażemy, że V3 ⊆ V4. Niech zatem
α = (a0, a1, a2, . . . , an, . . .) ∈ V3. Istnieją π ∈ C3[ξ], ρ ∈ C2[ξ] i σ ∈ C1[ξ] takie, że

α = π · (1− 2ξ)−3 + ρ · (1 + 3ξ)−2 + σ · (1− 5ξ)−1.
Korzystamy teraz z równości (5.1) i (5.2):

(1− 2ξ)−3 =
∞
∑

n=0

(

n+ 2

2

)

· 2nξn = 1
2
·
∞
∑

n=0

(n+ 1)(n+ 2) · 2nξn,

(1 + 3ξ)−2 =
∞
∑

n=0

(

n+ 1

1

)

· (−3)nξn =
∞
∑

n=0

(n+ 1) · (−3)nξn,

(1− 5ξ)−1 =
∞
∑

n=0

5nξn.

Niech następnie π = p0 + p1ξ + p2ξ
2, ρ = r0 + r1ξ oraz σ = s0. Wówczas

π · (1− 2ξ)−3 = 1
2
· (p0 + p1ξ + p2ξ2) ·

∞
∑

n=0

(n+ 1)(n+ 2) · 2nξn =

=
1

2
·
∞
∑

n=0

p0(n+ 1)(n+ 2) · 2nξn +
1

2
·
∞
∑

n=0

p1(n+ 1)(n+ 2) · 2nξn+1+

+
1

2
·
∞
∑

n=0

p2(n+ 1)(n+ 2) · 2nξn+2 =

=
1

2
·
∞
∑

n=0

p0(n+ 1)(n+ 2) · 2nξn +
1

2
·
∞
∑

n=1

p1n(n+ 1) · 2n−1ξn+

+
1

2
·
∞
∑

n=2

p2n(n− 1) · 2n−2ξn =

=
1

2
·
∞
∑

n=0

p0(n+ 1)(n+ 2) · 2nξn +
1

4
·
∞
∑

n=0

p1n(n+ 1) · 2nξn+

+
1

8
·
∞
∑

n=0

p2n(n− 1) · 2nξn =

=
1

8
·
∞
∑

n=0

(

4p0(n+ 1)(n+ 2) + 2p1n(n+ 1) + p2n(n− 1)
)

· 2nξn.
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Ponieważ

1

8
·
(

4p0(n+ 1)(n+ 2) + 2p1n(n+ 1) + p2n(n− 1)
)

=

=
1

8
·
(

4p0(2 + 3n+ n
2) + 2p1(n+ n

2) + p2(−n+ n2)
)

=

=
1

8
·
(

8p0 + (12p0 + 2p1 − p2)n+ (4p0 + 2p1 + p2)n2
)

=

= u0 + u1n+ u2n
2,

gdzie

u0 = p0, u1 =
12p0 + 2p1 − p2

8
, u2 =

4p0 + 2p1 + p2
8

,

więc

π · (1− 2ξ)−3 =
∞
∑

n=0

(u0 + u1n+ u2n
2) · 2nξn.

Podobnie

ρ · (1 + 3ξ)−2 = (r0 + r1ξ) ·
∞
∑

n=0

(n+ 1) · (−3)nξn =

=
∞
∑

n=0

r0(n+ 1) · (−3)nξn +
∞
∑

n=0

r1(n+ 1) · (−3)nξn+1 =

=

∞
∑

n=0

r0(n+ 1) · (−3)nξn +
∞
∑

n=1

r1n · (−3)n−1ξn =

=
∞
∑

n=0

r0(n+ 1) · (−3)nξn −
1

3

∞
∑

n=0

r1n · (−3)nξn =

=
1

3
·
∞
∑

n=0

(

3r0(n+ 1)− r1n
)

· (−3)nξn =

=
1

3
·
∞
∑

n=0

(

3r0 + (3r0 − r1)n
)

· (−3)nξn =

=
∞
∑

n=0

(v0 + v1n) · (−3)nξn,

gdzie

v0 = r0, v1 =
3r0 − r1
3
.

Wreszcie

σ · (1− 5ξ)−1 = s0 ·
∞
∑

n=0

5nξn =

∞
∑

n=0

w0 · 5nξn,
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gdzie w0 = s0.

Łącznie otrzymujemy

α =

∞
∑

n=0

anξ
n =

= π · (1− 2ξ)−3 + ρ · (1 + 3ξ)−2 + σ · (1− 5ξ)−1 =

=
∞
∑

n=0

(

(u0 + u1n+ u2n
2) · 2n + (v0 + v1n) · (−3)n + w0 · 5n

)

ξn,

skąd wynika, że dla każdego n ∈ N:

an = (u0 + u1n+ u2n
2) · 2n + (v0 + v1n) · (−3)n + w0 · 5n.

Zatem α ∈ V4. Pokazaliśmy więc, że V3 ⊆ V4. Ponieważ dimV3 = dimV4 = 6, więc
V3 = V4.

Wszystkie cztery zdefiniowane podprzestrzenie liniowe przestrzeni P są równe. W szcze-
gólności V1 = V4, co dowodzi, że ciągi (an) spełniające równanie rekurencyjne (5.3), a
więc należące do V1 należą również do V4. To zaś znaczy, że ciągi te są określone wzorem
ogólnym (5.4):

an = (u0 + u1n+ u2n
2) · 2n + (v0 + v1n) · (−3)n + w0 · 5n

dla pewnych liczb zespolonych u0, u1, u2, v0, v1, w0. To kończy dowód.

11. Równania rekurencyjne liniowe jednorodne o stałych współczynnikach –

twierdzenie ogólne

W tym paragrafie udowodnimy twierdzenie o postaci rozwiązań równań rekurencyjnych
liniowych jednorodnych o stałych współczynnikach.

Twierdzenie 5.2. Mamy dane równanie rekurencyjne liniowe jednorodne rzędu d

an+d + c1an+d−1 + c2an+d−2 + . . .+ cd−1an+1 + cdan = 0 (5.5)

o stałych współczynnikach c1, c2, . . . , cd ∈ C (przyjmujemy, że cd 6= 0; w przeciwnym
razie równanie miałoby rząd niższy niż d). Przypuśćmy, że równanie charakterystyczne

zd + c1z
d−1 + c2z

d−2 + . . .+ cd−1z + cd = 0

mam pierwiastków zespolonych r1, . . . , rm odpowiednio krotności d1, . . . , dm; oczywiście

d1 + . . .+ dm = d.

Wówczas istnieją wielomiany

q1 ∈ Cd1 [X ], . . . , qm ∈ Cdm [X ]
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takie, że
an = q1(n) · rn1 + . . .+ qm(n) · rnm

dla n = 0, 1, 2, . . .

Dowód. Dowód zaczniemy od przekształcenia równania charakterystycznego. Oczywi-
ście równanie charakterystyczne możemy zapisać w postaci

(z − r1)d1 · (z − r2)d2 · . . . · (z − rm)dm = 0.

Ponieważ cd 6= 0, więc pierwiastki równania charakterystycznego są różne od zera.
podstawmy zatem 1z w miejsce z i pomnóżmy obie strony równania przez z

d, otrzymując
kolejno

(

1

z
− r1

)d1

·
(

1

z
− r2

)d2

· . . . ·
(

1

z
− rm

)dm

= 0,

(1− r1z)d1 · (1− r2z)d2 · . . . · (1− rmz)dm = 0.

Otrzymane równanie jest oczywiście równoważne równaniu

1

zd
+ c1 ·

1

zd−1
+ . . .+ cd−1 ·

1

z
+ cd = 0,

czyli
1 + c1z + c2z

2 + . . .+ cd−1z
d−1 + cdz

d = 0.

Inaczej mówiąc, zachodzi równość wielomianów

1 + c1z + c2z
2 + . . .+ cd−1z

d−1 + cdz
d = (1− r1z)d1 · (1− r2z)d2 · . . . · (1− rmz)dm .

Teraz, postępując tak jak w przykładzie, definiujemy cztery podprzestrzenie liniowe
przestrzeni P. Oto pierwsza z nich:

V1 = {α = (an) ∈ P : an+d + c1an+d−1 + c2an+d−2 + . . .+ cd−1an+1 + cdan = 0}.

Sprawdzenie, że V1 jest rzeczywiście podprzestrzenią P zostawiamy jako ćwiczenie. Po-
nieważ pierwsze d wyrazów ciągu αmożemy wybrać dowolnie, a pozostałe są wyznaczone
jednoznacznie przez równanie (5.5), więc V1 ∼= C

d, czyli dimV1 = d.

Następnie definiujemy szereg formalny δ wzorem

δ = (1, c1, c2, . . . , cd, 0, 0, 0, . . . , 0, . . .).

Inaczej mówiąc, ciąg współczynników c1, c2, . . . , cd rozszerzamy, przyjmując

C0 = 1, cn = 0 dla n = d+ 1, d+ 2, d+ 3, . . .

Z rozważań przeprowadzonych na początku dowodu wynika, że

δ = 1+ c1ξ + c2ξ
2 + . . .+ cd−1ξ

d−1 + cdξ
d = (1− r1ξ)d1 · (1− r2ξ)d2 · . . . · (1− rmξ)dm .
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Następnie definiujemy

γ = δ−1 = (1− r1ξ)−d1 · (1− r2ξ)−d2 · . . . · (1− rmξ)−dm .

Teraz możemy zdefiniować drugą podprzestrzeń:

V2 = {α ∈ P : ∃π ∈ Cd[ξ] (α = π · γ)} = {α ∈ P : α · δ ∈ Cd[ξ]}.

Znów łatwo sprawdzamy, że V2 jest podprzestrzenią P oraz V2 ∼= Cd[ξ] ∼= C
d, czyli

dimV2 = d. Pokazujemy następnie, że V2 ⊆ V1.
Niech zatem α ∈ V2. Wówczas π = α · δ ∈ Cd[ξ]. Niech

π = (p0, p1, . . . , pd, 0, 0, 0, . . . , 0, . . .).

Wówczas

(a0, a1, . . . , an, . . .) · (c0, c1, . . . , cd, 0, 0, 0, . . . , 0, . . .) = (p0, p1, . . . , pd, 0, 0, 0, . . . , 0),

czyli
d
∑

k=0

ckan−k = 0

dla n ≥ d. Podstawiając n+ d w miejsce n, otrzymujemy

d
∑

k=0

ckan+d−k = 0

dla n = 0, 1, 2, . . . Inaczej mówiąc

c0an+d + c1an+d−1 + c2an+d−2 + . . .+ cd−1an+1 + cdan = 0,

czyli
an+d + c1an+d−1 + c2an+d−2 + . . .+ cd−1an+1 + cdan = 0

dla n = 0, 1, 2, . . . Zatem α ∈ V1. Stąd wynika, że V2 = V1.
Teraz definiujemy trzecią podprzestrzeń:

V3 = {α ∈ P : ∃π1, . . . , πm (α = π1 · (1− r1ξ)−d1 + . . .+ πm · (1− rmξ)−dm)},

gdzie π1 ∈ Cd1 [ξ], . . . , πm ∈ Cdm [ξ]. Wówczas nietrudno zauważyć, że

V3 ∼= Cd1 [ξ]× . . .×Cdm [ξ]
∼= C

d1 × . . .×Cdm [ξ]
∼= C

d1 × . . .× C
dm ∼= C

d.

Zatem dimV3 = d. Tak jak w przykładzie w poprzednim paragrafie, pokazujemy, że
V3 ⊆ V2.
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Niech zatem α ∈ V3. Mamy pokazać, że α · δ ∈ Cd[ξ], czyli, że α · δ jest wielomianem
stopnia niższego niż d. Zauważmy w tym celu, że

α · δ =
m
∑

k=1

πk · (1− rkξ)−dk · δ,

czyli

α · δ = π1 · (1− r2ξ)d2 · . . . · (1− rmξ)dm+
+ π2 · (1− r1ξ)d1 · (1− r3ξ)d3 · . . . · (1− rmξ)dm+
+ . . .+

+ π1 · (1− r1ξ)d1 · . . . · (1− rk−1ξ)dk−1 · (1− rk+1ξ)dk+1 · . . . · (1− rmξ)dm+
+ . . .+

+ π1 · (1− r1ξ)d1 · . . . · (1− rm−1ξ)dm−1 .

Pokażemy, że każdy składnik sumy po prawej stronie jest wielomianem stopnia niższego
niż d. Bez straty ogólności można ograniczyć się do piewszego składnika (każdy skład-
nik może być wybrany jako pierwszy po odpowiednim przenumerowaniu pierwiastków
równania charakterystycznego). Mamy zatem wielomian

π1 · (1− r2ξ)d2 · . . . · (1− rmξ)dm .

Jego stopień jest równy

deg π1 + d2 + . . .+ dm = deg π1 + d− d1 < d1 + d− d1 = d,

bo stopień wielomianu π1 jest mniejszy od d1. Stąd wynika, że deg (α · δ) < d, czyli
α · δ ∈ Cd[ξ]. A więc α ∈ V2. Tak jak poprzednio, dostajemy stąd równość V2 = V3.
Wreszcie definiujemy czwartą podprzestrzeń:

V4={α=(an)∈ P : ∃q1 ∈ Cd1 [X ] . . . ∃qm ∈ Cdm [X ] ∀n (an = q1(n)·rn1+. . .+qm(n)·rnm)}

i tak jak poprzednio zauważamy, że

V4 ∼= Cd1 [X ]× . . .×Cdm [X ]
∼= C

d1 × . . .×C
dm ∼= C

d.

Zatem dimV3 = d i znów tak jak w poprzednim paragrafie, pokazujemy, że V3 ⊆ V4.
Niech więc α ∈ V3. Wówczas

α = β1 + . . .+ βm,

gdzie
β1 = π1 · (1− r1ξ)−d1 , gdzie π1 ∈ Cd1 [ξ],

. . . . . .

βk = πk · (1− rkξ)−dk , gdzie πk ∈ Cdk [ξ],

. . . . . .

βm = πm · (1− rmξ)−dm , gdzie πm ∈ Cdm [ξ].
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Niech 1 ≤ k ≤ m i niech

πk = p0 + p1ξ + p2ξ
2 + . . .+ pdk−1ξ

dk−1,

czyli

πk = p0 + p1ξ + p2ξ
2 + . . .+ pdk−1ξ

dk−1 + pdkξ
dk + . . .+ pnξ

n + . . . ,

gdzie pn = 0 dla n ≥ dk. Korzystamy następnie ze wzoru (5.2):

(1− rkξ)−dk =
∞
∑

n=0

(

n+ dk − 1
dk − 1

)

· rnk · ξn.

Mamy wówczas

βk = πk · (1− rkξ)−dk =

= (p0 + p1ξ + . . .+ pdk−1ξ
dk−1) ·

∞
∑

n=0

(

n+ dk − 1
dk − 1

)

· rnk · ξn =

=

∞
∑

n=0





n
∑

j=0

pj

(

n− j + dk − 1
dk − 1

)

· rn−jk



 ξn.

Wprowadzimy teraz nowe oznaczenie. Przypomnijmy, że symbolem (x)n oznaczaliśmy
wielomian

(x)n = x(x− 1)(x− 2) · . . . · (x− n+ 1)

dla n = 1, 2, 3, . . . Oznaczmy również (x)0 = 1. Zdefiniujmy wielomian
(

x
n

)

wzorem:

(

x

n

)

=
(x)n
n!

dla n = 0, 1, 2, . . . Ponieważ wielomian (x)n ma stopień n, więc
(

x
n

)

jest też wielomianem
stopnia n. Stąd wynika, że

(

X − j + dk − 1
dk − 1

)

=
1

(dk − 1)!
·(X−j+dk−1)(X−j+dk−2)·. . .·(X−j+dk−(dk−1))

jest wielomianem stopnia dk − 1 zmiennej X . Definiujemy teraz wielomian qk(X) wzo-
rem:

qk(X) =

n
∑

j=0

pj

(

X − j + dk − 1
dk − 1

)

.

Oczywiście wielomian qk(X) ma stopień co najwyżej równy dk − 1. Niech ponadto

βk = (b0, b1, b2, . . . , bn, . . .).
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Wówczas

βk =
∞
∑

n=0

qk(n) · rnk ξn,

czyli
bn = qk(n) · rnk

dla n = 0, 1, 2, . . . Z równości α = β1 + . . .+ βm wynika teraz, że

an = q1(n) · rn1 + . . .+ qm(n) · rnk

dla n ≥ 0. To dowodzi, że α ∈ V4.
Zatem V1 = V2 = V3 = V4. Stąd wynika, że każdy ciąg α = (an) ∈ P spełniający
równanie rekurencyjne(5.5) należy do przestrzeni V4. Istnieją zatem wielomiany

q1 ∈ Cd1 [X ], . . . , qm ∈ Cdm [X ]

o tej własności, że ciąg α = (an) jest określony wzorem ogólnym

an = q1(n) · rn1 + . . .+ qm(n) · rnk

dla n = 0, 1, 2, . . . To kończy dowód twierdzenia 5.2.

12. Pierwiastki kwadratowe

Przypuśćmy, że dany jest szereg formalny

α = (1, a1, a2, . . . , an, . . .) ∈ P1.

Wyznaczymy teraz szereg formalny

β = (b0, b1, b2, . . . , bn, . . .)

taki, że β = α2. Mamy kolejno

b0 = 1 · 1 = 1,
b1 = 1 · a1 + a1 · 1 = 2a1,
b2 = 1 · a2 + a1 · a1 + a1 · 1 = 2a2 + a21,
b3 = 1 · a3 + a1 · a2 + a2 · a1 + a3 · 1 = 2a3 + 2a1a2,
b4 = 1 · a4 + a1 · a3 + a2 · a2 + a3 · a1 + a4 · 1 = 2a4 + 2a1a3 + a22

i ogólnie

bn = 2an + a1an−1 + a2an−2 + . . .+ an−1a1 = 2an +
n−1
∑

k=1

akan−k.
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Powyższe wzory pozwalają rozwiązać zadanie odwrotne. Niech będzie dany szereg for-
malny β ∈ P1. Istnieje wówczas dokładnie jeden szereg formalny α ∈ P1 taki, że α

2 = β.
Wykażemy najpierw jednoznaczność.

Przypuśćmy bowiem, że mamy dane dwa szeregi formalne α, γ ∈ P1 takie, że

α2 = γ2 = β.

Wówczas α2−γ2 = 0, czyli (α−γ)(α+γ) = 0. Zatem α = γ lub α = −γ. Ale α, γ ∈ P1,
czyli Z(α) = Z(γ) = 1. Gdyby α = −γ, to mielibyśmy Z(α) = −Z(γ) = −1, co jest
sprzeczne z założeniem. Zatem α = γ.

Szereg formalny α taki, że α2 = β definiujemy przez indukcję:

a0 = 1,

a1 =
b1
2
,

a2 =
b2 − a21
2
,

. . . . . .

an =
bn − (a1an−1 + a2an−2 + . . .+ an−1a1)

2
=
bn
2
− 1
2
·
n−1
∑

k=0

akan−k.

Z poprzednio wyprowadzonych wzorów wynika, że rzeczywiście α2 = β.

Jeśli β ∈ P1, to szereg α ∈ P1 taki, że α
2 = β nazywamy pierwiastkiem kwadrato-

wym szeregu β i oznaczamy symbolem
√
β lub β

1
2 .

Pokażemy teraz jeden przykład pierwiastka kwadratowego. Ten przykład będzie wyko-
rzystany w dalszej części tego wykładu. Niech

β = (1− 4ξ)−1 =
∞
∑

n=0

4nξn = (1, 4, 42, . . . , 4n, . . .).

Oczywiście β ∈ P1. Obliczymy kolejne wyrazy szeregu

α = (a0, a1, a2, . . . , an, . . .) ∈ P1

takiego, że α2 = β. Mamy kolejno:

a0 = 1,

a1 =
b1
2
= 2,

a2 =
b2 − a21
2
=
42 − 22
2
= 6,

a3 =
b3 − 2a1a2
2

=
43 − 2 · 2 · 6

2
= 20,

a4 =
b4 − 2a1a3 − a22

2
=
44 − 2 · 2 · 20− 62

2
= 70.
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Otrzymane liczby wyglądają znajomo, jeśli przypomnimy sobie początkowe wiersze trój-
kąta Pascala:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Narzuca się hipoteza:

an =

(

2n

n

)

dla n ≥ 0,

czyli

(1− 4ξ)−1/2 =
∞
∑

n=0

(

2n

n

)

ξn.

W następnych paragrafach udowodnimy tę hipotezę.

„Tożsamość 4n”

W tym paragrafie pokażemy trzy dowody następującej tożsamości kombinatorycznej:

n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

= 4n. (5.6)

Dowód I. Definiujemy funkcje Sn(x) (k = 0, 1, 2, . . .) wzorem:

Sn(x) =

n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

xk

dla x ∈ R. Różniczkując obie strony otrzymujemy:

S′n(x) =

n
∑

k=0

k

(

2k

k

)(

2n− 2k
n− k

)

xk−1

dla x ∈ R. Zmieniając kolejność sumowania (czyli podstawiając k := n − k), otrzymu-
jemy

Sn(x) =
n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

xn−k,
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skąd dostajemy

xn · Sn(x−1) = xn ·
n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

xk−n = Sn(x).

Następnie różniczkujemy obie strony równości

Sn(x) = x
n · Sn(x−1).

Otrzymujemy

S′n(x) = (x
n)′ · Sn(x−1) + xn ·

(

Sn(x
−1)
)

′

= nxn−1Sn(x
−1) + xn · S′n(x−1) · (−x−2) =

= nxn−1 · Sn(x−1)− xn−2 · S′n(x−1).
Podstawiając teraz x = 1, otrzymujemy

S′n(1) = x · Sn(1)− S′n(1),
czyli

S′n(1) =
n

2
· Sn(1).

Z drugiej strony

Sn+1(x) =

n+1
∑

k=0

(

2k

k

)(

2n+ 2− 2k
n+ 1− k

)

xk,

skąd otrzymujemy

S′n+1(x) =

n+1
∑

k=0

k

(

2k

k

)(

2n+ 2− 2k
n+ 1− k

)

xk−1 =

n+1
∑

k=1

k

(

2k

k

)(

2n+ 2− 2k
n+ 1− k

)

xk−1 =

=

n
∑

k=0

(k + 1)

(

2k + 2

k + 1

)(

2n− 2k
n− k

)

xk =

=

n
∑

k=0

(k + 1) · 2k + 2
k + 1

·
(

2k + 1

k

)(

2n− 2k
n− k

)

xk =

=
n
∑

k=0

(2k + 2) ·
(

2k + 1

k + 1

)(

2n− 2k
n− k

)

xk =

=
n
∑

k=0

(2k + 2) · 2k + 1
k + 1

·
(

2k

k

)(

2n− 2k
n− k

)

xk =

=
n
∑

k=0

2(2k + 1) ·
(

2k

k

)(

2n− 2k
n− k

)

xk =

= 4 ·
n
∑

k=0

k ·
(

2k

k

)(

2n− 2k
n− k

)

xk + 2 ·
n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

xk =

= 4x ·
n
∑

k=0

k ·
(

2k

k

)(

2n− 2k
n− k

)

xk−1 + 2 ·
n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

xk =

= 4x · S′n(x) + 2 · Sn(x).
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Teraz podstawiamy x = 1:

S′n+1(1) = 4 · S′n(1) + 2 · Sn(1) = 4 ·
n

2
· Sn(1) + 2 · Sn(1) = (2n+ 2) · Sn(1).

Ponieważ także

S′n+1(1) =
n+ 1

2
· Sn+1(1),

więc
n+ 1

2
· Sn+1(1) = (2n+ 2) · Sn(1),

czyli
Sn+1(1) = 4 · Sn(1).

Ponieważ

S0(1) =

0
∑

k=0

(

2k

k

)(

0− 2k
0− k

)

1k = 1,

więc przez indukcję Sn(1) = 4
n. Zatem

n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

= Sn(1) = 4
n,

co kończy dowód.

Dowód II. Przypomnijmy tożsamość Cauchy’ego:

k
∑

j=0

(

m

j

)(

n

k − j

)

=

(

m+ n

k

)

.

Przypomnijmy oznaczenia, których niedawno używaliśmy: symbolem (x)n oznaczaliśmy
wielomian

(x)n = x(x− 1)(x− 2) · . . . · (x− n+ 1)
dla n = 1, 2, 3, . . . Przyjmujemy również (x)0 = 1. Wprowadziliśmy także oznaczenie:

(

x

n

)

=
(x)n
n!

dla n = 0, 1, 2, . . . Niech teraz

W (x) =

k
∑

j=0

(

x

j

)(

n

k − j

)

oraz

V (x) =

(

x+ n

k

)

.
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Wielomiany W (x) i V (x) przyjmują te same wartości dla nieskończenie wielu argumen-
tów: W (m) = V (n) dla n ∈ N. Zatem są identyczne; w szczególności W (x) = V (x) dla
dowolnej liczby rzeczywistej x. Weźmy teraz dowolną liczbę r ∈ R i rozważmy wielo-
miany zmiennej y:

U(y) =

k
∑

j=0

(

r

j

)(

y

k − j

)

oraz

T (y) =

(

r + y

k

)

.

Wielomiany U(y) i T (y) przyjmują te same wartości dla nieskończenie wielu argumen-
tów: U(n) = T (n) dla n ∈ N. Zatem są identyczne, czyli dla dowolnej liczby rzeczywistej
s zachodzi równość U(s) = T (s). To znaczy, że dla dowolnych r, s ∈ R mamy:

k
∑

j=0

(

r

j

)(

s

k − j

)

=

(

r + s

k

)

.

Uwaga. Można udowodnić (co pozostawiamy jako ćwiczenie), że jeśli dwa wielomiany
W (x, y) i V (x, y) dwóch zmiennych x i y przyjmują te same wartości dla wszystkich
r, s ∈ R (tzn. W (r, s) = V (r, s)), to są identyczne: W (x, y) = V (x, y).

Podstawmy teraz r = s = −12 . Otrzymujemy

k
∑

j=0

(−1
2

j

)( −1
2

k − j

)

=

(−1
k

)

.

Obliczymy teraz współczynniki dwumianowe występujące po obu stronach powyższej
równości.

Pokażemy najpierw, że dla dowolnego n = 0, 1, 2, . . . mamy

(−1
n

)

= (−1)n.

Dla n = 0 ta równość jest oczywista. Niech n ≥ 1. Mamy teraz
(−1
n

)

=
(−1)n
n!
=
(−1) · (−1− 1) · (−1− 2) · . . . · (−1− n+ 1)

n!
=

=
(−1) · (−2) · (−3) · . . . · (−n)

n!
=
(−1)n · n!
n!

= (−1)n.

Pokażemy teraz, że dla dowolnego n = 0, 1, 2, . . . mamy

(−12
n

)

=
(−1)n
4n
·
(

2n

n

)

.
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Znów dla n = 0 równość jest oczywista. Niech zatem n ≥ 1. Mamy wówczas
(−1

2

n

)

=

(

−12
)

n

n!
=

(

−12
)

·
(

−12 − 1
)

·
(

−12 − 2
)

· . . . ·
(

−12 − n+ 1
)

n!
=

=

(

−12
)

·
(

−32
)

·
(

−52
)

· . . . ·
(

−2n−12
)

n!
=
(−1) · (−3) · (−5) · . . . ·

(

−(2n− 1)
)

2n · n! =

=
(−1)n · 1 · 3 · 5 · . . . · (2n− 1)

2n · n! =

=
(−1)n · 1 · 3 · 5 · . . . · (2n− 1)

2n · n! · 2 · 4 · 6 · . . . · (2n)
2 · 4 · 6 · . . . · (2n) =

(−1)n · (2n)!
2n · n! · 2n · n! =

=
(−1)n · (2n)!
4n · n! · n! =

(−1)n
4n
· (2n)!
n! · n! =

(−1)n
4n
·
(

2n

n

)

.

Podstawmy teraz obliczone wartości do równości

k
∑

j=0

(−1
2

j

)( −1
2

k − j

)

=

(−1
k

)

.

Otrzymamy
k
∑

j=0

(−1)j
4j
·
(

2j

j

)

· (−1)
k−j

4k−j
·
(

2k − 2j
k − j

)

= (−1)k,

czyli
k
∑

j=0

(−1)k
4k
·
(

2j

j

)

·
(

2k − 2j
k − j

)

= (−1)k.

Zatem

(−1)k
4k
·
k
∑

j=0

(

2j

j

)(

2k − 2j
k − j

)

= (−1)k,

czyli
k
∑

j=0

(

2j

j

)(

2k − 2j
k − j

)

= 4k,

co kończy dowód.

Dowód III. Przeprowadzimy dowód kombinatoryczny.

Udowodnimy najpierw następujący lemat.

Lemat 5.3. Istnieje
(

2n
n

)

ciągów f długości 2n o wyrazach ze zbioru {0, 1}, mających
następującą własność: dla każdej liczby k ∈ [2n]

|{i ∈ [k] : f(i) = 0}| 6= |{i ∈ [k] : f(i) = 1}|.
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Dowód. Popatrzmy najpierw na ilustrację graficzną naszego lematu. Ciągi zerojedyn-
kowe (tzn. o wyrazach ze zbioru {0, 1}) kodujemy za pomocą dróg na papierze w kratkę.
Wyrazowi 0 odpowiada odcinek poziomy, wyrazowi 1 odpowiada odcinek pionowy; wy-
rauszamy z ustalonego punktu A i poruszamy się wyłącznie w prawo i do góry.

A
B0

B1

B2

Bn−1

Bn

Bn+1

B2n−2

B2n−1

B2n

C

D

Zauważmy, że droga długości 2n zakończy się w jednym z punktów B0, B1, . . . , B2n; są
to punkty leżące na odcinku łączącym punkty B0 i B2n oddalone od punktu A o 2n
kratek. Warunek sformułowany w lemacie oznacza, że poprowadzona droga nigdzie (poza
punktem wyjścia A) nie dotknie przekątnej: linii łączącej punkt A z punktem Bn. Takie
drogi będziemy nazywać drogami omijającymi przekątną. Przykład drogi omijającej
przekątną widzimy na następnym rysunku:

A
B0

B1

B2

Bn−2

Bn−1

Bn

Bn+1

B2n−2

B2n−1

B2n

C

D

Drogi omijające przekątną dzielą się na dwa zbiory: drogi zaczynające się od kroku
w prawo (czyli do punktu C) i drogi zaczynające się od kroku w górę (do punktu D).
Oczywiście drogi omijające przekątną i przechodzące przez punkt C muszą zakończyć
się w jednym z punktów B0, . . . , Bn−1. Drogi omijające przekątną i przechodzące przez
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punkt D zakończą się w jednym z punktów Bn+1, . . . , B2n. Na następnym rysunku
widzimy jedną z takich dróg przechodzących przez punkt D.

A
B0

B1

B2

Bn−1

Bn

Bn+1

Bn+2

B2n−2

B2n−1

B2n

C

D

Ze względu na symetrię liczba dróg omijających przekątną i przechodzących przez punkt
C jest równa liczbie dróg omijających przekątną i przechodzących przez punkt D. Po-
liczymy te pierwsze drogi. Pomysł polega na tym, by od liczby wszystkich dróg odjąć
liczbę dróg, które nie omijają przekątnej.

Wprowadźmy wygodne oznaczenie. Jeśli X i Y są dwoma punktami kratowymi, to sym-
bolem d(X, Y ) będziemy oznaczać liczbę dróg zX do Y zgodnych z zasadami poruszania
się po kratkach (tzn. tylko w prawo i do góry). Wiemy już, że drogi omijające przekątną
i przechodzące przez punkt C kończą się w jednym z punktów B0, . . . , Bn−1. Liczba
wszystkich dróg z A przez C do jednego z tych n punktów jest zatem równa

n−1
∑

k=0

d(C,Bk).

Odejmijmy od tej liczby liczbę dróg „złych”: prowadzących z A przez C do jednego
z tych n punktów, ale nie omijających przekątnej. Oto przykład takiej drogi:

A
B0

B1

B2

Bn−2

Bn−1

Bn

Bn+1

B2n−2

B2n−1

B2n

C

D
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Droga „zła” w co najmniej jednym punkcie dotyka przekątnej. Fragment tej drogi od
punktu C do pierwszego punktu na przekątnej odbijamy symetrycznie wzglęgem prze-
kątnej. Otrzymujemy drogę z punktu D do jednego z punktów B1, . . . , Bn−1 (zauważmy,
że jedyna droga z C do B0 nie dotyka przekątnej; dlatego pomijamy punkt B0 jako jeden
z punktów końcowych dróg „złych”):

A
B0

B1

B2

Bn−2

Bn−1

Bn

Bn+1

B2n−2

B2n−1

B2n

C

D

Odwrotnie, każda droga z punktu D do jednego z punktów B1, . . . , Bn−1 musi przeciąć
przekątną, a więc powstaje z dokładnie jednej drogi „złej” przez odbicie symetryczne.
Stąd wynika, że liczba dróg „złych” jest równa

n−1
∑

k=1

d(D,Bk).

Zauważmy następnie, że dla każdego k = 1, 2, . . . , n− 1 mamy równość

d(D,Bk) = d(C,Bk−1).

Mianowicie każdą drogę z D do Bk przesuwamy o jedną kratkę w prawo i jedną w
dół, otrzymując w ten sposób drogę z C do Bk−1; to przekształcenie dróg jest oczy-
wiście wzajemnie jednoznaczne. Stąd wynika, że liczba dróg „złych” z C do punktów
B1, . . . , Bn−1 jest równa

n−1
∑

k=1

d(D,Bk) =

n−1
∑

k=1

d(C,Bk−1) =

n−2
∑

k=0

d(C,Bk).

Liczba dróg z A przez C omijających przekątną jest zatem równa

n−1
∑

k=0

d(C,Bk)−
n−2
∑

k=0

d(C,Bk) = d(C,Bn−1).
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Zauważamy następnie, że
d(C,Bn−1) = d(A,E).

Mianowicie każdą drogę z C do Bn−1 przesuwamy o jedną kratkę w lewo.

A
B0

B1

B2

Bn−1

Bn

Bn+1

B2n−2

B2n−1

B2n

C

D

E

F

Otrzymujemy wniosek: liczba dróg z A przez C omijających przekątną jest równa
d(A,E). Przez symetrię, liczba dróg z A przez D omijających przekątną jest równa
d(A, F ). A więc liczba wszystkich dróg wychodzących z A i omijających przekątną jest
równa

d(A,E) + d(A, F ) = d(A,Bn) =

(

2n

n

)

,

co kończy dowód lematu.

Możemy teraz przystąpić do dowodu tożsamości (5.6):

n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

= 4n. (5.6)

Niech A będzie zbiorem wszystkich zerojedynkowych ciągów f długości 2n:

A = [2][2n] = {f = (f1, f2, . . . , f2n) : f1, f2, . . . , f2n ∈ [2]}.

Definiujemy następnie zbiory Ak dla k = 0, 1, . . . , n:

Ak =
{

f ∈ A : max{j ∈ [n] : |f−1(0) ∩ [2j]| = |f−1(1) ∩ [2j]| = j} = k
}

.

Inaczej mówiąc, ciąg (f1, f2, . . . , f2k) jest najdłuższym odcinkiem początkowym ciągu
f , w którym jest tyle samo zer co jedynek. Wtedy

4n = 22n = |A| =
n
∑

k=0

|Ak|.
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Wystarczy teraz zauważyć, że jeśli f ∈ Ak, to ciąg f można podzielić jednoznacznie
na dwa ciągi: ciąg f |[2k], w którym jest po k zer i jedynek (jest

(

2k
k

)

takich ciągów) i

ciąg f |{2k + 1, . . . , 2n}, kodowany za pomocą drogi omijającej przekątną (jest
(

2n−2k
n−k

)

takich dróg). Zatem

|Ak| =
(

2n− 2k
n− k

)

,

skąd wynika, że
n
∑

k=0

|Ak| =
n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

= 4n,

co kończy dowód.

13. Przykład pierwiastka kwadratowego

Rozważmy szereg formalny α zdefiniowany wzorem

α = (a0, a1, a2, a3, . . . , an, . . .) =

(

1,

(

2

1

)

,

(

4

2

)

,

(

6

3

)

, . . . ,

(

2n

n

)

, . . .

)

,

czyli

an =

(

2n

n

)

dla n = 0, 1, 2, . . . Oczywiście α ∈ P1. Obliczmy teraz β = α
2. Niech zatem

β = (b0, b1, b2, . . . , bn, . . .).

Wówczas ze wzoru Cauchy’ego i z „tożsamości 4n” wynika, że

bn =

n
∑

k=0

akan−k =

n
∑

k=0

(

2k

k

)(

2n− 2k
n− k

)

= 4n

dla n = 0, 1, 2, . . . Zatem
β = (1− 4ξ)−1,

czyli
α2 = (1− 4ξ)−1.

Ponieważ α ∈ P1, więc zgodnie z przyjętą konwencją możemy napisać, że

α =
√

(1− 4ξ)−1 = (1− 4ξ)−1/2.

Niech teraz szereg γ będzie zdefiniowany wzorem γ = 1− 4ξ. Oczywiście γ · β = 1 oraz
γ ∈ P1. Niech zatem δ ∈ P1 będzie szeregiem takim, że δ

2 = γ (czyli δ =
√
1− 4ξ).

Mamy wówczas
α2 · γ2 = β · γ · γ = γ = δ2,
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skąd wynika, że α · γ = δ. Stąd otrzymujemy

δ = (1− 4ξ) · α = α− 4 · ξ · α.

Niech
δ = (d0, d1, d2, . . . , dn, . . .).

Wówczas
d0 = a0 oraz dn = an − 4an−1 dla n ≥ 1.

Zatem d0 = 1 oraz

dn = an − 4an−1 =
(

2n

n

)

− 4 ·
(

2n− 2
n− 1

)

=
2n

n
·
(

2n− 1
n− 1

)

− 4 ·
(

2n− 2
n− 1

)

=

= 2 ·
(

2n− 1
n− 1

)

− 4 ·
(

2n− 2
n− 1

)

= 2 ·
((

2n− 1
n− 1

)

− 2 ·
(

2n− 2
n− 1

))

=

= 2 ·
((

2n− 2
n− 1

)

+

(

2n− 2
n− 2

)

− 2 ·
(

2n− 2
n− 1

))

=

= 2 ·
((

2n− 2
n− 2

)

−
(

2n− 2
n− 1

))

= 2 ·
(

n− 1
n
·
(

2n− 2
n− 1

)

−
(

2n− 2
n− 1

))

=

= − 2
n
·
(

2n− 2
n− 1

)

.

Stąd wynika, że
√

1− 4ξ = δ = 1− 2 ·
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn.

14. Liczby Catalana

Przypomnijmy, że ciąg liczb Catalana Cn spełniał następujące równanie rekurencyjne:

C0 = 1, Cn = C0Cn−1 + C1Cn−2 + . . .+ Cn−1C0 =
n−1
∑

k=0

CkCn−1−k dla n ≥ 1.

Niech γ będzie szeregiem formalnym zdefiniowanym w następujący sposób:

γ =
∞
∑

n=0

Cnξ
n,

czyli
γ = (C0, C1, C2, . . . , Cn, . . .).

Wówczas ze wzoru Cauchy’ego wynika, że

γ2 = C20 + (C0C1 + C1C0)ξ + (C0C2 + C1C1 + C2C0)ξ
2 + . . .

Wykłady z kombinatoryki



Funkcje tworzące 39

Dokładniej, przyjmijmy

α = γ2 = (a0, a1, a2, . . . , an, . . .).

Wówczas

an =
n
∑

k=0

CkCn−k = Cn+1

dla n = 0, 1, 2, . . . Stąd wynika, że

1 + ξ · α = γ,

czyli
ξ · γ2 = γ − 1.

Pomnóżmy obie strony ostatniej równości przez ξ:

(ξ · γ)2 = ξ · γ − ξ.

Przyjmijmy następnie β = ξ · γ. Wtedy oczywiście β ∈ P0 oraz

β2 − β + ξ = 0.

Rozwiązujemy otrzymane równanie w pierścieniu P. Mamy najpierw

∆ = (−1)2 − 4 · ξ = 1− 4ξ.

Oczywiście ∆ ∈ P1. Niech zatem δ =
√
∆ i niech δ ∈ P1. Nasze równanie kwadratowe

ma dwa pierwiastki:

β1 = (1− δ) · 2−1 oraz β2 = (1 + δ) · 2−1.

Mamy wówczas

Z(β1) = Z(1− δ) · 2−1 = (1− Z(δ)) · 2−1 = (1− 1) · 2−1 = 0

oraz
Z(β2) = Z(1 + δ) · 2−1 = (1 + Z(δ)) · 2−1 = (1 + 1) · 2−1 = 1.

Ponieważ β ∈ P0, więc β = β1. Zatem

β = (1− δ) · 2−1 = (1−
√

1− 4ξ) · 2−1.

Z poprzedniego paragrafu wiemy, że

√

1− 4ξ = 1− 2 ·
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn,
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czyli

1−
√

1− 4ξ = 2 ·
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn.

Zatem

β = (1−
√

1− 4ξ) · 2−1 =
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn = ξ ·
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn−1.

Ponieważ β = ξ · γ, więc

ξ · γ = ξ ·
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn−1.

Z prawa skracania wynika zatem, że

γ =
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

ξn−1 =
∞
∑

n=0

1

n+ 1

(

2n

n

)

ξn,

skąd ostatecznie dostajemy

Cn =
1

n+ 1
·
(

2n

n

)

.
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Zliczanie drzew; twierdzenie Cayleya.

Zaczniemy od paru faktów pomocniczych.

Twierdzenie. Jeśli f i g są wielomianami (ogólniej: funkcjami różniczkowalnymi) takimi, że

∀x ∈ R
(
f ′(x) = g′(x)

)
,

∃x ∈ R
(
f(x) = g(x)

)
,

to
∀x ∈ R

(
f(x) = g(x)

)
.

Przypomnienie. Liczba funkcji
f : {1, . . . , j}

na
−−→ {1, . . . , n}

jest równa

sj,n =

n∑

k=0

(−1)k
(
n

k

)

(n− k)j =

n∑

k=0

(−1)n−k
(
n

k

)

kj.

W szczególności, jeśli j < n, to
n∑

k=0

(−1)n−k
(
n

k

)

kj = 0.

Tożsamości Abela.

1)

n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k = (x+ y + n)n,

2)

n∑

k=0

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =

(
1

x
+
1

y

)

· (x+ y + n)n−1,

3)
n−1∑

k=1

(
n

k

)

kk−1(n− k)n−k−1 = 2(n− 1)nn−2.

Dowody.

(1)
n∑

k=0

(
n

k

)

y(y + k)k−1(x + n− k)n−k = (x + y + n)n.

Dowodzimy tej równości przez indukcję względem n. Dla n = 0 (a także dla n = 1) jest ona oczywista.
W kroku indukcyjnym zakładamy równość dla n− 1 oraz dowolnych x, y ∈ R i dowodzimy jej dla n.

Dla ustalonego y ∈ R definiujemy dwie funkcje:

f(x) =

n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k,

g(x) = (x+ y + n)n.

Wówczas

f(x) =
n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k =

=

n−1∑

k=0

(
n

k

)

y(y + k)k−1(x + n− k)n−k + y(y + n)n,

1



skąd dostajemy

f ′(x) =
n−1∑

k=0

(
n

k

)

y(y + k)k−1(n− k)(x+ n− k)n−k−1 =

=

n−1∑

k=0

(n− k)

(
n

n− k

)

y(y + k)k−1(x+ n− k)n−k−1 =

=

n−1∑

k=0

n

(
n− 1

n− k − 1

)

y(y + k)k−1(x+ n− k)n−k−1 =

= n ·

n−1∑

k=0

(
n− 1

k

)

y(y + k)k−1
(
(x + 1) + (n− 1)− k

)(n−1)−k
=

= n ·
(
(x + 1) + y + (n− 1)

)n−1
=

= n · (x+ y + n)n−1 =

= g′(x).

Następnie podstawiamy x = −y − n. Wówczas

f(−y − n) =

n∑

k=0

(
n

k

)

y(y + k)k−1(−y − n+ n− k)n−k =

=

n∑

k=0

(
n

k

)

y(y + k)k−1(−y − k)n−k =

=

n∑

k=0

(−1)n−k
(
n

k

)

y(y + k)k−1(y + k)n−k =

=

n∑

k=0

(−1)n−k
(
n

k

)

y(y + k)n−1 =

=

n∑

k=0

(−1)n−k
(
n

k

)

y

n−1∑

j=0

(
n− 1

j

)

yn−1−jkj =

=

n∑

k=0

n−1∑

j=0

(−1)n−k
(
n

k

)(
n− 1

j

)

yn−jkj =

=

n−1∑

j=0

n∑

k=0

(−1)n−k
(
n

k

)(
n− 1

j

)

yn−jkj =

=
n−1∑

j=0

(
n− 1

j

)

yn−j
n∑

k=0

(−1)n−k
(
n

k

)

kj =

= 0,

bo dla j < n mamy
n∑

k=0

(−1)n−k
(
n

k

)

kj = 0.

Jednocześnie
g(−y − n) = (−y − n+ y + n)n = 0.

2



Stąd wynika, że f(x) = g(x) dla x ∈ R, co kończy dowód równości 1.

(2)

n∑

k=0

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =

(
1

x
+
1

y

)

· (x+ y + n)n−1.

Z równości 1 dostajemy

(x+ y + n)n =

n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k =

=
n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k−1(x + n− k) =

=

n∑

k=0

(
n

k

)

xy(y + k)k−1(x + n− k)n−k−1 +

n∑

k=0

(
n

k

)

y(y + k)k−1(x+ n− k)n−k−1(n− k) =

= xy

n∑

k=0

(
n

k

)

(y + k)k−1(x + n− k)n−k−1 +

n−1∑

k=0

n

(
n− 1

k

)

y(y + k)k−1(x+ n− k)n−k−1 =

= xy

n∑

k=0

(
n

k

)

(y + k)k−1(x + n− k)n−k−1+

+ n ·

n−1∑

k=0

(
n− 1

k

)

y(y + k)k−1
(
(x+ 1) + (n− 1)− k

)(n−1)−k
=

= xy
n∑

k=0

(
n

k

)

(y + k)k−1(x + n− k)n−k−1 + n
(
(x+ 1) + y + (n− 1)

)n−1
.

= xy

n∑

k=0

(
n

k

)

(y + k)k−1(x + n− k)n−k−1 + n(x+ y + n)n−1.

Stąd
n∑

k=0

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =
1

xy
·
(
(x + y + n)n − n(x+ y + n)n−1

)
=

=
1

xy
· (x+ y + n)n−1(x+ y + n− n) =

=
x+ y

xy
· (x+ y + n)n−1 =

=

(
1

x
+
1

y

)

· (x+ y + n)n−1,

co kończy dowód równości 2.

(3)

n−1∑

k=1

(
n

k

)

kk−1(n− k)n−k−1 = 2(n− 1)nn−2.

Zauważmy najpierw, że

n∑

k=0

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =
1

y
(x+n)n−1+

n−1∑

k=1

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1+
1

x
(y+n)n−1.

3



Zatem z równości 2 dostajemy

n−1∑

k=1

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =

(
1

x
+
1

y

)

· (x+ y + n)n−1 −
1

y
(x+ n)n−1 −

1

x
(y + n)n−1,

czyli

n−1∑

k=1

(
n

k

)

(y + k)k−1(x+ n− k)n−k−1 =

=
1

x
·
(
(x+ y + n)n−1 − (y + n)n−1

)
+
1

y
·
(
(x+ y + n)n−1 − (x + n)n−1

)
.

Teraz przechodzimy do granicy przy x→ 0 i y → 0:

n−1∑

k=1

(
n

k

)

kk−1(n− k)n−k−1 = lim
x→0

(x+ n)n−1 − nn−1

x
+ lim
y→0

(y + n)n−1 − nn−1

y
= 2(n− 1)nn−2,

co kończy dowód równości 3.

Różne dowody twierdzenia Cayleya.

Dowód 1. Niech Tn będzie liczbą drzew, których wierzchołki są ponumerowane liczbami od 1 do n.
Wówczas

Tn =

n−1∑

k=1

k

(
n− 2

k − 1

)

TkTn−k.

Na dwa sposoby zliczamy pary (e, T ), gdzie e jest gałęzią drzewa T .

(1) Drzewo T możemy wybrać na Tn sposobów; jego krawędź na n− 1 sposobów. Mamy zatem (n− 1)Tn
par.

(2) Dla dowolnej liczby k = 1, 2, . . . , n−1 wybieramy k wierzchołków; dokładniej dobieramy k−1 wierzchoł-
ków do wierzchołka o numerze 1. Następnie te wierzchołki łączymy w jedno drzewo i pozostałe wierzchołki
łączymy w drugie drzewo. Wreszcie prowadzimy dowolną krawędź z jednego drzewa do drugiego – to jest
właśnie krawędź e łącząca oba drzewa w drzewo T . Dla danego k otrzymujemy w ten sposób

(
n− 1

k − 1

)

· Tk · Tn−k · k(n− k)

par (e, T ). Mamy zatem

(n− 1)Tn =
n−1∑

k=1

(
n− 1

k − 1

)

k(n− k)TkTn−k.

Stąd dostajemy

Tn =
1

n− 1
·

n−1∑

k=1

(
n− 1

k − 1

)

k(n− k)TkTn−k =

=
1

n− 1
·

n−1∑

k=1

(n− k)

(
n− 1

n− k

)

kTkTn−k =

=
1

n− 1
·
n−1∑

k=1

(n− 1)

(
n− 2

n− k − 1

)

kTkTn−k =

=

n−1∑

k=1

k

(
n− 2

k − 1

)

TkTn−k.

4



Podstawiając następnie n− k w miejsce k (czyli sumując w drugą stronę), otrzymujemy

Tn =

n−1∑

k=1

(n− k)

(
n− 2

n− k − 1

)

TkTn−k =

n−1∑

k=1

(n− k)

(
n− 2

k − 1

)

TkTn−k.

Zatem

2Tn =

n−1∑

k=1

k

(
n− 2

k − 1

)

TkTn−k +

n−1∑

k=1

(n− k)

(
n− 2

k − 1

)

TkTn−k = n ·

n−1∑

k=1

(
n− 2

k − 1

)

TkTn−k,

czyli

Tn =
n

2
·

n−1∑

k=1

(
n− 2

k − 1

)

TkTn−k.

Zauważmy następnie, że

(
n

k

)

=

(
n

n− k

)

=
n

n− k
·

(
n− 1

n− k − 1

)

=
n

n− k
·

(
n− 1

k

)

=
n(n− 1)

k(n− k)
·

(
n− 2

k − 1

)

.

Zatem

Tn =
n

2
·

n−1∑

k=1

(
n− 2

k − 1

)

TkTn−k =
n

2
·

n−1∑

k=1

k(n− k)

n(n− 1)

(
n

k

)

TkTn−k =
1

2(n− 1)
·

n−1∑

k=1

k(n− k)

(
n

k

)

TkTn−k.

Teraz – przez indukcję – zakładamy, że Tk = k
k−2 dla k < n. Wówczas

Tn =
1

2(n− 1)
·

n−1∑

k=1

k(n− k)

(
n

k

)

kk−2(n− k)n−k−2 =

=
1

2(n− 1)
·

n−1∑

k=1

(
n

k

)

kk−1(n− k)n−k−1 = (z tożsamości Abela)

=
1

2(n− 1)
· 2(n− 1)nn−2 =

= nn−2,

co kończy dowód twierdzenia Cayleya.

Uwaga. Z twierdzenia Cayleya i tożsamości

Tn =
1

2(n− 1)
·

n−1∑

k=1

k(n− k)

(
n

k

)

TkTn−k

otrzymujemy natychmiast tożsamość Abela (3).

Dowód 2. Najpierw wyprowadzimy ważną tożsamość dotyczącą wykładniczej funkcji tworzącej dla liczb
Cayleya. Definiujemy najpierw

T (x) =

∞∑

n=1

Tn

(n− 1)!
xn =

∞∑

n=1

nTn

n!
xn =

∞∑

n=0

nTn

n!
xn.

5



Wówczas
T (x)

x
=

∞∑

n=1

Tn

(n− 1)!
xn−1 = T1 +

∞∑

n=2

Tn

(n− 1)!
xn−1 =

∞∑

n=0

Tn+1

n!
xn.

Następnie

T ′(x) =

∞∑

n=1

Tn

(n− 1)!
· nxn−1 =

∞∑

n=0

(n+ 1)Tn+1
n!

xn

oraz
(
T (x)

x

)′

=

∞∑

n=2

Tn

(n− 1)!
· (n− 1)xn−2 =

∞∑

n=2

Tn

(n− 2)!
xn−2 =

∞∑

n=0

Tn+2

n!
xn.

Zatem

T ′(x) ·
T (x)

x
=

∞∑

n=0

n∑

k=0

(k + 1)Tk+1
k!

xk ·
Tn−k+1

(n− k)!
xn−k =

=

∞∑

n=0

(
n∑

k=0

(k + 1)Tk+1Tn−k+1
k!(n− k)!

)

xn =

=
∞∑

n=0

1

n!
·

(
n∑

k=0

(k + 1)Tk+1Tn−k+1n!

k!(n− k)!

)

xn =

=

∞∑

n=0

1

n!
·

n∑

k=0

(k + 1)

(
n

k

)

Tk+1Tn−k+1x
n =

=
∞∑

n=0

1

n!
·
n+1∑

k=1

k

(
n

k − 1

)

TkTn+2−kx
n.

Teraz korzystamy z udowodnionej tożsamości rekurencyjnej

Tn =

n−1∑

k=1

k

(
n− 2

k − 1

)

TkTn−k.

Podstawiając n+ 2 w miejsce n, otrzymujemy

Tn+2 =

n+1∑

k=1

k

(
n

k − 1

)

TkTn+2−k.

Zatem

T ′(x) ·
T (x)

x
=

∞∑

n=0

1

n!
Tn+2x

n =

∞∑

n=0

Tn+2

n!
xn =

(
T (x)

x

)′

.

Stąd wynika, że
(
T (x)
x

)′

(
T (x)
x

) = T ′(x),

czyli
(

ln
T (x)

x

)′

= T ′(x).

Zatem

ln
T (x)

x
= T (x) + C
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dla pewnej stałej C. Stąd dostajemy

T (x)

x
= eT (x)+C = eT (x) · eC = d · eT (x).

Podstawiając x = 0, otrzymujemy d = 1. Zatem ostatecznie

T (x)

x
= eT (x),

czyli
x = T (x) · e−T (x).

Przypomnienie z teorii funkcji analitycznych.

Niech funkcja f(z) będzie funkcją analityczną w otoczeniu 0 i niech γ będzie krzywą zamkniętą obiegającą
0 dokładnie jeden raz. Wówczas

f (m)(0) =
m!

2πi

∫

γ

f(z)

zm+1
dz =

(m− 1)!

2πi

∫

γ

f ′(z)

zm
dz.

Ponadto, jeśli f ′(0) 6= 0, to f(γ) też jest taką krzywą.

Mamy teraz

Tn =
1

n
· T (n)(0) =

1

n
·
(n− 1)!

2πi

∫

γ

T ′(z)

zn
dz =

(n− 1)!

2πin

∫

γ

T ′(z)
(
T (z) · e−T (z)

)n dz =

=
(n− 1)!

2πin

∫

T (γ)

dw
(
w · e−w

)n =
(n− 1)!

2πin

∫

Γ

ewn

wn
dw,

gdzie Γ = T (γ).

Rozważmy funkcję

g(z) = ezn =

∞∑

k=0

(zn)k

k!
=

∞∑

k=0

nk

k!
zk.

Wówczas

g(m)(0) =
m!

2πi

∫

Γ

g(z)

zm+1
dz.

W szczególności

g(n−1)(0) =
(n− 1)!

2πi

∫

Γ

g(z)

zn
dz =

(n− 1)!

2πi

∫

Γ

ewn

wn
dw.

Zatem

Tn =
1

n
· g(n−1)(0) =

1

n
· nn−1 = nn−2,

co kończy dowód twierdzenia Cayleya.

Autorem tego dowodu jest G. Polya (1937).

Dowód 3. Niech d1, . . . , dn będą takimi liczbami całkowitymi dodatnimi, że

d1 + . . .+ dn = 2n− 2.

Wtedy liczba drzew o wierzchołkach ponumerowanych liczbami od 1 do n i takich, że ρ(i) = di dla
i = 1, . . . , n, jest równa

(n− 2)!

(d1 − 1)! · . . . · (dn − 1)!
.

7



Dowodzimy tego przez indukcję względem n. Dla n = 1 i n = 2 jest to oczywiste. Niech więc n > 2. Istnieje
i takie, że di = 1. Niech np. dn = 1. Usuwamy z drzewa wierzchołek o numerze n i krawędź łączącą go z
wierzchołkiem o numerze np. j. Otrzymane drzewo ma wierzchołki stopni

d1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn−1.

Takich drzew jest (z założenia indukcyjnego)

(n− 3)!

(d1 − 1)! · . . . · (dj−1 − 1)! · (dj − 2)! · (dj+1 − 1)! · . . . · (dn−1 − 1)!
,

czyli
(dj − 1)(n− 3)!

(d1 − 1)! · . . . · (dn−1 − 1)!
.

Zatem liczba wszystkich drzew o podanych stopniach wierzchołków jest równa

n−1∑

j=1

(dj − 1)(n− 3)!

(d1 − 1)! · . . . · (dn−1 − 1)!
=

(n− 3)!

(d1 − 1)! · . . . · (dn−1 − 1)!
·

n−1∑

j=1

(dj − 1) =

=
(n− 3)!

(d1 − 1)! · . . . · (dn−1 − 1)!
·
(
(2n− 3)− (n− 1)

)
=

=
(n− 2)!

(d1 − 1)! · . . . · (dn−1 − 1)!
=

=
(n− 2)!

(d1 − 1)! · . . . · (dn − 1)!
.

Teraz skorzystamy z uogólnionego wzoru Newtona. Najpierw definiujemy tzw. współczynniki wielomia-
nowe wzorem (

n

k1, . . . , km

)

=
n!

k1! · . . . · km!

dla liczb nieujemnych n, k1, . . . , km takich, że k1 + . . .+ km = n. W szczególności, jeśli k + l = n, to
(
n

k, l

)

=
n!

k! · l!
=

n!

k! · (n− k)!
=

(
n

k

)

=

(
n

l

)

.

Wzór dwumianowy Newtona możemy zapisać w postaci

(a+ b)n =
∑

k,l≥0
k+l=n

(
n

k, l

)

akbl.

Jego uogólnienie ma postać

(a1 + . . .+ am)
n =

∑

k1,...,km≥0
k1+...+km=n

(
n

k1, . . . , km

)

ak11 · . . . · a
km
m .

Teraz liczba wszystkich drzew o wierzchołkach ponumerowanych liczbami od 1 do n jest równa

∑

d1,...,dn≥1
d1+...+dn=2n−2

(n− 2)!

(d1 − 1)! · . . . · (dn − 1)!
=

∑

k1,...,kn≥0
k1+...+kn=n−2

(n− 2)!

k1! · . . . · kn!
=

∑

k1,...,kn≥0
k1+...+kn=n−2

(
n− 2

k1, . . . , kn

)

=

=
(
1 + . . .+ 1
︸ ︷︷ ︸

n

)n−2
= nn−2.
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Dowód 4. Każdemu drzewu, którego wierzchołki są ponumerowane liczbami od 1 do n, przyporządkowu-
jemy tzw. kod Prüfera, czyli ciąg (a1, . . . , an−2) liczb ze zbioru {1, . . . , n}. Algorytm przyporządkowania
jest następujący:

Niech n będzie liczbą wierzchołków drzewa;
niech P będzie pustym ciągiem liczb;
dopóki n > 2, powtarzaj
v := najmniejszy numer liścia (czyli wierzchołka stopnia 1);
w := numer wierzchołka sąsiadującego z v;
usuń z drzewa wierzchołek v i krawędź vw;
dopisz w na końcu ciągu P ;
n := n− 1;
zwróć kod Prüfera P .

Obejrzyjmy teraz ciąg rysunków ilustrujący powstawanie kodu Prüfera dla następującego drzewa o 15
wierzchołkach.

Na początku kodem P jest ciąg pusty. Najmniejszym numerem liścia jest 3; ten liść sąsiaduje z wierzchoł-
kiem numer 8. Usuwamy z drzewa wierzchołek 3 i krawędź 3− 8. Na końcu kodu P dopisujemy 8, a więc
teraz P = (8). Oto nowe drzewo:

Teraz usuwamy krawędź 1−5 i wydłużamy kod, dopisujęc 1 na końcu: P = (8, 1). Nowe drzewo ma postać:
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Następnie usuwamy krawędź 6− 14 i na końcu kodu dopisujemy 14: P = (8, 1, 14). Otrzymujemy drzewo:

Usuwamy krawędź 2− 7 i dopisujemy 2: P = (8, 1, 14, 2). Otrzymujemy drzewo:

Usuwamy krawędź 2− 11 i dopisujemy 11: P = (8, 1, 14, 2, 11). Otrzymujemy drzewo:

Usuwamy krawędź 8− 11 i dopisujemy 11: P = (8, 1, 14, 2, 11, 11). Otrzymujemy drzewo:

Usuwamy krawędź 9− 14 i dopisujemy 14: P = (8, 1, 14, 2, 11, 11, 14). Otrzymujemy drzewo:
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Usuwamy krawędź 1− 10 i dopisujemy 1: P = (8, 1, 14, 2, 11, 11, 14, 1). Otrzymujemy drzewo:

Usuwamy krawędź 4− 12 i dopisujemy 4: P = (8, 1, 14, 2, 11, 11, 14, 1, 4). Otrzymujemy drzewo:

Usuwamy krawędź 1− 13 i dopisujemy 1: P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1). Otrzymujemy drzewo:

Usuwamy krawędź 1− 11 i dopisujemy 11: P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11). Otrzymujemy drzewo:

Usuwamy krawędź 11− 14 i dopisujemy 11: P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11). Otrzymujemy drzewo:

Usuwamy krawędź 4− 11 i dopisujemy 4: P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4). Otrzymujemy drzewo:

Ostatnie drzewo ma tylko dwa wierzchołki, więc kończymy algorytm. Otrzymany ciąg

P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4)

jest kodem Prüfera naszego drzewa.

Zauważmy jeszcze, że jeśli drzewo ma tylko dwa wierzchołki, to algorytm od razu zwróci nam ciąg pusty
jako jego kod Prüfera. Rzeczywiście, jest tylko jedno drzewo o dwóch wierzchołkach (wierzchołki o numerach
1 i 2 połączone krawędzią) i jego kodem jest ciąg pusty.

Powyższy algorytm pozwala utworzyć jednoznacznie kod Prüfera z dowolnego drzewa o wierzchołkach
ponumerowanych liczbami od 1 do n. Okazuje się, że na odwrót: z każdego kodu Prüfera można jedno-
znacznie utworzyć drzewo. Co więcej, jeśli dla danego drzewa utworzymy kod Prüfera, a następnie z tego
kodu utworzymy drzewo, to otrzymamy nasze wyjściowe drzewo. Nietrudny dowód tego faktu pozostawimy
jako ćwiczenie.
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A oto algorytm tworzenia drzewa o zadanym kodzie Prüfera P .

Niech P będzie ciągiem długości n− 2 liczb ze zbioru {1, . . . , n};
L := (1, . . . , n);
dopóki ciąg P jest niepusty, powtarzaj
l := najmniejsza liczba w ciągu L nie występująca w P ;
p := pierwszy wyraz ciągu P ;
utwórz krawędź lp;
usuń l z ciągu L;
usuń p z ciągu P ;
utwórz krawędź lp, gdzie l i p są ostatnimi dwiema liczbami w ciągu L.

Następujący ciąg rysunków ilustruje budowanie drzewa o 15 wierzchołkach, którego kodem Prüfera jest
ciąg

(8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4).

Najpierw tworzymy dwa ciągi:

P = (8, 1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4) L = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Najmniejszą liczbą w ciągu L, która nie występuje w ciągu P jest 3. Pierwszą liczbą w ciągu P jest 8.
Tworzymy krawędź 3− 8:

i usuwamy liczby 8 i 3 odpowiednio z ciągów P i L. Otrzymujemy ciągi

P = (1, 14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4) L = (1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy teraz liczbę 5, z ciągu P liczbę 1, tworząc krawędź 1− 5:

Otrzymujemy ciągi

P = (14, 2, 11, 11, 14, 1, 4, 1, 11, 11, 4) L = (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 6, z ciągu P liczbę 14, tworząc krawędź 6− 14:
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Otrzymujemy ciągi

P = (2, 11, 11, 14, 1, 4, 1, 11, 11, 4) L = (1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 7, z ciągu P liczbę 2, tworząc krawędź 2− 7:

Otrzymujemy ciągi

P = (11, 11, 14, 1, 4, 1, 11, 11, 4) L = (1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 2, z ciągu P liczbę 11, tworząc krawędź 2− 11:

Otrzymujemy ciągi

P = (11, 14, 1, 4, 1, 11, 11, 4) L = (1, 4, 8, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 8, z ciągu P liczbę 11, tworząc krawędź 8− 11:
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Otrzymujemy ciągi

P = (14, 1, 4, 1, 11, 11, 4) L = (1, 4, 9, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 9, z ciągu P liczbę 14, tworząc krawędź 9− 14:

Otrzymujemy ciągi
P = (1, 4, 1, 11, 11, 4) L = (1, 4, 10, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 10, z ciągu P liczbę 1, tworząc krawędź 1− 10:

Otrzymujemy ciągi
P = (4, 1, 11, 11, 4) L = (1, 4, 11, 12, 13, 14, 15).

Z ciągu L usuwamy liczbę 12, z ciągu P liczbę 4, tworząc krawędź 4− 12:

Otrzymujemy ciągi
P = (1, 11, 11, 4) L = (1, 4, 11, 13, 14, 15).
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Z ciągu L usuwamy liczbę 13, z ciągu P liczbę 1, tworząc krawędź 1− 13:

Otrzymujemy ciągi

P = (11, 11, 4) L = (1, 4, 11, 14, 15).

Z ciągu L usuwamy liczbę 1, z ciągu P liczbę 11, tworząc krawędź 1− 11:

Otrzymujemy ciągi

P = (11, 4) L = (4, 11, 14, 15).

Z ciągu L usuwamy liczbę 14, z ciągu P liczbę 11, tworząc krawędź 11− 14:

Otrzymujemy ciągi

P = (4) L = (4, 11, 15).

Z ciągu L usuwamy liczbę 11, z ciągu P liczbę 4, tworząc krawędź 4− 11:
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Otrzymujemy ciągi
P = ∅ L = (4, 15).

W ciągu L pozostały dwie liczby: 4 i 15. Dołączamy do ostatniego drzewa krawędź 4 − 15, otrzymując
drzewo, od którego rozpoczęliśmy naszą procedurę:
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O algebrze w kombinatoryce.

W. Guzicki

(Czwartkowe wykłady popularne z matematyki – 21.04.2005)

W tym wykładzie pokażemy kilka zastosowań algebry do dowodów twierdzeń kombinatorycznych.

Jak zapewne pamiętamy ze szkoły, wielomianem stopnia n nazywamy funkcję postaci

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

gdzie an, an−1, . . . , a1, a0 są dowolnymi liczbami rzeczywistymi, przy czym an 6= 0. Te liczby nazywamy
współczynnikami wielomianu f . Oczywiście współczynniki wielomianu wyznaczają go jednoznacznie.
Okazuje się, że jest też i na odwrót: jeśli dwa wielomiany f i g przyjmują te same wartości dla wszystkich
argumentów, to mają te same współczynniki (wynika to stąd, że wielomian niezerowy ma tylko skończoną
liczbę pierwiastków). Zatem wielomian f jednoznacznie wyznacza swoje współczynniki. Inaczej mówiąc,
wielomian f stopnia n możemy utożsamić z takim ciągiem długości n+ 1 jego współczynników:

(an, an−1, . . . , a1, a0),

w którym pierwszy wyraz jest różny od zera: an 6= 0. Okazuje się, że wygodnie jest przyjmować, iż ciąg
współczynników jest nieskończony, przy czym wszystkie współczynniki o indeksach większych od n są
zerami. Wygodnie też jest zapisywać te współczynniki w odwrotnej kolejności.

Od tej pory wielomian zmiennej rzeczywistej x utożsamiamy z ciągiem nieskończonym

f = (a0, a1, a2, . . . , an, . . .)

liczb rzeczywistych, w którym prawie wszystkie (tzn. wszystkie od pewnego miejsca) wyrazy są równe
zeru. Inaczej mówiąc z takim ciągiem, dla którego istnieje liczba naturalna n o tej własności, że

an+1 = an+2 = an+3 = . . . = 0.

Oczywiście wielomian zerowy utożsamiamy z ciągiem, w którym wszystkie wyrazy są zerami. Wielomian
stopnia n utożsamiamy z ciągiem takim, że

an 6= 0 oraz ∀m > n
(

am = 0
)

.

Po tym utożsamieniu możemy łatwo opisać działania na wielomianach. Sumą wielomianów

f = (a0, a1, a2, . . .) i g = (b0, b1, b2, . . .)

nazywamy wielomian
h = (c0, c1, c2, . . .)

zdefiniowany następująco:
cn = an + bn dla n = 0, 1, 2, . . .

Różnicą wielomianów f i g nazwiemy wielomian h zdefiniowany wzorem

cn = an − bn dla n = 0, 1, 2, . . .

Iloczynem wielomianów f i g nazwiemy natomiast wielomian h zdefiniowany wzorem:

cn = a0bn + a1bn−1 + . . .+ a1bn−1 + anb0 =

n
∑

k=0

akbn−k dla n = 0, 1, 2, . . .
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Wzór ten często nazywamy wzorem Cauchy’ego. Początkowe współczynniki cn przedstawiają się nastę-
pująco:

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a0b2 + a1b1 + a2b0,

c3 = a0b3 + a1b2 + a2b1 + a3b0,

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0,

. . . . . .

Przykład. Obliczmy iloczyn
(2x2 − x+ 3) · (3x2 + 2x− 1).

Po wykonaniu mnożenia sposobem „każdy wyraz przez każdy” i dokonaniu redukcji wyrazów podobnych,
otrzymamy:

(2x2− x+3) · (3x2+2x− 1) = 6x4+4x3− 2x2− 3x3− 2x2+x+9x2+6x− 3 = 6x4+ x3+5x2+7x− 3.

Wykonajmy teraz mnożenie za pomocą wzoru Cauchy’ego. Nasze wielomiany mają postać:

f = (3,−1, 2, 0, 0, 0, . . .) oraz g = (−1, 2, 3, 0, 0, 0, . . .)

Inaczej mówiąc
a0 = 3, a1 = −1, a2 = 2, an = 0 dla n > 2

oraz
b0 = −1, b1 = 2, b2 = 3, bn = 0 dla n > 2.

Obliczamy kolejno współczynniki wielomianu h, będącego iloczynem wielomianów f i g:

c0 = a0b0 = 3 · (−1) = −3,
c1 = a0b1 + a1b0 = 3 · 2 + (−1) · (−1) = 7,
c2 = a0b2 + a1b1 + a2b0 = 3 · 3 + (−1) · 2 + 2 · (−1) = 5,
c3 = a0b3 + a1b2 + a2b1 + a3b0 = 3 · 0 + (−1) · 3 + 2 · 2 + 0 · (−1) = 1,
c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 = 3 · 0 + (−1) · 0 + 2 · 3 + 0 · 2 + 0 · (−1) = 6.

Można łatwo zauważyć, że cn = 0 dla n > 4. Zatem wielomian h ma postać

h = (−3, 7, 5, 1, 6, 0, 0, 0, . . .),

czyli
(2x2 − x+ 3) · (3x2 + 2x− 1) = 6x4 + x3 + 5x2 + 7x− 3.

Przypomnimy teraz znane ze szkoły pojęcie współczynnika dwumianowego
(

n

k

)

. Niech A będzie dowolnym
zbiorem n-elementowym. W dalszym ciągu, jeśli X jest dowolnym zbiorem skończonym, to symbolem |X |
będziemy oznaczać liczbę elementów zbioru X . Mamy wówczas:

(

n

k

)

=
∣

∣{X ⊆ A : |X | = k}
∣

∣

dla dowolnych liczb naturalnych n i k. Natychmiast z definicji wynika, że jeśli k > n to

(

n

k

)

= 0,
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gdyż wtedy zbiór A nie ma podzbiorów k-elementowych. Jeśli natomiast 0 ≤ k ≤ n, to ze wzoru znanego
ze szkoły wynika, że

(

n

k

)

=
n!

k! · (n− k)! .

Współczynniki dwumianowe występują w tzw. wzorze dwumianowym Newtona:

(a+ b)n =

n
∑

k=0

(

n

k

)

an−kbk =

(

n

0

)

anb0 +

(

n

1

)

an−1b1 + . . .+

(

n

n− 1

)

a1bn−1 +

(

n

n

)

a0bn

dla dowolnych liczb rzeczywistych a i b i dowolnej liczby naturalnej dodatniej n. Współczynniki dwu-
mianowe tworzą tzw. trójkąt Pascala, którego początkowe wiersze przedstawiają się w następujący
sposób:

(

1
0

) (

1
1

)

(

2
0

) (

2
1

) (

2
2

)

(

3
0

) (

3
1

) (

3
2

) (

3
3

)

(

4
0

) (

4
1

) (

4
2

) (

4
3

) (

4
4

)

(

5
0

) (

5
1

) (

5
2

) (

5
3

) (

5
4

) (

5
5

)

(

6
0

) (

6
1

) (

6
2

) (

6
3

) (

6
4

) (

6
5

) (

6
6

)

czyli
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Po tym wstępie przejdziemy do dowodu następującej równości:

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

,

czyli
(

n

0

)2

+

(

n

1

)2

+ . . .+

(

n

n− 1

)2

+

(

n

n

)2

=

(

2n

n

)

.

Podstawmy we wzorze dwumianowym Newtona a = 1 i b = x. Otrzymamy wzór

(1 + x)n =
n
∑

k=0

(

n

k

)

xk =

(

n

0

)

+

(

n

1

)

x+

(

n

2

)

x2 + . . .+

(

n

n− 1

)

xn−1 +

(

n

n

)

xn.

Podnosimy obie strony do kwadratu:

(1 + x)2n =

(

n
∑

k=0

(

n

k

)

xk

)

·
(

n
∑

k=0

(

n

k

)

xk

)

.

Po lewej stronie równości mamy oczywiście wielomian stopnia 2n. Po prawej stronie mamy iloczyn dwóch
wielomianów n-tego stopnia, a więc jest to także wielomian stopnia 2n. Porównajmywspółczynniki stojące
przy xn w obu wielomianach. Ponieważ

(1 + x)2n =

2n
∑

k=0

(

2n

k

)

xk =

(

2n

0

)

+

(

2n

1

)

x+

(

2n

2

)

x2 + . . .+

(

2n

n

)

xn + . . .+

(

2n

2n

)

x2n,

3



więc po lewej stronie przy xn stoi współczynnik
(

2n
n

)

. Po prawej stronie mamy iloczyn wielomianów f · g,
gdzie

f = g =

((

n

0

)

,

(

n

1

)

,

(

n

2

)

, . . . ,

(

n

n

)

, 0, 0, 0, . . .

)

.

Inaczej mówiąc

a0 = b0 =

(

n

0

)

,

a1 = b1 =

(

n

1

)

,

a2 = b2 =

(

n

2

)

,

. . . . . . . . .

an = bn =

(

n

n

)

,

am = bm = 0 dla m > n.

Możemy też napisać po prostu, że

am = bm =

(

n

m

)

dla każdej liczby naturalnej m (gdyż
(

n
m

)

= 0 dla m > n). Zgodnie ze wzorem Cauchy’ego mamy zatem

h = (c0, c1, c2, . . .),

gdzie

cm = a0bm + a1bm−1 + . . .+ am−1b1 + amb0 =

m
∑

k=0

akbm−k

dla m = 0, 1, 2, . . . Po podstawieniu otrzymamy

cn =

(

n

0

)(

n

n

)

+

(

n

1

)(

n

n− 1

)

+ . . .+

(

n

n− 1

)(

n

1

)

+

(

n

n

)(

n

0

)

=

n
∑

k=0

(

n

k

)(

n

n− k

)

.

Ponieważ
(

n

n− k

)

=

(

n

k

)

,

więc ostatecznie otrzymujemy

cn =
n
∑

k=0

(

n

k

)(

n

n− k

)

=
n
∑

k=0

(

n

k

)2

.

Porównując obliczone współczynniki stojące w obu wielomianach przy xn otrzymamy dowodzoną równość.

W dowodzie następnego wzoru skorzystamy ze wzoru dwumianowego Newtona i z podstawowych wła-
sności liczb zespolonych. Przypomnijmy krótko te własności.

Liczbą zespoloną nazywamy liczbę postaci a + bi, gdzie i jest tzw. jednostką urojoną, tzn. liczbą
o tej własności, że i2 = −1. Każda liczba rzeczywista jest liczbą zespoloną:

a = a+ 0i

dla a ∈ R. Działania na liczbach zespolonych wykonujemy w następujący sposób:

(a+ bi) + (c+ di) = (a+ c) + (b + d)i,

(a+ bi)− (c+ di) = (a− c) + (b − d)i,
(a+ bi) · (c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i,

4



dla dowolnych liczb zespolonych a+ bi oraz c+ di. Jeśli ponadto c+ di 6= 0, to

a+ bi

c+ di
=
a+ bi

c+ di
· c− di
c− di =

(a+ bi) · (c− di)
(c+ di) · (c− di) =

(ac+ bd) + (bc− ad)i
c2 − (di)2 =

ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i.

Liczby zespolone wykorzystamy do rozwiązywania równań kwadratowych. Przypuśćmy, że dane jest rów-
nanie kwadratowe

ax2 + bx+ c = 0,

w którym współczynniki są liczbami rzeczywistymi oraz wyróżnik ∆ jest ujemny:

∆ = b2 − 4ac < 0.

Wtedy równanie ma dwa pierwiastki zespolone:

x1 =
−b−

√
−∆ · i
2a

oraz x2 =
−b+

√
−∆ · i
2a

czyli

x1 =
−b
2a
+
−
√
−∆
2a

· i oraz x2 =
−b
2a
+

√
−∆
2a
· i.

W zbiorze liczb zespolonych prawdziwe są znane ze szkoły wzory skróconego mnożenia, w szczególności
przypomniany wcześniej wzór dwumianowy Newtona.

Udowodnimy teraz równość
n
∑

k=0

(

3n

3k

)

=
8n + 2 · (−1)n

3
.

Przykłady. Dla n = 1 dostajemy równość

(

3

0

)

+

(

3

3

)

= 1 + 1 = 2 =
81 + 2 · (−1)1

3
=
8− 2
3
=
6

3
.

Dla n = 2 mamy:

(

6

0

)

+

(

6

3

)

+

(

6

6

)

= 1 + 20 + 1 = 22 =
82 + 2 · (−1)2

3
=
64 + 2

3
=
66

3
.

Wreszcie dla n = 3 otrzymujemy

(

9

0

)

+

(

9

3

)

+

(

9

6

)

+

(

9

9

)

= 1 + 84 + 84 + 1 = 170 =
83 + 2 · (−1)3

3
=
512− 2
3
=
510

3
.

Dowód równości rozpoczniemy od rozwiązania równania

x3 = 1

w zbiorze liczb zespolonych. Przekształcamy najpierw to równanie:

x3 − 1 = 0,
(x− 1)(x2 + x+ 1) = 0.

5



Jednym pierwiastkiem jest oczywiście x1 = 1. Dwa następne pierwiastki otrzymamy rozwiązując równanie
kwadratowe

x2 + x+ 1 = 0.

Ponieważ ∆ = −3, więc otrzymujemy pierwiastki zespolone

x2 =
−1−

√
3 · i

2
oraz x3 =

−1 +
√
3 · i

2
.

Pierwiastki te nazywamy zespolonymi pierwiastkami trzeciego stopnia z jedności. Niech ε będzie którym-
kolwiek z pierwiastków x2 lub x3. Wtedy oczywiście

ε3 = 1.

Ponadto ε jest pierwiastkiem równania kwadratowego x2 + x+ 1 = 0, więc

ε2 + ε+ 1 = 0.

Stąd wynika, że

1 + ε = −ε2 oraz 1 + ε2 = −ε.

Obliczymy teraz dwoma sposobami sumę

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n.

Najpierw skorzystamy ze wzoru dwumianowego Newtona:

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n =

3n
∑

k=0

(

3n

k

)

(ε0)k +

3n
∑

k=0

(

3n

k

)

(ε1)k +

3n
∑

k=0

(

3n

k

)

(ε2)k =

=

3n
∑

k=0

(

3n

k

)

ε0·k +

3n
∑

k=0

(

3n

k

)

ε1·k +

3n
∑

k=0

(

3n

k

)

ε2·k =

=

3n
∑

k=0

(

3n

k

)

(ε0 + εk + ε2k) =

=

3n
∑

k=0

(

3n

k

)

(1 + εk + ε2k).

Popatrzmy teraz, jak wyglądają sumy

1 + εk + ε2k

dla różnych k. Oczywiście dla liczb k podzielnych przez 3 dodajemy do siebie trzy jedynki. Zatem suma
jest równa 3. Niech teraz k = 3l + 1. Wtedy

1 + εk + ε2k = 1 + ε3l · ε+ ε6l · ε2 = 1 + ε+ ε2 = 0.

Podobnie dla k = 3l+2 stwierdzimy, że ta suma równa jest 0. Zatem, kontynuując przerwane obliczenia,
dostajemy

3n
∑

k=0

(

3n

k

)

(ε0 + εk + ε2k) =

n
∑

k=0

3

(

3n

3k

)

= 3 ·
n
∑

k=0

(

3n

3k

)

.
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Następnie obliczymy tę samą sumę bez odwoływania się do wzoru Newtona. Mamy wtedy:

(1 + ε0)3n + (1 + ε1)3n + (1 + ε2)3n = (1 + 1)3n + (1 + ε)3n + (1 + ε2)3n =

= 23n + (−ε2)3n + (−ε)3n =
= 23n + (−1)3nε6n + (−1)3nε3n =
= 23n + (−1)n(ε3)2n + (−1)n(ε3)n =
= 23n + (−1)n + (−1)n =
= 23n + 2 · (−1)n.

W tym dowodzie korzystaliśmy z oczywistej równości:

(−1)3n = (−1)n

oraz ze wspomnianych wyżej równości

1 + ε = −ε2 oraz 1 + ε2 = −ε.

Porównując wyniki obu obliczeń, otrzymamy:

3 ·
n
∑

k=0

(

3n

3k

)

= 8n + 2 · (−1)n,

czyli ostatecznie

n
∑

k=0

(

3n

3k

)

=
8n + 2 · (−1)n

3
.

Dowody niealgebraiczne.

Pokażemy teraz dowody niealgebraiczne obu udowodnionych wyżej równości. Najpierw dowodzimy rów-
ności

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.

Pokażemy tzw. dowód kombinatoryczny, polegający na tym, że dwoma sposobami policzymy elementy
tego samego zbioru. NiechM i K będą dwoma rozłącznymi zbiorami n elementowymi. Wtedy oczywiście
zbiór M ∪K ma 2n elementów. Policzymy elementy następującego zbioru A:

A =
{

X ⊆M ∪K : |X | = n
}

.

Z jednej strony, zbiór A ma
(

2n
n

)

elementów,

|A| =
(

2n

n

)

,

co wynika bezpośrednio z definicji współczynnika dwumianowego: zliczamy przecież n-elementowe pod-
zbiory zbioru 2n-elementowego. Z drugiej strony, zbiór A jest sumą zbiorów rozłącznych

A = A0 ∪A1 ∪ . . . ∪An,

gdzie
Ak =

{

X ∈ A : |X ∩K| = k
}
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dla k = 0, 1, . . . , n. Stąd wynika, że

|A| = |A0|+ |A1|+ . . .+ |An| =
n
∑

k=0

|Ak|.

Policzymy teraz elementy dowolnego zbioru Ak. Zbiór X ∈ Ak możemy utworzyć wybierając k elementów
ze zbioru K oraz n− k elementów ze zbioru M . Inaczej mówiąc, możemy wybrać k elementów ze zbioru
K i odrzucić k elementów ze zbioru M . Stąd wynika, że

|Ak| =
(

n

k

)

·
(

n

n− k

)

=

(

n

k

)

·
(

n

k

)

=

(

n

k

)2

.

Zatem

|A| =
n
∑

k=0

(

n

k

)2

,

co kończy dowód.

Ten dowód kombinatoryczny ma następującą interpretację. Dany jest zbiór 2n osób: n kobiet (zbiór K)
i n mężczyzn (zbiór M). Pytamy, na ile sposobów można z tego zbioru wybrać delegację składającą się
z n osób. Z jednej strony, wybieramy n osób spośród 2n osób – oczywiście na

(

2n
n

)

sposobów. Z drugiej
strony, najpierw ustalamy liczbę kobiet (k = 0, 1, . . . , n), potem wybieramy k kobiet i wreszcie odrzucamy

k mężczyzn. Możemy to zrobić na
(

n
k

)2
sposobów i po dodaniu tych liczb dla wszystkich k otrzymujemy

liczbę
n
∑

k=0

(

n

k

)2

jaką łączną liczbę sposobów wyboru.

Teraz udowodnimy równość
n
∑

k=0

(

3n

3k

)

=
8n + 2 · (−1)n

3
.

Tym razem ułożymy tzw. zależność rekurencyjną. Przypuśćmy, że mamy dany zbiór 3n-elementowy A.
Podzbiór B zbioru A nazwiemy podzbiorem dobrym, jeśli liczba jego elementów jest podzielna przez 3.
W przeciwnym przypadku podzbiór B nazwiemy podzbiorem złym. Niech an będzie liczbą wszystkich
dobrych podzbiorów zbioru 3n-elementowego. Mamy pokazać, że

an =
8n + 2 · (−1)n

3

dla n = 1, 2, . . .

Oczywiście a1 = 2, gdyż zbiór trzyelementowy A ma dwa podzbiory dobre: zbiór pusty ? i cały zbiór A.

Znajdziemy teraz zależność an+1 od an. Niech A będzie zbiorem 3n-elementowym i niech a, b, c 6∈ A, przy
czym a 6= b, a 6= c oraz b 6= c. Zbiór A ma an podzbiorów dobrych i 23n − an podzbiorów złych. Chcemy
policzyć, ile podzbiorów dobrych ma zbiór A ∪ {a, b, c}.

Dla każdego podzbióru B zbioru A policzymy, ile jest podzbiorów dobrych zbioru A ∪ {a, b, c} zawiera-
jących zbiór B. Jeśli zbiór B jest podzbiorem dobrym, to istnieją 2 dobre podzbiory zbioru A ∪ {a, b, c}
zawierające B: sam zbiór B oraz zbiór B ∪ {a, b, c}. Jeśli zbiór B jest podzbiorem złym, to istnieją 3
podzbiory dobre zbioru A ∪ {a, b, c} zawierające B. Mianowicie, jeśli liczba elementów zbioru B daje
resztę 1 przy dzieleniu przez 3, to tymi podzbiorami dobrymi są:

B ∪ {a, b}, B ∪ {a, c} oraz B ∪ {b, c}.
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Jeśli zaś liczba elementów zbioru B daje resztę 2 przy dzieleniu przez 3, to tymi podzbiorami dobrymi
są:

B ∪ {a}, B ∪ {b} oraz B ∪ {c}.

Stąd wynika, że

an+1 = 2 · an + 3 · (23n − an) = 3 · 8n − an.

Ciąg (an) spełnia zatem następującą zależność rekurencyjną:

{

a1 = 2,

an+1 = 3 · 8n − an.

Możemy teraz udowodnić przez indukcję, że

an =
8n + 2 · (−1)n

3

dla n = 1, 2, . . .

1. Sprawdzamy warunek początkowy (dla n = 1). Mianowicie a1 = 2 oraz

81 + 2 · (−1)1
3

=
8− 2
3
= 2.

2. Krok indukcyjny.

Zakładamy, że dla pewnej liczby naturalnej n zachodzi równość

an =
8n + 2 · (−1)n

3

i dowodzimy, że zachodzi też wtedy równość

an+1 =
8n+1 + 2 · (−1)n+1

3
.

Otóż

an+1 = 3 · 8n − an = 3 · 8n −
8n + 2 · (−1)n

3
=
9 · 8n − 8n − 2 · (−1)n

3
=
8 · 8n + 2 · (−1)n+1

3
=

=
8n+1 + 2 · (−1)n+1

3
,

co kończy dowód indukcyjny.

Pokażemy jeszcze, w jaki sposób z otrzymanej zależności rekurencyjnej można wyprowadzić wzór ogólny.
Definiujemy ciąg (bn) wzorem

bn = (−1)n · an

dla n = 1, 2, . . . Mamy wówczas

bn+1 = (−1)n+1 · an+1 = (−1)n+1 · (3 · 8n − an) = 3 · (−1)n+1 · 8n − (−1)n+1 · an =
= 3 · (−1)n+1 · 8n + (−1)n · an = bn + 3 · (−1)n+1 · 8n.
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Zatem
bn = bn−1 + 3 · (−1)n · 8n−1,
bn−1 = bn−2 + 3 · (−1)n−1 · 8n−2,
bn−2 = bn−3 + 3 · (−1)n−2 · 8n−3,
. . . . . .

b4 = b3 + 3 · (−1)4 · 83,
b3 = b2 + 3 · (−1)3 · 82,
b2 = b1 + 3 · (−1)2 · 81.

Po dodaniu stronami tych równości i zredukowaniu wyrazów b2, b3, . . . , bn−1 występujących po obu stro-
nach równości, dostaniemy

bn = b1 + 3 ·
(

(−1)2 · 81 + (−1)3 · 82 + . . .+ (−1)n−1 · 8n−2 + (−1)n · 8n−1
)

=

= b1 − 3 ·
(

(−8)1 + (−8)2 + . . .+ (−8n−2 + (−8)n−1
)

=

= b1 + 24 ·
(

1 + (−8)1 + . . .+ (−8)n−3 + (−8)n−2
)

=

= (−1)1 · a1 + 24 ·
1− (−8)n−1
1− (−8) =

= −2 + 24 · 1− (−8)
n−1

9
=

= −2 + 8 · 1− (−8)
n−1

3
=

=
−6 + 8− 8 · (−1)n−1 · 8n−1

3
=

=
2 + (−1)n · 8n

3
.

Stąd wynika, że

(−1)n · an =
2 + (−1)n · 8n

3
,

(−1)2n · an =
2 · (−1)n + (−1)2n · 8n

3
,

an =
8n + 2 · (−1)n

3
,

co kończy dowód.

Systemy trójek Steinera.

Na początku popatrzmy na przykład.

Przykład. (V. Bryant, Aspekty kombinatoryki, str. 199.) Dziewięć gatunków kawy ma zostać rozdanych
do testowania różnym rodzinom. Nie jest wskazane, by każda rodzina porównywała wszystkie dziewięć
gatunków (po około czwartej próbie wszystkie one smakują tak samo!). Tak więc każda z dwunastu
rodzin otrzyma do porównania trzy gatunki. Podać taką konfigurację eksperymentu, w której każda para
gatunków (spośród dziewięciu) jest porównywana w jednej rodzinie.

Rozwiązanie. Niech rodzaje kawy będą ponumerowane liczbami od 1 do 9. Rozdajmy dwunastu rodzi-
nom do porównania następujące zestawy trzech gatunków:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8},
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}.
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Wówczas każda para liczb od 1 do 9 znajduje się w jednym z tych zbiorów.

Systemem trójek Steinera nazywamy parę zbiorów (S, T ) o następujących własnościach:

(1) zbiory S i T są skończone,

(2) elementami zbioru T są 3-elementowe podzbiory zbioru S:

X ∈ T ⇒ X ⊆ S ∧ |X | = 3,

(3) każda para elementów zbioru S występuje w dokładnie jednym zbiorze należącym do T :

a, b ∈ S ∧ a 6= b ⇒ istnieje dokładnie jeden zbiór X ∈ T taki, że a, b ∈ X.

Elementy zbioru S nazywamy często punktami, a zbiory należące do T nazywamy trójkami punktów.
Warunek (3) możemy zatem wysłowić w taki sposób, że każde dwa punkty ze zbioru S należą do dokładnie
jednej trójki ze zbioru T .

Zbiór trójek w powyższym przykładzie ma jeszcze jedną interesującą własność. Mianowicie w każdym
wierszu występują wszystkie punkty (czyli liczby od 1 do 9). Zatem zbiór T trójek punktów można
podzielić na 4 rozłączne zbiory o tej własności, że elementy trójek z każdego z tych zbiorów wyczerpują
cały zbiór punktów.

Warstwą nazwiemy taki zbiór trójek parami rozłącznych, którego sumą jest cały zbiór S. Systemem
trójek Kirkmana nazywamy taki system trójek Steinera, w którym zbiór trójek T można podzielić
na parami rozłączne warstwy. System trójek Steinera pokazany w powyższym przykładzie jest zatem
systemem trójek Kirkmana.

Przykłady.

1. Niech S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Niech następnie zbiór T będzie zbiorem trójek z poprzedniego
przykładu:

T =

{

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}

}

.

Wtedy para (S, T ) jest systemem trójek Steinera. Widzieliśmy już, że jest to także system trójek
Kirkmana.

2. Niech S = {1, 2, 3, 4, 5, 6, 7} i niech T będzie następującym zbiorem trójek:

T =
{

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {1, 5, 6}, {2, 6, 7}, {1, 3, 7}
}

.

Wtedy para (S, T ) jest systemem trójek Steinera. Ten system trójek Steinera Ma ładną interpretację
graficzną:
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3. Niech S = {1, 2, . . . , 15} i niech T będzie zbiorem następujących trójek liczb:

{1, 2, 3}, {4, 8, 12}, {5, 10, 14}, {6, 11, 13}, {7, 9, 15},
{1, 4, 5}, {2, 8, 10}, {3, 13, 15}, {6, 9, 14}, {7, 11, 12},
{1, 6, 7}, {2, 9, 11}, {3, 12, 14}, {4, 10, 15}, {5, 8, 13},
{1, 8, 9}, {2, 12, 15}, {3, 5, 6}, {4, 11, 14}, {7, 10, 13},
{1, 10, 11}, {2, 13, 14}, {3, 4, 7}, {5, 9, 12}, {6, 8, 15},
{1, 12, 13}, {2, 4, 6}, {3, 9, 10}, {5, 11, 15}, {7, 8, 14},
{1, 14, 15}, {2, 5, 7}, {3, 8, 11}, {4, 9, 13}, {6, 10, 12}.

Wtedy para (S, T ) jest systemem trójek Steinera. Zauważmy, że ten system jest również systemem
trójek Kirkmana (warstwami są wiersze powyższej tablicy). Ten system stanowi rozwiązanie nastę-
pującego zadania postawionego i rozwiązanego przez Kirkmana:

Czy możliwe jest, aby 15 uczennic wychodziło na spacer przez 7 dni tygodnia w taki sposób, by
codziennie spacerowały w 5 rzędach po 3 uczennice w każdym rzędzie oraz, by każda para uczennic
spacerowała w tym samym rzędzie dokładnie jednego dnia?

Wiersze powyższej tablicy ilustrują sposób ustawienia uczennic przez kolejne dni tygodnia, od po-
niedziałku do niedzieli.

Twierdzenie. Jeśli istnieje system trójek Steinera (S, T ), w którym |S| = n, to liczba n przy dzieleniu
przez 6 daje resztę 1 lub 3.

Dowód. Dwoma sposobami zliczamy pary punktów. Z jednej strony, liczba par jest równa
(

n
2

)

. Z drugiej
strony, każda para należy do dokładnie jednej trójki ze zbioru T . Ponieważ w każdej trójce są dokładnie
3 pary, więc

3 · |T | =
(

n

2

)

=
n(n− 1)
2
,

czyli

|T | = n(n− 1)
6
.

Natępnie bierzemy dowolny element x zbioru S i rozważamy zbiór

U = {t ∈ T : x ∈ t}.

Zauważmy, że rodzina par
{

t \ {x} : t ∈ U
}

jest podziałem zbioru S \{x} na zbiory dwuelementowe. Stąd wynika, że liczba n jest nieparzysta. Zatem
n przy dzieleniu przez 6 może dać jedną z reszt 1, 3 lub 5. Ponieważ liczba n(n− 1) jest podzielna przez
6, więc n nie może dawać reszty 5 przy dzieleniu przez 6, co kończy dowód twierdzenia.

Wniosek. Jeśli istnieje system trójek Kirkmana (S, T ), w którym |S| = n, to liczba n daje resztę 3 przy
dzieleniu przez 6.

Dowód. Ponieważ jedna warstwa daje podział zbioru S na zbiory trzyelementowe, więc liczba n dzieli
się przez 3. Nie może zatem dawać reszty 1 przy dzieleniu przez 6.

Prawdziwe jest też twierdzenie odwrotne: jeśli liczba naturalna n ≥ 3 daje resztę 1 lub 3 przy dzieleniu
przez 6, to istnieje system trójek Steinera (S, T ), w którym |S| = n. Pokażemy teraz sposób konstrukcji
systemu trójek Steinera (S, T ), w którym |S| = 6m+3. Do tego wprowadzimy kilka pojęć algebraicznych.

Niech Q będzie zbiorem skończonym, w którym jest określone działanie dwuargumentowe ◦. Mówimy, że
zbiór Q (z działaniem ◦) jest quasigrupą przemienną, jeśli spełnione są następujące warunki:
(1) a ◦ b = b ◦ a dla dowolnych a, b ∈ Q,
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(2) dla dowolnych a, c ∈ Q istnieje dokładnie jeden element b zbioru Q taki, że a ◦ b = c.

Warunek (2) jest równoważny następującemu warunkowi (2’):

(2’) dla dowolnego a ∈ Q funkcja f : Q→ Q określona wzorem f(x) = a ◦ x jest różnowartościowa

Mówimy następnie, że quasigrupa Q jest idempotentna, jeśli ponadto jest spełniony warunek

(3) a ◦ a = a dla dowolnego a ∈ Q.

Przykłady.

1. Zbiór liczb Q = {0, 1, 2} z działaniem ◦ określonym za pomocą następującej tabelki

◦ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

jest idempotentną quasigrupą przemienną.

2. Zbiór liczb Q = {0, 1, 2, 3, 4} z działaniem ◦ określonym za pomocą następującej tabelki

◦ 0 1 2 3 4

0 0 3 1 4 2

1 3 1 4 2 0

2 1 4 2 0 3

3 4 2 0 3 1

4 2 0 3 1 4

jest idempotentną quasigrupą przemienną.

Twierdzenie. Jeśli n jest liczbą nieparzystą, to istnieje idempotentna quasigrupa przemienna Q mająca
n elementów.

Dowód. Sposób konstrukcji quasigrupyQ zilustrujemy najpierw na przykładzie. Niech Q = {0, 1, . . . , n−
1} i zdefiniujmy w zbiorze Q działanie ◦ wzorem

i ◦ j = (i+ j) mod n

dla i, j ∈ Q. Symbolem a mod n oznaczamy resztę z dzielenia liczby a przez n. Działanie ◦ jest zatem
działaniem dodawania modulo n. Zauważmy teraz, że dla każdego j ∈ Q istnieje element i ∈ Q taki, że
i ◦ i = j. Wynika to stąd, że dla każdej liczby naturalnej j kongruencja

2x ≡ j (mod n)

ma rozwiązanie. Zatem w tabelce działania ◦ w zbiorze Q na przekątnej występują wszystkie elementy
zbioru Q. Na przykład dla n = 5 mamy:
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◦ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Zauważmy, że na przekątnej stoją liczby 0, 2, 4, 1, 3. Teraz w tej tabelce przenumerowujemy liczby będące
wynikami działania w taki sposób, by na przekątnej występowały kolejno liczby 0, 1, 2, 3, 4. Zatem liczbę
0 zostawiamy wszędzie w tabelce bez zmian, zamiast 2 piszemy 1, zamiast 4 piszemy 2, zamiast 1 piszemy
3 i zamiast 3 piszemy 4. Otrzymamy tabelkę

◦ 0 1 2 3 4

0 0 3 1 4 2

1 3 1 4 2 0

2 1 4 2 0 3

3 4 2 0 3 1

4 2 0 3 1 4

Nietrudno zauważyć, że dla dowolnej nieparzystej liczby naturalnej n taka konstrukcja jest możliwa.
Opiszemy ją teraz dokładniej. Okazuje się, że działanie ◦ w zbiorze Q = {0, 1, . . . , n − 1} będzie wtedy
opisane wzorem

i ◦ j =
{

i+j
2 , jeśli i+ j jest liczbą parzystą,
i+j+n
2 mod n, jeśli i+ j jest liczbą nieparzystą

dla dowolnych i, j ∈ Q. Zauważmy, że jeśli i+ j jest liczbą nieparzystą, to liczba i+ j + n jest parzysta,
więc i+j+n2 jest liczbą całkowitą.

Wykażemy, że zbiór Q z działaniem ◦ jest idempotentną quasigrupą przemienną. Przemienność działania
◦ jest oczywista. Idempotentność wynika stąd, że dla każdego i liczba i+ i jest parzysta, więc

i ◦ i = i+ i
2
= i.

Wykażemy wreszcie warunek (2’). Niech i, j, k ∈ Q i załóżmy, że

i ◦ j = i ◦ k.

Możliwe są trzy przypadki.

Przypadek 1. Liczby i+ j oraz i+ k są parzyste. Wtedy

i+ j

2
=
i+ k

2
,

skąd natychmiast wynika, że j = k.
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Przypadek 2. Liczby i+ j oraz i+ k są nieparzyste. Wtedy

i+ j + n

2
mod n =

i+ k + n

2
mod n.

Zatem

i+ j + n

2
≡ i+ k + n

2
(mod n),

i+ j + n ≡ i+ k + n (mod n),
j ≡ k (mod n).

Ponieważ 0 ≤ j, k < n, więc j = k.
Przypadek 3. Jedna z liczb i+ j oraz i+ k jest parzysta (np. i+ j), a druga nieparzysta. Wtedy

i+ j

2
=
i+ k + n

2
mod n.

Zatem

i+ j

2
≡ i+ k + n

2
(mod n),

i+ j ≡ i+ k + n (mod n),
j ≡ k (mod n).

Tak jak w przypadku 2 otrzymujemy j = k, co kończy dowód twierdzenia.

Niech teraz Q będzie idempotentną quasigrupą przemienną mającą 2m+1 elementów. Definiujemy zbiór
S w następujący sposób

S = Q× {0, 1, 2} =
{

(a, i) : a ∈ Q ∧ i ∈ {0, 1, 2}
}

.

Oczywiście |S| = n = 6m+ 3. Zdefiniujemy teraz zbiór T .

Do zbioru T zaliczymy dwa rodzaje trójek par:

(1) Trójki pierwszego rodzaju:
{(a, 0), (a, 1), (a, 2)}

dla a ∈ Q.
(2) Trójki drugiego rodzaju:

{(a, 0), (b, 0), (a ◦ b, 1)}, {(a, 1), (b, 1), (a ◦ b, 2)}, {(a, 2), (b, 2), (a ◦ b, 0)}

dla a, b ∈ Q takich, że a 6= b.

Udowodnimy teraz, że tak określona para (S, T ) jest rzeczywiście systemem trójek Steinera. Najpierw
pokażemy, że każde dwie pary ze zbioru S znajdują się w co najmniej jednej trójce ze zbioru T . Niech
więc (a, k), (b, l) ∈ S oraz (a, k) 6= (b, l). Możliwe są trzy przypadki.

Przypadek 1. a = b. Wtedy k 6= l oraz

(a, k), (a, l) ∈ {(a, 0), (a, 1), (a, 2)} ∈ T.

Przypadek 2. a 6= b oraz k = l. Wtedy

(a, k), (b, k) ∈ {(a, k), (b, k), (a ◦ b, (k + 1) mod 3)} ∈ T.
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Przypadek 3. a 6= b oraz k 6= l. Para liczb {k, l} jest jedną z trzech par: {0, 1}, {1, 2}, {2, 0}. Możemy
zatem przyjąć, że l = (k + 1) mod 3. Z definicji quasigrupy wynika, że istnieje element c ∈ Q taki, że
a ◦ c = b. Ponieważ Q jest quasigrupą idempotentną oraz a 6= b, więc c 6= a. Zatem

(a, k), (b, l) ∈ {(a, k), (c, k), (a ◦ c, (k + 1) mod 3)} = {(a, k), (c, k), (b, l)} ∈ T.

Aby teraz pokazać, że każde dwie pary należą do dokładnie jednej trójki ze zbioru T , wystarczy pokazać,

że zbiór T ma n(n−1)6 elementów. Otóż w zbiorze T istnieje 2m+1 trójek pierwszego rodzaju oraz 3·
(

2m+1
2

)

trójek drugiego rodzaju. Zatem

|T | = (2m+ 1) + 3 · (2m+ 1) · 2m
2

= (2m+ 1) + 3m(2m+ 1) = (2m+ 1)(3m+ 1)

oraz
n(n− 1)
6

=
(6m+ 3)(6m+ 2)

6
= (2m+ 1)(3m+ 1).

To kończy dowód, że para (S, T ) jest systemem trójek Steinera.

Przykłady.

1. Dla quasigrupy {0, 1, 2} z działaniem ◦ zdefiniowanym za pomocą tabelki

◦ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

Otrzymujemy następujący zbiór S:

S =







(0, 0) (1, 0) (2, 0)
(0, 1) (1, 1) (2, 1)
(0, 2) (1, 2) (2, 2)







.

Zbiór T składa się z trzech trójek pierwszego rodzaju:

{(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (2, 1)} oraz {(2, 0), (2, 1), (2, 2)}

i dziewięciu trójek drugiego rodzaju:

{(0, 0), (1, 0), (0 ◦ 1, 1)} = {(0, 0), (1, 0), (2, 1)},
{(0, 1), (1, 1), (0 ◦ 1, 2)} = {(0, 1), (1, 1), (2, 2)},
{(0, 2), (1, 2), (0 ◦ 1, 0)} = {(0, 2), (1, 2), (2, 0)},
{(0, 0), (2, 0), (0 ◦ 2, 1)} = {(0, 0), (2, 0), (1, 1)},
{(0, 1), (2, 1), (0 ◦ 2, 2)} = {(0, 1), (2, 1), (1, 2)},
{(0, 2), (2, 2), (0 ◦ 2, 0)} = {(0, 2), (2, 2), (1, 0)},
{(1, 0), (2, 0), (1 ◦ 2, 1)} = {(1, 0), (2, 0), (0, 1)},
{(1, 1), (2, 1), (1 ◦ 2, 2)} = {(1, 1), (2, 1), (0, 2)},
{(1, 2), (2, 2), (1 ◦ 2, 0)} = {(1, 2), (2, 2), (0, 0)}.
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Zauważmy następnie, że jeśli ponumerujemy pary (i, j) ∈ S w następujący sposób

(0, 0) 7→ 1 (1, 0) 7→ 4 (2, 0) 7→ 9
(0, 1) 7→ 2 (1, 1) 7→ 5 (2, 1) 7→ 7
(0, 2) 7→ 3 (1, 2) 7→ 6 (2, 2) 7→ 8

to otrzymany system trójek Steinera będzie identyczny z systemem pokazanym w pierwszym przy-
kładzie. Jest to zatem system trójek Kirkmana.

2. Dla quasigrupy Q = {0, 1, 2, 3, 4} z działaniem ◦ zdefiniowanym za pomocą tabelki

◦ 0 1 2 3 4

0 0 3 1 4 2

1 3 1 4 2 0

2 1 4 2 0 3

3 4 2 0 3 1

4 2 0 3 1 4

otrzymujemy następujący zbiór S:

S =







(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)







.

Trójki pierwszego rodzaju mają następującą postać:

Kolorami czerwonym, zielonym i niebieskim zaznaczone są trójki

{(0, 0), (0, 1), (0, 2)}, {(3, 0), (3, 1), (3, 2)} oraz {(4, 0), (4, 1), (4, 2)}.

Trójki drugiego rodzaju mają postać:

Kolorem czerwonym zaznaczona jest trójka

{(2, 0), (3, 0), (2 ◦ 3, 1)} = {(2, 0), (3, 0), (0, 1)},

kolorem zielonym zaznaczona jest trójka

{(3, 1), (4, 1), (3 ◦ 4, 2)} = {(3, 1), (4, 1), (1, 2)},

wreszcie kolorem niebieskim zaznaczona jest trójka

{(0, 2), (3, 2), (0 ◦ 3, 0)} = {(0, 2), (3, 2), (4, 0)}.
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Można pokazać, że otrzymany system trójek Steinera nie jest systemem trójek Kirkmana, zatem
różni się istotnie od przykładu pokazanego wcześniej.

Pokażemy teraz sposób konstrukcji systemu trójek Steinera (S, T ), w którym |S| = 6m + 1. Znów za-
czniemy od pojęć algebraicznych. Mówimy, że quasigrupa przemienna Q = {0, 1, . . . , 2n − 1} (mająca
zatem 2n elementów) jest półidempotentna, jeśli spełnia następujący warunek:

(4) a ◦ a = (n+ a) ◦ (n+ a) = a dla a = 0, 1, . . . , n.

Przykłady.

1. Zbiór liczb Q = {0, 1} z działaniem ◦ określonym za pomocą następującej tabelki

◦ 0 1

0 0 1

1 1 0

jest półidempotentną quasigrupą przemienną.

2. Zbiór liczb Q = {0, 1, 2, 3, } z działaniem ◦ określonym za pomocą następującej tabelki

◦ 0 1 2 3

0 0 2 1 3

1 2 1 3 0

2 1 3 0 2

3 3 0 2 1

jest idempotentną quasigrupą przemienną.

2. Zbiór liczb Q = {0, 1, 2, 3, 4, 5} z działaniem ◦ określonym za pomocą następującej tabelki

◦ 0 1 2 3 4 5

0 0 3 1 4 2 5

1 3 1 4 2 5 0

2 1 4 2 5 0 3

3 4 2 5 0 3 1

4 2 5 0 3 1 4

4 5 0 3 1 4 2

jest idempotentną quasigrupą przemienną.

Twierdzenie. Dla każdej liczby naturalnej n ≥ 1 istnieje półidempotentna quasigrupa przemienna Q =
{0, 1, . . . , 2n− 1} mająca 2n elemenów.
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Szkic dowodu. Znów możemy przenumerować tabelkę dodawania modulo 2n. Działanie ◦ w zbiorze Q
będzie wtedy określone wzorem:

i ◦ j =
{

(i+j) mod 2n
2 , jeśli i+ j jest liczbą parzystą,

(i+j−1) mod 2n
2 , jeśli i+ j jest liczbą nieparzystą

dla i, j ∈ {0, 1, . . . , 2n− 1}. Sprawdzenie, że zbiór Q z tak określonym działaniem ◦ jest półidempotentna
quasigrupą przemienną, pozostawimy jako ćwiczenie.

Niech teraz Q = {0, 1, . . . , 2m−1} będzie półidempotentną quasigrupą przemienną mającą 2m elementów
i niech ∞ 6∈ Q× {0, 1, 2}. Definiujemy zbiór S w następujący sposób

S = {∞} ∪ (Q× {0, 1, 2}) =
{

∞
}

∪
{

(a, i) : a ∈ Q ∧ i ∈ {0, 1, 2}
}

.

Oczywiście |S| = n = 6m+ 1. Zdefiniujemy teraz zbiór T .

Do zbioru T zaliczymy trzy rodzaje trójek par:

(1) Trójki pierwszego rodzaju:
{(a, 0), (a, 1), (a, 2)}

dla a = 0, . . . ,m− 1.
(2) Trójki drugiego rodzaju:

{∞, (a, 1), (a+m, 0)}, {∞, (a, 2), (a+m, 1)}, {∞, (a, 0), (a+m, 2)}

dla a = 0, . . . ,m− 1.
(2) Trójki trzeciego rodzaju:

{(a, 0), (b, 0), (a ◦ b, 1)}, {(a, 1), (b, 1), (a ◦ b, 2)}, {(a, 2), (b, 2), (a ◦ b, 0)}

dla a, b ∈ Q takich, że a 6= b.

Wykazanie, że tak określona para (S, T ) jest rzeczywiście systemem trójek Steinera, pozostawimy jako
ćwiczenie.

Przykłady.

1. Dla quasigrupy {0, 1} z działaniem ◦ zdefiniowanym za pomocą tabelki

◦ 0 1

0 0 1

1 1 0

Otrzymujemy następujący zbiór S:

S =







(0, 0) (1, 0)
∞ (0, 1) (1, 1)
(0, 2) (1, 2)







.

Zbiór T składa się z jednej trójki pierwszego rodzaju:

{(0, 0), (0, 1), (0, 2)},

19



trzech trójek drugiego rodzaju:

{∞, (1, 0), (0, 1)}, {∞, (1, 1), (0, 2)}, {∞, (1, 2)(0, 0)}

i trzech trójek trzeciego rodzaju:

{(0, 0), (1, 0), (0 ◦ 1, 1)} = {(0, 0), (1, 0), (1, 1)},
{(0, 1), (1, 1), (0 ◦ 1, 2)} = {(0, 1), (1, 1), (1, 2)},
{(0, 2), (1, 2), (0 ◦ 1, 0)} = {(0, 2), (1, 2), (1, 0)}.

Zauważmy następnie, że jeśli ponumerujemy elementy zbioru S w następujący sposób

(0, 0) 7→ 1 (1, 0) 7→ 6
∞ 7→ 7 (0, 1) 7→ 2 (1, 1) 7→ 5

(0, 2) 7→ 4 (1, 2) 7→ 3

to otrzymany system trójek Steinera będzie identyczny z systemem pokazanym poprzednio dla sied-
mioelementowego zbioru S.

1. Dla quasigrupy {0, 1, 2, 3} z działaniem ◦ zdefiniowanym za pomocą tabelki

◦ 0 1 2 3

0 0 2 1 3

1 2 1 3 0

2 1 3 0 2

3 3 0 2 1

otrzymamy następujący zbiór S:

S =







(0, 0) (1, 0) (2, 0) (3, 0)
∞ (0, 1) (1, 1) (2, 1) (3, 1)
(0, 2) (1, 2) (2, 2) (3, 2)







.

Zbiór T składa się z dwóch trójek pierwszego rodzaju (zaznaczonych kolorami czerwonym i zielonym):

sześciu trójek drugiego rodzaju, z których trzy zostały zaznaczone kolorami czerwonym, zielonym
i niebieskim:
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i 18 trójek trzeciego rodzaju, z których trzy również zostały zaznaczone kolorami czerwonym, zielo-
nym i niebieskim:

Dowód niealgebraiczny.

Naszkicujemy teraz pochodzący od Kirkmana, oryginalny dowód istnienia systemów trójek Steinera.
Wprowadzimy najpierw dwa pojęcia pomocnicze.

Niech X = {σ0, . . . , σ2n−2} ∪ {α} będzie zbiorem 2n-elementowym i niech H będzie zbiorem wszystkich
dwuelementowych podzbiorów zbioru X :

H = {A ⊆ X : |A| = 2}.

Ciąg zbiorów (H0, . . . , H2n−2) nazywamy 1-faktoryzacją zbioru H , jeśli dla każdego x ∈ X w każdym
zbiorze Hj istnieje dokładnie jedna para, której x jest elementem.

Ćwiczenie. Ciąg zbiorów (H0, . . . , H2n−2) zdefiniowanych w następujący sposób

Hj =
{

{σk, σl} : k + l ≡ j + 1 (mod 2n− 1)
}

∪
{

{α, σ(j+1)n mod (2n−1)}
}

dla j = 0, . . . , 2n− 2 jest 1-faktoryzacją zbioru H .

Przykład. Ciąg zbiorów (H0, . . . , H6) zdefiniowanych w następujący sposób

H0 =
{

{σ0, σ1}, {σ2, σ6}, {σ3, σ5}, {σ4, α}
}

,

H1 =
{

{σ0, σ2}, {σ3, σ6}, {σ4, σ5}, {σ1, α}
}

,

H2 =
{

{σ0, σ3}, {σ1, σ2}, {σ4, σ6}, {σ5, α}
}

,

H3 =
{

{σ0, σ4}, {σ1, σ3}, {σ5, σ6}, {σ2, α}
}

,

H4 =
{

{σ0, σ5}, {σ1, σ4}, {σ2, σ3}, {σ6, α}
}

,

H5 =
{

{σ0, σ6}, {σ1, σ5}, {σ2, σ4}, {σ3, α}
}

,

H6 =
{

{σ1, σ6}, {σ2, σ5}, {σ3, σ4}, {σ0, α}
}

jest 1-faktoryzacją zbioruX = {σ0, . . . , σ6}∪{α}. Tę 1-faktoryzację nazywamy faktoryzacją Kirkmana.

W dalszym ciągu szczególnie ważne będzie to, że:

{σ0, σ1} ∈ H0,
{σ0, σ2}, {σ1, α} ∈ H1,
{σ0, σj+1}, {σ1, σj} ∈ Hj dla j = 2, . . . , 2n− 3,
{σ0, α}, {σ1, σ2n−2} ∈ H2n−2.

Przypuśćmy następnie, że para (S, T ) jest systemem trójek Steinera, w którym |S| = n (przypominamy,
że n jest liczbą nieparzystą). Niech następnie x, y ∈ S i niech z będzie jedynym elementem zbioru S
takim, że {x, y, z} ∈ T . Mówimy, że system (S, T ) jest x, y-ogrodzony, a ciąg (s0, . . . , sn−4) elementów
zbioru S jest jego x, y-ogrodzeniem, jeśli

{x, s0, s1}, {y, s1, s2}, {x, s2, s3}, {y, s3, s4}, . . . , {y, sn−6, sn−5}, {x, sn−5, sn−4}, {y, sn−4, s0} ∈ T.
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Przykład. System trójek Steinera (S, T ), w którym S = {1, . . . , 9} oraz

T =

{

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}

}

jest systemem 1, 2-ogrodzonym, a jego 1, 2-ogrodzeniem jest ciąg (4, 7, 6, 8, 5, 9):

{1, 4, 7}, {2, 7, 6}, {1, 6, 8}, {2, 8, 5}, {1, 5, 9}, {2, 9, 4} ∈ T.

A oto graficzna ilustracja tego ogrodzenia:

4

7

68

5

9

1

2

1

1
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Dowód Kirkmana wynika teraz (przez indukcję, której szczegóły pozostawimy jako ćwiczenie) z następu-
jących trzech faktów.

1. Istnieje system trójek Steinera (S, T ), w którym |S| = 3.

2. Jeśli istnieje system trójek Steinera (S, T ), w którym |S| = 2n− 1, to istnieje ogrodzony system trójek
Steinera (S∗, T ∗), w którym |S∗| = 4n− 1.

3. Jeśli istnieje ogrodzony system trójek Steinera (S, T ), w którym |S| = 2n + 1 (przy czym n ≥ 3), to
istnieje ogrodzony system trójek Steinera (S∗, T ∗), w którym |S∗| = 4n− 3.

Fakt 1 jest oczywisty. Pokażemy teraz szkice dowodów faktów 2 i 3.

2. Niech (S, T ) będzie systemem trójek Steinera, w którym S = {s0, . . . , s2n−2} oraz niech zbiór X =
{σ0, . . . , σ2n−2} ∪ {α} będzie zbiorem rozłącznym ze zbiorem S. Niech następnie ciąg (H0, . . . , H2n−2)
będzie faktoryzacją Kirkmana zbioru H dwuelementowych podzbiorów zbioru X . Definiujemy rodzinę
trójek U w następujący sposób:

U =
{

{sj , a, b} : (j ∈ {0, . . . , 2n− 2}) ∧ ({a, b} ∈ Hj)
}

.

Niech następnie S∗ = S ∪ X oraz T ∗ = T ∪ U . Wtedy para (S∗, T ∗) jest σ0, σ1-ogrodzonym systemem
trójek Steinera oraz ciąg

(s1, σ2, s2, σ3, s3, σ4, . . . , σ2n−2, s2n−2, α)

jest jego σ0, σ1-ogrodzeniem.

3. Niech (S, T ) będzie systemem trójek Steinera, w którym S = {x, y, z, s0, . . . , s2n−3} oraz {x, y, z} ∈ T .
Załóżmy, że system (S, T ) jest x, y-ogrodzony, przy czym ciąg

(s0, s1, . . . , s2n−4, s2n−3)

jest jego x, y-ogrodzeniem. Niech zbiór X = {σ0, . . . , σ2n−2} ∪ {α} będzie zbiorem rozłącznym ze zbio-
rem S. Niech następnie ciąg (H0, . . . , H2n−2) będzie faktoryzacją Kirkmana zbioru H dwuelementowych
podzbiorów zbioru X . Definiujemy nstępujące rodziny trójek:

T1 =
{

{a, b, c} ∈ T : {a, b, c} ∩ {x, y} = ?
}

,

U =
{

{sj, a, b} : (j ∈ {0, . . . , 2n− 3}) ∧ ({a, b} ∈ Hj+1) ∧ ({a, b} ∩ {σ0, σ1} = ?)
}

,

V =
{

{z, a, b} : ({a, b} ∈ H0) ∧ ({a, b} 6= {σ0, σ1})
}

,

W =
{

{sj, sj+1, σj+2} : 0 ≤ j < 2n− 3
}

∪
{

{α, s0, s2n−3}
}

.
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Niech następnie S∗ = {s0, . . . , s2n−3} ∪ {z} ∪ {σ2, . . . , σ2n−2} ∪ {α} oraz T ∗ = T1 ∪ U ∪ V ∪W . Wtedy
{σ2, σ3, s3} ∈ T ∗ oraz para (S∗, T ∗) jest σ2, σ3-ogrodzonym systemem trójek Steinera, przy czym ciąg

(s0, s1, s2, α, s4, σ4, s5, σ5, . . . , s2n−3, σ2n−3, z, σ2n−2)

jest jego σ2, σ3-ogrodzeniem.

Szczegóły dowodów pozostawimy również jako ćwiczenie.
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Zliczanie kolorowań; lemat Burnside’a.

Popatrzmy na cztery przykłady.

Przykład 1. Wierzchołki kwadratu można pokolorować co najwyżej dwoma kolorami na 16 różnych
sposobów:

Przykład 2.Niektóre z kolorowań pokazanych w przykładzie 1 możemy uznać za jednakowe w tym sensie,
że pewna izometria kwadratu przeprowadza jedno z tych kolorowań na drugie. Na przykład kolorowanie

powstaje z kolorowania

przez obrót o 90◦ w kierunku przeciwnym do ruchu wskazówek zegara. Takie kolorowania będziemy nazy-
wać kolorowaniami geometrycznie nierozróżnialnymi. Okazuje się, że istnieje dokładnie 6 geometrycznie
rozróżnialnych kolorowań wierzchołków kwadratu za pomocą co najwyżej dwóch kolorów:

Przykład 3. Używając trzech kolorów można pokolorować wierzchołki kwadratu na 21 geometrycznie
rozróżnialnych sposobów:
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W ostatnim przykładzie będziemy kolorować wierzchołki sześcianu. Dwa kolorowania uważamy za iden-
tyczne (geometrycznie nierozróżnialne), jeśli jedno można otrzymać z drugiego przez odpowiedni obrót
sześcianu.

Przykład 4. Wierzchołki sześcianu można pokolorować na dokładnie 23 geometrycznie rozróżnialne
sposoby za pomocą co najwyżej dwóch kolorów:

Definicja geometrycznej nierozróżnialności zależy od tego, jakie izometrie będziemy rozważać. Gdybyśmy
w ostatnim przykładzie dopuścili wszystkie izometrie sześcianu (czyli również symetrie), to otrzyma-
libyśmy dokładnie 22 geometrycznie rozróżnialne kolorowania za pomocą co najwyżej dwóch kolorów.
Pozostawimy Czytelnikowi jako ćwiczenie znalezienie dwóch kolorowań, które są rozróżnialne, gdy rozpa-
trujemy wyłącznie obroty sześcianu i są nierozróżnialne, gdy dopuścimy również symetrie.

Widzimy więc, że definicja geometrycznej rozróżnialności kolorowań zależy od tego, jaką grupę izometrii
będziemy rozpatrywać. Problemem rozróżnialności kolorowań zajmiemy się teraz bardziej ogólnie.

Niech będzie dany zbiór skończony A. Kolorowaniem zbioru A nazwiemy dowolną funkcję

c : A→ {1, . . . , k}.
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Mówimy tez wtedy, że elementy zbioru A kolorujemy za pomocą k kolorów (nawet, jeśli nie wszystkie
kolory zostały użyte). Niech K będzie zbiorem wszystkich kolorowań zbioru A za pomocą k kolorów.
Przypuśćmy następnie, że dana jest pewna grupaG przekształceń zbioruA na siebie (czyli podgrupa grupy
wszystkich permutacji zbioru A). Definiujemy teraz grupę G∗ przekształceń zbioru K. Dla dowolnego
przekształcenia π ∈ G definiujemy przekształcenie

π∗ : K → K

wzorem π∗(c) = c ◦ π−1. Wreszcie przyjmujemy

G∗ = {π∗ : π ∈ G}.

Ćwiczenie. Jeśli k ≥ 2, π, σ ∈ G oraz π 6= σ, to π∗ 6= σ∗. W szczególności |G∗| = |G|.

Przykład 5. Niech A będzie zbiorem wierzchołków kwadratu. Grupa G wszystkich izometrii kwadratu
składa się z następujących 8 przekształceń:

→ π0 = (1)(2)(3)(4)

→ π1 = (1, 2, 3, 4)

→ π2 = (1, 3)(2, 4)

→ π3 = (1, 4, 3, 2)

→ π4 = (1, 2)(3, 4)

→ π5 = (1, 4)(2, 3)

→ π6 = (1)(2, 4)(3)

→ π7 = (1, 3)(2)(4)
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Popatrzmy na następujące dwa kolorowania

c, d : {1, 2, 3, 4} → {1, 2, 3}

(kolorowi białemu odpowiada liczba 1, kolorowi szaremu liczba 2 i kolorowi czarnemu liczba 3):

Zauważmy, że kolorowanie d powstało przez „obrócenie” kolorowania c o 90◦ zgodnie z ruchem wskazówek
zegara, czyli w taki sposób, w jaki działa na wierzchołkach kwadratu przekształcenie π3. Pokażemy, że
rzeczywiście d = π∗3(c). Mianowicie

π∗3(c)(1) = c(π
−1
3 (1)) = c(2) = 1 = d(1),

π∗3(c)(2) = c(π
−1
3 (2)) = c(3) = 3 = d(2),

π∗3(c)(3) = c(π
−1
3 (3)) = c(4) = 2 = d(3),

π∗3(c)(4) = c(π
−1
3 (4)) = c(1) = 3 = d(4).

Przykład 6. Ogólniej, przypuśćmy, że przekształcenie π ∈ G przeprowadza element a ∈ A na element
b ∈ A, tzn. π(a) = b:

Przypuśćmy następnie, że elementy a i b zostały pokolorowane (w kolorowaniu c) kolorami p i q. Prze-
kształcenie π∗ zamienia wtedy kolory w następujący sposób:

Mamy wówczas
π∗(c)(b) = p = c(a) = c(π−1(b)) = c ◦ π−1(b),

czyli
π∗(c) = c ◦ π−1.
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Mówimy teraz, że dwa kolorowania c i d zbioru A są nierozróżnialne (ze względu na grupę G), jeśli istnieje
przekształcenie π ∈ G takie, że π∗(c) = d. Interesuje nas wyznaczenie liczby kolorowań rozróżnialnych ze
względu na grupę G.

Definicja. Jeśli G jest pewną grupą przekształceń zbioru A oraz a ∈ A, to orbitą elementu a (ze względu
na grupę G) nazywamy zbiór

O(a) = {π(a) : π ∈ G}.

Naszym celem jest więc wyznaczenie liczby orbit grupy G∗ w zbiorze K.

Definicja. Niech G będzie pewną grupą przekształceń zbioru A i niech a ∈ A. Wówczas stabilizatorem
elementu a nazywamy zbiór

S(a) = {π ∈ G : π(a) = a}.

Nietrudno zauważyć, że stabilizator elementu a jest podgrupą grupy G. Udowodnimy następujący lemat:

Lemat. Dla każdego elementu a zbioru A zachodzi równość

|S(a)| · |O(a)| = |G|.

Dowód. Niech O(a) = {b1, . . . , br}. Wybieramy takie przekształcenia π1, . . . , πr ∈ G, by

π1(a) = b1, . . . , πr(a) = br.

Niech P = {π1, . . . , πr}. Oczywiście |P | = |O(a)|. Pokażemy, że każde przekształcenie π ∈ G można
przedstawić jednoznacznie w postaci π = σ ◦ ρ, gdzie σ ∈ P oraz ρ ∈ S(a). To oczywiście zakończy
dowód.

Niech więc π ∈ G. Niech następnie π(a) = bs, gdzie 1 ≤ s ≤ r. Zatem π(a) = πs(a). Przyjmijmy

σ = πs, ρ = π
−1
s ◦ π.

Oczywiście
σ ◦ ρ = πs ◦ (π

−1
s ◦ π) = π.

Ponadto σ = πs ∈ P . Pokażemy, że ρ ∈ S(a). Mianowicie

ρ(a) = (π−1s ◦ π)(a) = π
−1
s (π(a)) = π

−1
s (πs(a)) = a.

To dowodzi, że przekształcenie π może być przedstawione w żądanej postaci.

Przypuśćmy teraz, że
πs ◦ ρ = πt ◦ τ,

gdzie 1 ≤ s, t ≤ r oraz ρ, τ ∈ S(a). Wówczas

(πs ◦ ρ)(a) = (πt ◦ τ)(a),

πs(ρ(a)) = πt(τ(a)),

πs(a) = πt(a),

bs = bt,

s = t.

Zatem πs = πt, skąd oczywiście wynika, że ρ = τ , co kończy dowód lematu.
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Definicja. Niech G będzie pewną grupą przekształceń zbioru A i niech π ∈ G. Wtedy charakterem
przekształcenia π nazywamy liczbę tych a ∈ A, dla których π(a) = a:

χ(π) = |{a ∈ A : π(a) = a}|.

Udowodnimy teraz następujący lemat:

Lemat Burnside’a. Niech G będzie pewną grupą przekształceń zbioru A. Wtedy liczba orbit w zbiorze
A (ze względu na grupę G) jest równa

t(G) =
1

|G|
·
∑

π∈G

χ(π).

Dowód. Będziemy zliczać na dwa sposoby liczbę elementów zbioru

X = {(π, a) ∈ G×A : π(a) = a}.

Dla każdego π ∈ G istnieje χ(π) takich a ∈ A, dla których π(a) = a, czyli (π, a) ∈ X . Zatem

|X | =
∑

π∈G

χ(π).

Z drugiej strony, dla każdego a ∈ A istnieje |S(a)| takich przekształceń π, dla których π(a) = a, czyli
(π, a) ∈ X . Zatem

|X | =
∑

a∈A

|S(a)|.

Z poprzedniego lematu wynika, że

|X | =
∑

a∈A

|G|

|O(a)|
= |G| ·

∑

a∈A

1

|O(a)|
.

Przypuśćmy teraz, że zbiór A został rozbity na r = t(G) orbit i niech b1, . . . , br będą reprezentantami
tych orbit. Wówczas

∑

a∈A

1

|O(a)|
=
r
∑

j=1

∑

a∈O(bj)

1

|O(a)|
=

r
∑

j=1

∑

a∈O(bj)

1

|O(bj)|
=
r
∑

j=1





1

|O(bj)|
·
∑

a∈O(bj)

1



 =

=
r
∑

j=1

(

1

|O(bj)|
· |O(bj)|

)

=
r
∑

j=1

1 = r = t(G).

Zatem
|X | = |G| · t(G),

czyli

|G| · t(G) =
∑

π∈G

χ(π),

skąd natychmiast wynika teza lematu Burnside’a.

Przypuśćmy teraz, że dany jest zbiór A i pewna grupa G przekształceń zbioru A. Rozważamy zbiór K
kolorowań zbioru A za pomocą k kolorów i grupę G∗ przekształceń zbioru K. Wówczas liczba orbit grupy
G∗ jest równa

t(G∗) =
1

|G∗|
·
∑

σ∈G∗

χ(σ) =
1

|G|
·
∑

π∈G

χ(π∗).
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Dla dowolnego przekształcenia π ∈ G chcemy obliczyć χ(π∗). Przypuśćmy zatem, że c ∈ K Zauważmy,
że następujące warunki są równoważne:

π∗(c) = c,

c ◦ π−1 = c,

c = c ◦ π,

∀a ∈ A
(

c(π(a)) = c(a)
)

.

Ostatni warunek jest równoważny temu, że wszystkie elementy tego samego cyklu (w rozkładzie permu-
tacji π na cykle) są pokolorowane tym samym kolorem. Zatem, jeśli z(π) oznacza liczbę cykli permutacji
π, to

χ(π∗) = kz(π).

Stąd otrzymujemy wzór

t(G∗) =
1

|G|
·
∑

π∈G

kz(π).

Przykład 7. Przypomnijmy, że grupa izometrii kwadratu (traktowana jako grupa przekształceń zbioru
wierzchołków ponumerowanych liczbami 1,2,3,4) składa się z 8 przekształceń:

π0 = (1)(2)(3)(4),

π1 = (1, 2, 3, 4),

π2 = (1, 3)(2, 4),

π3 = (1, 4, 3, 2),

π4 = (1, 2)(3, 4),

π5 = (1, 4)(2, 3),

π6 = (1)(2, 4)(3),

π7 = (1, 3)(2)(4).

Zatem liczba geometrycznie rozróżnialnych kolorowań wierzchołków kwadratu za pomocą k kolorów jest
równa

1

8
· (k4 + k + k2 + k + k2 + k2 + k3 + k3) =

1

8
· (k4 + 2k3 + 3k2 + 2k).

Dla k = 2 otrzymujemy

1

8
· (24 + 2 · 23 + 3 · 22 + 2 · 2) =

1

8
· (16 + 16 + 12 + 4) =

48

8
= 6

kolorowań. Dla k = 3 otrzymujemy

1

8
· (34 + 2 · 33 + 3 · 32 + 2 · 3) =

1

8
· (81 + 54 + 27 + 6) =

168

8
= 21

kolorowań.

Przykład 8. Grupa obrotów sześcianu składa się z 24 przekształceń. Znów traktujemy ją jako grupę
przekształceń zbioru wierzchołków ponumerowanych liczbami od 1 do 8.

Pierwszym przekształceniem jest identyczność:

π = (1)(2)(3)(4)(5)(6)(7)(8).

Następnie mamy obroty sześcianu wokół osi przechodzącej przez środki przeciwległych ścian (są 3 takie
osie).
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Obrót sześcianu o 90◦: π = (1, 2, 3, 4)(5, 6, 7, 8)

Obrót sześcianu o 180◦: π = (1, 3)(2, 4)(5, 7)(6, 8)

Obrót sześcianu o 270◦: π = (1, 4, 3, 2)(5, 8, 7, 6)

Teraz mamy obrót sześcianu wokół osi przechodzącej przez środki przeciwległych krawędzi (jest 6 takich
osi).

Obrót sześcianu o 180◦: π = (1, 5)(2, 8)(3, 7)(4, 6)

Wreszcie mamy obroty sześcianu wokół osi przechodzącej przez przeciwległe wierzchołki (są 4 takie osie).
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Obrót sześcianu o 120◦: π = (1, 3, 6)(2)(4, 7, 5)(8)

Obrót sześcianu o 240◦: π = (1, 6, 3)(2)(4, 5, 7)(8)

Mamy zatem jedną permutację o 8 cyklach, 6 permutacji o 2 cyklach i 17 permutacji o 4 cyklach. Stąd
wynika, że liczba geometrycznie rozróżnialnych kolorowań wierzchołków sześcianu za pomocą k kolorów
jest równa

1

24
· (k8 + 17k4 + 6k2).

Dla k = 2 otrzymujemy

1

24
· (28 + 17 · 24 + 6 · 22) =

1

24
· (256 + 272 + 24) =

552

24
= 23

kolorowania. W podobny sposób stwierdzamy, że dla k = 3 istnieją 333 kolorowania.

Przykład 9. Grupa wszystkich izometrii sześcianu składa się z 48 przekształceń. Wśród tych permutacji
zbioru wierzchołków jest jedna mająca 8 cykli, 6 mających 6 cykli, 21 mających 4 cykle i 20 mających 2
cykle. Zatem liczba kolorowań rozróżnialnych ze względu na grupę wszystkich izometrii jest równa

1

48
· (k8 + 6k6 + 21k4 + 20k2).

Dla k = 2 istnieją 22 kolorowania, dla k = 3 istnieje 267 kolorowań.
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Turnieje Howella

Przypu±¢my, »e osiem par bryd»owych chce rozegra¢ turniej. Chc¡ przy tym, by ka»da

para zagraªa przeciwko ka»dej innej parze. Jednym ze sposobów rozegrania takiego

turnieju jest wykorzystanie tzw. kart pilotuj¡cych Howella (od nazwiska matematyka,

który pierwszy zaproponowaª u»ycie takich kart). Oto przykªad karty pilotuj¡cej do

turnieju Howella dla o±miu par.

1WE ����! 3WE ����! 2WE ����! 3NS

x

?

?

?

?

1 Z Z 2 Z 3 4

?

?

?

?

y

2NS  ���� 4NS  ���� 4WE

Turniej jest rozgrywany na czterech stoªach, o numerach od 1 do 4. Na ka»dym stole

graj¡ dwie pary: jedna na linii NS, druga na linii WE. Siedem par (o numerach od 1 do

7) otrzymuje takie karty, ka»da z zaznaczon¡ inn¡ pozycj¡ startow¡:

1 1WE

2 2NS

3 4NS

4 4WE

5 3NS

6 2WE

7 3WE

Para numer 8 nie otrzymuje karty pilotuj¡cej; zajmuje ona miejsce na linii NS na stole 1

i nie zmienia swojej pozycji przez caªy czas trwania turnieju. Pozostaªe pary przechodz¡

w kolejnych rundach na nast¦pne miejsce na swojej karcie pilotuj¡cej. I tak na przykªad

w drugiej rundzie pary o numerach od 1 do 7 przejd¡ na nast¦puj¡ce pozycje:

1 1WE ! 3WE

2 2NS ! 1WE

3 4NS ! 2NS

4 4WE ! 4NS

5 3NS ! 4WE

6 2WE ! 3NS

7 3WE ! 2WE

W nast¦pnych rundach pary poruszaj¡ si¦ wedªug tego samego schematu. W tym samym

czasie pudeªka z kartami równie» zmieniaj¡ swoje poªo»enia. Oprócz czterech stolików,

1



na których s¡ rozgrywane kolejne rozdania, s¦dzia ustawia trzy dodatkowe stoliki, zwane

zbiornicami. Na tych stolikach znajduj¡ si¦ pudeªka z rozdaniami, które w danej rundzie

nie s¡ rozgrywane. Dwie zbiornice znajduj¡ si¦ mi¦dzy stolikami o numerach 1 i 2,

trzecia mi¦dzy stolikami o numerach 2 i 3. Karty w kolejnych rundach s¡ przenoszone

w kierunku malej¡cych numerów stolików, uwzgl¦dniaj¡c zbiornice (oraz ze stolika 1 na

stolik 4). Na pocz¡tku karty zajmuj¡ nast¦puj¡ce pozycje:

rozdanie 1 stolik 1

rozdanie 2 zbiornica

rozdanie 3 zbiornica

rozdanie 4 stolik 2

rozdanie 5 zbiornica

rozdanie 6 stolik 3

rozdanie 7 stolik 4

W nast¦pnej rundzie zajm¡ pozycje:

rozdanie 1 stolik 4

rozdanie 2 stolik 1

rozdanie 3 zbiornica

rozdanie 4 zbiornica

rozdanie 5 stolik 2

rozdanie 6 zbiornica

rozdanie 7 stolik 3

W nast¦pnych rundach rozdania b¦d¡ przemieszcza¢ si¦ wedªug tego samego schematu.

A oto przebieg caªego turnieju. W kolejnych wierszach tabeli mamy podane pozycje par

i kart w kolejnych rundach. Wewn¡trz kwadratu znajduje si¦ numer rozdania rozgrywa-

nego w danej rundzie na danym stole. Liczby nad i pod kwadratem oznaczaj¡ numer

pary graj¡cej na linii NS, z lewej i prawej strony { numer pary graj¡cej na linii WE.

I tak oznaczenie

2

7 1 7

2

wskazuje, »e na danym stoliku para 2 gra na linii NS przeciwko parze 7 graj¡cej na linii

WE; rozgrywane jest rozdanie numer 1.
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Przebieg turnieju.

Stóª 1 Stóª 4 Stóª 3 Z Stóª 2 Z Z

8

1 1 1

8

3

4 7 4

3

5

7 6 7

5

5

2

6 4 6

2

3 2

8

2 2 2

8

4

5 1 5

4

6

1 7 1

6

6

3

7 5 7

3

4 3

8

3 3 3

8

5

6 2 6

5

7

2 1 2

7

7

4

1 6 1

4

5 4

8

4 4 4

8

6

7 3 7

6

1

3 2 3

1

1

5

2 7 2

5

6 5

8

5 5 5

8

7

1 4 1

7

2

4 3 4

2

2

6

3 1 3

6

7 6

8

6 6 6

8

1

2 5 2

1

3

5 4 5

3

3

7

4 2 4

7

1 7

8

7 7 7

8

2

3 6 3

2

4

6 5 6

4

4

1

5 3 5

1

2 1
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Mo»na zauwa»y¢, »e karta pilotuj¡ca jest skonstruowana w taki sposób, by ka»da para

zagraªa przeciwko ka»dej innej parze dokªadnie jeden raz i by ka»da para zagraªa ka»de

rozdanie dokªadnie jeden raz. Karta pilotuj¡ca ma jeszcze jedn¡ wªasno±¢, której teraz

si¦ przyjrzymy. Popatrzmy najpierw na dzieje rozdania numer 6.

Runda Stóª para NS para WE

1 3 5 7

2 Z � �

3 2 4 1

4 Z � �

5 Z � �

6 1 8 6

7 4 2 3

Protokóª turniejowy tego rozdania mo»e wygl¡da¢ nast¦puj¡co:

Nr NS WE Kontrakt Rozgr. Lew NS WE NS WE

3 5 7 3� N 9 140 3 3

2 4 1 4� S 10 420 6 0

1 8 6 3� S 9 140 3 3

4 2 3 4� N 9 50 0 6

W pierwszej kolumnie zapisany jest numer stoªu, na którym to rozdanie byªo rozgry-

wane. W dwóch nast¦pnych kolumnach zapisane s¡ numery par graj¡cych to rozdanie.

W nast¦pnych trzech kolumnach zapisany jest wylicytowany kontrakt, oznaczenie roz-

grywaj¡cego oraz liczba lew. W kolejnych dwóch kolumnach zapisana jest warto±¢ osi¡-

gni¦tego kontraktu. Te wszystkie kolumny wypeªniaj¡ grzcze po rozegraniu rozdania.

Ostatnie dwie kolumny s¡ przeznaczone na wynik i wypeªnia je s¦dzia turnieju. W

kolumnie NS wpisywany jest wynik dla pary graj¡cej na linii NS. Za ka»dy wynik (innej

pary) gorszy od uzyskanego przez dan¡ par¦ ta para otrzymuje 2 punkty; za jednakowy

otrzymuje 1 punkt. I tak para numer 4 otrzymuje 6 punktów: po 2 punkty za wyniki

gorsze (140, 140, �50). Para numer 5 otrzymuje 3 punkty: 2 punkty za wynik gorszy

(�50) i 1 punkt za wynik jednakowy (140). Tyle samo punktów uzyskuje para numer 8.

Wreszcie para numer 2 uzyskuje 0 punktów, bo wszystkie pary uzyskaªy wyniki lepsze

od niej.

Podobnie przyznaje si¦ punkty parom graj¡cym na linii WE. Mo»na zauwa»y¢, »e suma

punktów przyznanych parom graj¡cym na tym samym stole jest zawsze równa 6. Punkty

uzyskane w ten sposób we wszystkich rozdaniach dodaje si¦ i otrzymane sumy decyduj¡

o miejscu w turniaju. Ten sposób punktacji nie jest najlepszy w przypadku tak maªego

turnieju, ale jest najprostszy i najlepiej pokazuje istot¦ turnieju bryd»owego. Pary gra-

j¡ce dane rozdanie na linii NS s¡ porównywane mi¦dzy sob¡; podobnie pary graj¡ce na

linii WE.
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Ostatnia wspomniana wcze±niej wªasno±¢ karty pilotuj¡cej polega na tym, »e ka»de dwie

pary s¡ ze sob¡ porównywane w tej samej liczbie rozda«. Na przykªad, pary 7 i 5 s¡

porównywane ze sob¡ trzy razy:

1. w rozdaniu 2 obie graj¡ na linii NS (para 7 w rundzie 6, para 5 w rundzie 3);

2. w rozdaniu 3 obie graj¡ na linii WE (para 7 w rundzie 4; para 5 w rundzie 7);

3. w rozdaniu 7 obie graj¡ na linii NS (para 7 w rundzie 7; para 5 w rundzie 4).

Podobnie pary 2 i 6 s¡ porównywane ze sob¡ trzy razy:

1. w rozdaniu 3 obie graj¡ na linii NS (para 2 w rundzie 5, para 6 w rundzie 4);

2. w rozdaniu 5 obie graj¡ na linii WE (para 2 w rundzie 6; para 6 w rundzie 7);

3. w rozdaniu 6 obie graj¡ na linii NS (para 2 w rundzie 7; para 6 w rundzie 6).

Mówimy, »e turniej jest caªkowicie zrównowa»ony, gdy ka»de dwie pary s¡ porównywane

ze sob¡ t¦ sam¡ liczb¦ razy.

Przypu±¢my teraz, »e n par bryd»owych chce rozegra¢ podobny turniej. Czy istnieje

karta pilotuj¡ca Howella dla n par? Chcemy, by zachowane byªy nast¦puj¡ce warunki:

(1) w turnieju rozgrywa si¦ n� 1 rund;

(2) w ka»dej rundzie na ka»dym z

n

2

stoªów jest rozgrywane jedno rozdanie, graj¡ je

dwie pary: jedna na linii NS, druga na linii WE;

(3) ka»da para gra przeciwko ka»dej innej parze dokªadnie jeden raz;

(4) ka»da para gra ka»de rozdanie dokªadnie jeden raz;

(5) ka»de dwie pary graj¡ t¦ sam¡ liczb¦ rozda« na tej samej linii.

Z warunku (2) wynika, »e liczba par jest parzysta: n = 2m, gdzie m jest liczb¡ stoªów,

na których s¡ rozgrywane rozdania. W ka»dym rozdaniu m par gra na linii NS i m par

gra na linii WE. Zatem

�

m

2

�

par jest porównywanych ze sob¡ na ka»dej z tych linii;

ª¡cznie zatem w jednym rozdaniu mamy 2 �

�

m

2

�

= m(m � 1) porówna«. Poniewa» w

turnieju mamy 2m�1 rozda«, wi¦c ª¡czna liczba porówna« par w caªym turnieju wynosi

m(m� 1)(2m� 1).

Niech teraz k b¦dzie liczb¡ porówna« ka»dych dwóch par: z warunku (5) wynika, »e dla

ka»dych dwóch par ta liczba jest taka sama. Mamy zatem

�

2m

2

�

=m(2m� 1) par, czyli

ª¡czna liczba porówna« wynosi km(2m� 1). St¡d wynika, »e

m(m� 1)(2m� 1) = km(2m� 1);

czyli

k =m� 1:

To znaczy, »e dowolne dwie pary rozgrywaj¡ ze sob¡ m � 1 rozda« na tej samej linii i

m rozda« na przeciwnych liniach.

Udowodnimy teraz, »e liczba n jest podzielna przez 4.
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Ka»de z 2m� 1 rozda« dzieli zbiór X wszystkich par na dwa podzbiory rozª¡czne. Dla

rozdania o numerze i mamy

A

0

i

= zbiór par graj¡cych rozdanie i na linii NS;

A

1

i

= zbiór par graj¡cych rozdanie i na linii WE:

Mamy zatem

A

0

i

\ A

1

i

= ?; A

0

i

[ A

1

i

= X; jA

0

i

j = jA

1

i

j = m:

Ka»da para p nale»y do dokªadnie 2m� 1 zbiorów A

"

i

(i = 1; 2; : : : ; 2m� 1; " = 0; 1):

�

�

�

n

(i; ") : p 2 A

"

i

o

�

�

�

= 2m� 1:

Warunek (5) mo»na wysªowi¢ w sposób nast¦puj¡cy: dla dowolnych dwóch par p i q

mamy

�

�

�

n

(i; ") : p 2 A

"

i

^ q 2 A

"

i

o

�

�

�

=m� 1:

Niech p, q i r b¦d¡ trzema dowolnymi parami. De�niujemy teraz cztery zbiory:

B =

n

(i; ") : p 2 A

"

i

^ q 2 A

"

i

^ r 2 A

"

i

o

C =

n

(i; ") : p 2 A

"

i

^ q 62 A

"

i

^ r 2 A

"

i

o

D =

n

(i; ") : p 62 A

"

i

^ q 2 A

"

i

^ r 2 A

"

i

o

E =

n

(i; ") : p 62 A

"

i

^ q 62 A

"

i

^ r 2 A

"

i

o

Oczywi±cie zbiory B, C, D i E s¡ parami rozª¡czne. Niech

jBj = b; jCj = c; jDj = d; jEj = e:

Zauwa»my nast¦pnie, »e

B [ C =

n

(i; ") : p 2 A

"

i

^ r 2 A

"

i

o

oraz

B [D =

n

(i; ") : q 2 A

"

i

^ r 2 A

"

i

o

:

St¡d wynika, »e

b+ c = b+ d = m� 1;

czyli

c = d =m� 1� b:
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Nast¦pnie

B [ C [D [E =

n

(i; ") : r 2 A

"

i

o

:

Zatem

b + (m� 1� b) + (m� 1� b) + e = 2m� 1;

czyli

e = b + 1:

St¡d wynika, »e

jB [ Ej = 2b+ 1:

De�niujemy jeszcze jeden zbiór:

E

0

=

n

(i; ") : p 2 A

"

i

^ q 2 A

"

i

^ r 62 A

"

i

o

:

Mo»na ªatwo zauwa»y¢, »e

(i; ") 2 E , (i; 1 � ") 2 E

0

:

St¡d wynika, »e jEj = jE

0

j. Poniewa» zbiory E i E

0

s¡ rozª¡czne ze zbiorem B, wi¦c

jB [Ej = jB [ E

0

j:

Ale

B [E

0

=

n

(i; ") : p 2 A

"

i

^ q 2 A

"

i

o

;

sk¡d wynika, »e

jB [E

0

j = m� 1:

Zatem

2b+ 1 =m� 1;

czyli

m = 2b+ 2;

a wi¦c liczba m jest parzysta. To znaczy, »e liczba n jest podzielna przez 4.

Udowodnimy teraz, »e je±li liczba n jest podzielna przez 4 oraz liczba p = n � 1 jest

pierwsza, to mo»na zorganizowa¢ turniej speªniaj¡cy warunki (1) { (5). Oka»e si¦ te»,

»e sposób zmiany miejsc przez pary i zmiany rozda« da si¦ opisa¢ za pomoc¡ karty

pilotuj¡cej.

Zaªó»my wi¦c, »e p > 3 jest liczb¡ pierwsz¡ oraz p � 3 (mod 4). Wyka»emy, »e istnieje

karta pilotuj¡ca Howella dla n = p+ 1 par.
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Niech a b¦dzie dowoln¡ liczb¡ niepodzieln¡ przez p. Przypominamy, »e liczb¦ a nazy-

wamy reszt¡ kwadratow¡ modulo p, je±li istnieje liczba caªkowita x taka, »e

x

2

� a (mod p):

Je±li taka liczba x nie istnieje, to liczb¦ a nazywamy niereszt¡ kwadratow¡ modulo p.

W dalszym ci¡gu b¦dziemy u»ywa¢ symbolu Legendre'a:

�

a

p

�

=

(

+1 je±li a jest reszt¡ kwadratow¡ modulo p;

�1 je±li a jest niereszt¡ kwdratow¡ modulo p.

Zauwa»my najpierw, »e z twierdzenia Eulera wynika, »e

�

�1

p

�

= (�1)

p�1

2

= �1, a wi¦c

�1 jest niereszt¡ kwadratow¡ modulo p. St¡d wynika, »e dla dowolnej liczby a takiej,

»e 0 < a < p mamy:

�

�a

p

�

= �

�

a

p

�

;

czyli

a jest reszt¡ kwadratow¡ modulo p , �a jest niereszt¡ kwadratow¡ modulo p:

De�niujemy � =

p+5

4

. Oczywi±cie � jest liczb¡ caªkowit¡. Proste obliczenia pokazuj¡,

»e

� 6� 1 (mod p) oraz � 6� �1 (mod p):

Zatem �� 1 6= 0 oraz �+ 1 6= 0 w ciele Z

p

.

Zauwa»my nast¦pnie, »e

4(�� 1) = p+ 1 oraz 4(�+ 1) = p + 9:

St¡d wynika, »e

4(�� 1) � 1 (mod p);

�

4(�� 1)

p

�

= 1;

�

4

p

�

�

�

�� 1

p

�

= 1;

�

� � 1

p

�

= 1:
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Podobnie

4(�+ 1) � 9 (mod p);

�

4(� + 1)

p

�

=

�

9

p

�

= 1;

�

4

p

�

�

�

�+ 1

p

�

= 1;

�

� + 1

p

�

= 1:

Zatem � � 1 i � + 1 s¡ resztami kwadratowymi modulo p. St¡d te» �

2

� 1 jest reszt¡

kwadratow¡ modulo p.

De�niujemy teraz zbiory:

X = f0; 1; : : : ; p� 1; pg zbiór numerów par;

Y = f0; 1; : : : ; p� 1g zbiór numerów rozda«;

R = f0; 1; : : : ; p� 1g zbiór numerów rund;

S = f0; 1; : : : ; p� 1g zbiór numerów stoªów;

L = f�1;+1g zbiór oznacze« linii (+1 oznacza lini¦ NS, �1 oznacza lini¦ WE):

Mamy zatem n = p + 1 par numerowanych liczbami od 0 do p oraz p rozda« numero-

wanych liczbami od 0 do p� 1. Wszystkie rozdania s¡ rozgrywane w rundach, w ka»dej

rundzie graj¡ wszystkie pary. Mamy p rund, numerowanych liczbami od 0 do p � 1.

Mamy nast¦pnie p stoªów, numerowanych liczbami od 0 do p � 1. W ka»dej rundzie

pary graj¡ przy

p+1

2

stoªach, pozostaªe stoªy s¡ wolne. Na tych stoªach jednak znajduj¡

si¦ karty; s¡ to zbiornice. Oka»e si¦, »e numery zbiornic s¡ staªe: nie zale»¡ od rundy.

De�niujemy teraz trzy funkcje:

T : Y �R! S;

t : X �R! S;

s : X �R! L:

Je±li x 2 X, y 2 Y oraz r 2 R, to:

T (y; r) = numer stoªu, na którym rozdanie y jest grane w rundzie r;

t(x; r) = numer stoªu, na którym para x gra w rundzie r;

s(x; r) = oznaczenie linii, na której para x gra w rundzie r:
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A oto de�nicje tych funkcji:

T (y; r) = r � y:

t(x; r) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 je±li x = p lub x = r;

x� r

� � 1

je±li x � r jest reszt¡ kwadratow¡ modulo p;

r � x

� + 1

je±li r � x jest reszt¡ kwadratow¡ modulo p.

s(x; r) =

8

>

>

>

<

>

>

>

:

+1 je±li x = p;

�1 je±li x = r;

+1 je±li x � r jest reszt¡ kwadratow¡ modulo p;

�1 je±li r � x jest reszt¡ kwadratow¡ modulo p.

Wszystkie dziaªania w tej de�nicji s¡ wykonywane w ciele Z

p

.

Zauwa»my, »e albo t(x; r) = 0, albo t(x; r) jest reszt¡ kwadratow¡ modulo p. Rozdania

rozgrywane s¡ zatem na stole o numerze 0 i na stoªach, których numery s¡ resztami

kwadratowymi modulo p. Zauwa»my, »e istnieje dokªadnie

n

2

stoªów, przy których roz-

grywane s¡ kolejne rozdania; s¡ to stoªy o tych samych numerach w ka»dej rundzie.

Numery stoªów, na których nie rozgrywa si¦ rozda« (czyli zbiornic), s¡ nieresztami

kwadratowymi modulo p.

Przypu±¢my teraz, »e dany jest numer stoªu t

0

i numer rundy r

0

. W tej rundzie na stole

t

0

znajduje si¦ rozdanie y

0

= r

0

� t

0

. Mianowicie

T (y

0

; r

0

) = r

0

� y

0

= r

0

� (r

0

� t

0

) = t

0

:

Poniewa» liczba rozda« jest równa liczbie stoªów, wi¦c w ka»dej rundzie na ka»dym stole

znajduje si¦ dokªadnie jedno rozdanie.

Wyka»emy teraz, »e w ka»dej rundzie na ka»dym stole, którego numer nie jest niereszt¡

kwadratow¡ modulo p, spotkaj¡ si¦ dokªadnie dwie pary. Niech wi¦c dany b¦dzie numer

stoªu t

0

i numer rundy r

0

.

Przypu±¢my najpierw, »e t

0

= 0. Z de�nicji funkcji t wynika, »e na stole o numerze 0

w rundzie r

0

mog¡ gra¢ tylko dwie pary o numerach p i r

0

. Z de�nicji funkcji s wynika,

»e para o numerze p gra na linii NS, a para o numerze r

0

gra na linii WE.

Niech teraz t

0

6= 0. Zatem t

0

jest reszt¡ kwadratow¡ modulo p. Przypu±¢my, »e para

o numerze x gra w rundzie r

0

na stole o numerze t

0

. Oczywi±cie wtedy x 6= p oraz

x 6= r

0

. Mo»liwe s¡ teraz dwa przypadki:
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(1) x� r

0

jest reszt¡ kwadratow¡ modulo p. Wtedy

t

0

=

x � r

0

�� 1

;

czyli

x = r

0

+ t

0

(�� 1):

Ponadto s(x; r

0

) = +1.

(2) r

0

� x jest reszt¡ kwadratow¡ modulo p. Wtedy

t

0

=

r

0

� x

�+ 1

;

czyli

x = r

0

� t

0

(�+ 1):

Ponadto s(x; r

0

) = �1.

Proste obliczenia pokazuj¡, »e te dwie pary rzeczywi±cie graj¡ w rundzie r

0

na stole

o numerze t

0

.

Tak wi¦c w rundzie r

0

na stole o numerze t

0

graj¡ dwie pary:

x

0

= r

0

+ t

0

(� � 1) na linii NS

oraz

x

1

= r

0

� t

0

(� + 1) na linii WE:

Wyka»emy teraz, »e ka»da para gra przeciwko ka»dej innej parze. Poniewa» w ka»dej

rundzie ka»da para gra przeciwko dokªadnie jednej parze i liczba rund jest równa liczbie

par, wi¦c wyniknie st¡d, »e ka»de dwie pary graj¡ przeciwko sobie dokªadnie jeden raz.

Niech zatem b¦d¡ dane dwie pary o numerach x

0

i x

1

. De�niujemy liczb¦ r wzorami:

r =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x

0

je±li x

1

= p;

x

1

je±li x

0

= p;

x

1

+ x

0

2

+

x

1

� x

0

2�

je±li

x

1

� x

0

2�

jest reszt¡ kwadratow¡ modulo p;

x

1

+ x

0

2

+

x

0

� x

1

2�

je±li

x

0

� x

1

2�

jest reszt¡ kwadratow¡ modulo p.

Pozostawimy jako proste ¢wiczenie wykazanie, »e w rundzie r pary x

0

i x

1

graj¡ na tym

samym stole, jedna na linii NS, druga na linii WE.

Nast¦pnie wykazujemy, »e ka»da para gra ka»de rozdanie. Poniewa» liczba rund jest

równa liczbie rozda«, wi¦c z tego wyniknie, »e ka»da para gra ka»de rozdanie dokªadnie

jeden raz.
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Niech zatem dana b¦dzie para o numerze x

0

i rozdanie o numerze y

0

. De�niujemy liczb¦

r wzorami:

r =

8

>

>

>

>

<

>

>

>

>

:

y

0

je±li x

0

= p lub x

0

= y

0

;

y

0

+

y

0

� x

0

�

je±li

y

0

� x

0

�

jest reszt¡ kwadratow¡ modulo p;

y

0

+

x

0

� y

0

�

je±li

x

0

� y

0

�

jest reszt¡ kwadratow¡ modulo p.

Proste ¢wiczenie pokazuje, »e w rundzie r para o numerze x

0

i rozdanie o numerze y

0

znajduj¡ si¦ na tym samym stole, a wi¦c para x

0

gra rozdanie y

0

.

Wreszcie wyka»emy, »e ka»de dwie pary graj¡ t¦ sam¡ liczb¦ rozda« na tej samej linii.

Wprowadzamy w tym celu now¡ funkcj¦

S : X � Y ! L;

zde�niowan¡ w nast¦puj¡cy sposób:

S(x; y) = linia, na której para x gra rozdanie y:

Niech b¦dzie dana para o numerze x i rozdanie o numerze y. Wiemy ju», »e para x gra

rozdanie y w rundzie r, gdzie

r =

8

>

>

>

>

<

>

>

>

>

:

y

0

je±li x

0

= p lub x

0

= y

0

;

y

0

+

y

0

� x

0

�

je±li

y

0

� x

0

�

jest reszt¡ kwadratow¡ modulo p;

y

0

+

x

0

� y

0

�

je±li

x

0

� y

0

�

jest reszt¡ kwadratow¡ modulo p.

Wtedy

S(x; y) = s(x; r);

sk¡d ªatwo dostajemy wzór

S(x; y) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

+1 je±li x = p;

�1 je±li x = y;

+1 je±li

x � y

�

jest reszt¡ kwadratow¡ modulo p;

�1 je±li

x � y

�

jest niereszt¡ kwadratow¡ modulo p.

Inaczej mówi¡c:

S(x; y) =

8

>

>

>

<

>

>

>

:

+1 je±li x = p;

�1 je±li x = y;

�

(x � y)�

�1

p

�

je±li x 6= p oraz x 6= y.
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Przyjmijmy teraz, »e

�

0

p

�

= 0. Mamy wówczas nast¦puj¡c¡ wªasno±¢ symbolu Legen-

dre'a:

p�1

X

y=0

�

y

p

�

= 0:

Wynika ona st¡d, »e

�

0

p

�

= 0 oraz w zbiorze f1; 2; : : : ; p� 1g jest tyle samo reszt kwa-

dratowych modulo p co niereszt kwadratowych modulo p. St¡d otrzymujemy wniosek:

p�1

X

y=0

�

x� y

p

�

= 0:

Ta równo±¢ wynika natychmiast z poprzedniej, gdy» je±li y przebiega wszystkie liczby

od 0 do p� 1, to x � y przebiega (w ciele Z

p

) ten sam zbiór liczb. Zatem

p�1

X

y=0

�

x� y

p

�

=

p�1

X

y=0

�

y

p

�

= 0:

Wreszcie udowodnimy wa»ny lemat.

Lemat. Je±li a 6= 0, to

p�1

X

y=0

�

y

p

�

�

�

y + a

p

�

= �1:

Dowód. Zauwa»my najpierw, »e

p�1

X

y=0

�

y

p

�

�

�

y + a

p

�

=

p�1

X

y=1

�

y(y + a)

p

�

=

p�1

X

y=1

�

y

2

(1 + ay

�1

)

p

�

=

p�1

X

y=1

�

1 + ay

�1

p

�

:

Zauwa»my nast¦pnie, »e je±li y przebiega liczby od 1 do p � 1, to 1 + ay

�1

przebiega

(w ciele Z

p

) wszystkie liczby ró»ne od 1. Zatem

p�1

X

y=1

�

1 + ay

�1

p

�

=

p�1

X

y=0

�

y

p

�

�

�

1

p

�

= �1;

co ko«czy dowód lematu.

Warunek, »e dowolne dwie pary graj¡ t¦ sam¡ liczb¦ rozda« na tej samej linii, jest

równowa»ny równo±ci

p�1

X

y=0

S(x

1

; y) � S(x

2

; y) = �1
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dla dowolnych x

1

i x

2

takich, »e x

1

6= x

2

. Udowodnimy teraz t¦ równo±¢. Mo»liwe s¡

dwa przypadki.

Je±li jedna z liczb x

1

lub x

2

jest równa p, to nasza równo±¢ przybiera posta¢

p�1

X

y=0

S(x; y) � S(p; y) = �1

dla x 6= p. Ale S(p; y) = +1. Mamy wi¦c dowie±¢, »e

p�1

X

y=0

S(x; y) = �1:

Ale

p�1

X

y=0

S(x; y) =

X

y 6=x

S(x; y) + S(x; x) =

p�1

X

y=0

�

(x� y)�

�1

p

�

� 1 =

=

�

�

�1

p

�

�

X

y 6=x

�

x� y

p

�

� 1 =

�

�

�1

p

�

�

p�1

X

y=0

�

x� y

p

�

� 1 =

= �1:

Je±li za± obie liczby x

1

i x

2

s¡ ró»ne od p, to

p�1

X

y=0

S(x

1

; y) � S(x

2

; y) =

=

X

y 6=x

1

;x

2

S(x

1

; y) � S(x

2

; y) + S(x

1

; x

1

) � S(x

2

; x

1

) + S(x

1

; x

2

) � S(x

2

; x

2

) =

=

X

y 6=x

1

;x

2

S(x

1

; y) � S(x

2

; y) � S(x

2

; x

1

) � S(x

1

; x

2

) =

=

X

y 6=x

1

;x

2

S(x

1

; y) � S(x

2

; y);

gdy» S(x

1

; x

2

) = �S(x

2

; x

1

). Je±li x 6= y, to

S(x; y) =

�

(x � y)�

�1

p

�

:
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Zatem

p�1

X

y=0

S(x

1

; y) � S(x

2

; y) =

X

y 6=x

1

;x

2

�

(x

1

� y)�

�1

p

�

�

�

(x

2

� y)�

�1

p

�

=

�

�

�2

p

�

�

p�1

X

y=0

�

x

1

� y

p

�

�

�

x

2

� y

p

�

=

p�1

X

y=0

�

x

1

� y

p

�

�

�

x

2

� y

p

�

=

p�1

X

y=0

�

y

p

�

�

�

y + (x

2

� x

1

)

p

�

= �1:

W ten sposób dowiedli±my, »e ka»de dwie pary graj¡ t¦ sam¡ liczb¦ rozda« na tej samej

linii. Pozostaje tylko pokaza¢ konstrukcj¦ karty pilotuj¡cej.

Zauwa»amy najpierw, »e ka»de rozdanie w nast¦pnej rundzie przechodzi na stolik o

numer o 1 wi¦kszy (ze stolika p � 1 na stolik o numerze 0). Mo»na ªatwo pokaza¢, »e

pary poruszaj¡ si¦ wedªug nast¦puj¡cego schematu:

(0;+1)! (0;+1);

czyli para graj¡ca na stoliku o numerze 0 na linii NS pozostaje w tym samym miejscu;

(0;�1)!

�

(� + 1)

�1

;�1

�

;

czyli para graj¡ca na stoliku o numerze 0 na linii WE, przenosi si¦ na stolik o numerze

(�+ 1)

�1

na lini¦ WE. Wreszcie dla t 6= 0 mamy

(t;+1)!

8

>

>

>

<

>

>

>

:

�

1� t(� � 1)

�+ 1

;�1

�

je±li 1� t(�� 1) = 0 lub

�

1� t(� � 1)

p

�

= 1

�

t� (� � 1)

�1

;+1

�

je±li

�

1� t(� � 1)

p

�

= �1

oraz

(t;�1)!

8

>

>

>

<

>

>

>

:

�

t+ (� + 1)

�1

;+1

�

je±li

�

1 + t(� + 1)

p

�

= 1

�

�1� t(�+ 1)

�� 1

;�1

�

je±li

�

1 + t(� + 1)

p

�

= �1.
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Przykªad

Niech p = 7. Zatem w turnieju uczestniczy n = p + 1 = 8 par. Mamy wówczas w ciele

Z

7

nast¦puj¡ce reszty i niereszty kwadratowe:

reszty kwadratowe: 1; 2; 4;

niereszty kwadratowe: 3; 5; 6:

Przydatna b¦dzie równie» tablica elementów odwrotnych modulo 7:

1

�1

= 1;

2

�1

= 4;

3

�1

= 5;

4

�1

= 2;

5

�1

= 3;

6

�1

= 6:

Przyst¦pujemy teraz do konstrukcji karty pilotuj¡cej turnieju Howella dla 8 par. Naj-

pierw de�niujemy

� =

p+ 5

4

= 3:

Mamy wówczas

�� 1 = 2; (�� 1)

�1

= 4

oraz

�+ 1 = 4; (�+ 1)

�1

= 2:

Gra toczy si¦ na stole o numerze 0 i na stoªach, których numery s¡ resztami kwadrato-

wymi modulo 7. Zatem s¡ to stoªy o numerach: 0, 1, 2, 4. Stoªy o numerach 3, 5 i 6 s¡

zbiornicami. Karty w kolejnych rundach przechodz¡ na stóª o numerze o 1 wi¦kszym,

czyli ze stoªu o numerze i na stóª o numerze i + 1, przy czym dodawanie jest brane

modulo 7. Zatem karty poruszaj¡ si¦ wedªug schematu:

! 0! 1! 2! Z! 4! Z! Z!

Zajmiemy si¦ teraz sposobem poruszania si¦ par. Para numer 8 przez caªy czas turnieju

zajmuje miejsce przy stole 0, na linii NS. Reguªy poruszania si¦ pozostaªych par maj¡
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posta¢:

(0;+1)! (0;+1);

(0;�1)! (2;�1);

(t;+1)!

8

>

>

>

<

>

>

>

:

(3t + 2;�1) je±li 5t+ 1 = 0 lub

�

5t+ 1

p

�

= 1

(t + 3;+1) je±li

�

5t+ 1

p

�

= �1

;

(t;�1)!

8

>

>

>

<

>

>

>

:

(t + 2;�1) je±li

�

4t+ 1

p

�

= 1

(5t + 3;+1) je±li

�

4t+ 1

p

�

= �1.

Zatem

(0;+1)! (0;+1);

(0;�1) ! (2;�1);

(1;+1)! (4;+1); bo 6 jest niereszt¡ kwadratow¡;

(1;�1) ! (1;+1); bo 5 jest niereszt¡ kwadratow¡;

(2;+1)! (1;�1); bo 4 jest reszt¡ kwadratow¡;

(2;�1) ! (4;�1); bo 2 jest reszt¡ kwadratow¡;

(4;+1)! (0;�1); bo 7 j 5 � 4 + 1;

(4;�1) ! (2;+1); bo 3 jest niereszt¡ kwadratow¡:

Ostatecznie karta pilotuj¡ca dla par ma posta¢

0WE ����! 2WE ����! 4WE ����! 2NS

x

?

?

?

?

0! 1! 2! Z! 4! Z! Z

?

?

?

?

y

4NS  ���� 1NS  ���� 1WE

Poni»sza tabela pokazuje przebieg turnieju. Przenumerujemy teraz pary i stoliki, tak by

zgodnie z tradycj¡ bryd»ow¡, speªnione byªy nast¦puj¡ce warunki:

(1) karty poruszaj¡ si¦ na stolik o numer ni»szy,

(2) pary przychodz¡ do stolika 1 na lini¦ WE w kolejno±ci numerów od 1 do 7,

(3) para numer 8 siedzi przez caªy czas turnieju przy stoliku 1 na linii NS.

Po tym przenumerowaniu otrzymujemy dokªadnie t¦ sam¡ kart¦ pilotuj¡c¡, któr¡ wi-

dzili±my na pocz¡tku.
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Przebieg turnieju.

Stóª 0 Stóª 1 Stóª 2 Stóª 3 Stóª 4 Stóª 5 Stóª 6

7

0 0 0

7

2

3 6 3

2

4

6 5 6

4

4

1

5 3 5

1

2 1

7

1 1 1

7

3

4 0 4

3

5

0 6 0

5

5

2

6 4 6

2

3 2

7

2 2 2

7

4

5 1 5

4

6

1 0 1

6

6

3

0 5 0

3

4 3

7

3 3 3

7

5

6 2 6

5

0

2 1 2

0

0

4

1 6 1

4

5 4

7

4 4 4

7

6

0 3 0

6

1

3 2 3

1

1

5

2 0 2

5

6 5

7

5 5 5

7

0

1 4 1

0

2

4 3 4

2

2

6

3 1 3

6

0 6

7

6 6 6

7

1

2 5 2

1

3

5 4 5

3

3

0

4 2 4

0

1 0
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Wskazówki bibliogra�czne.

Przykªady kart pilotuj¡cych do turniejów Howella mo»na znale¹¢ w [3]. Poj¦cie turnieju

caªkowicie zrównowa»onego jest wzi¦te z [4]. Tam te» znajduje si¦ dowód twierdzenia

mówi¡cego, »e je±li istnieje turniej caªkowicie zrównowa»ony, to liczba par jest podzielna

przez 4. Parker i Mood podaj¡ kilka przykªadów kart pilotuj¡cych, pisz¡c jednak wy-

ra¹nie, »e nie znaj¡ »adnej metody ogólnej konstruowania takich kart. Przedstawiona

w tek±cie konstrukcja karty pilotuj¡cej pochodzi od Berlekampa i Hwanga [1]. Tam te»

znajduje si¦ dowód twierdzenia ogólniejszego, mówi¡cego, »e je±li liczba n jest podzielna

przez 4 i n� 1 jest pot¦g¡ liczby pierwszej, to istnieje turniej caªkowicie zrównowa»ony

dla n par. Wi¦cej informacji o istnieniu tzw. rotacji Howella i blisko z nimi zwi¡zanymi

kwadratami Rooma mo»na znale¹¢ w [2].

[1] E. R. Berlekamp, F. K. Hwang, Constructions for Balanced Howell Rotations for

Bridge Tournaments, J. Combin. Theory A, 12 (1972), 159 { 166.

[2] Ch. J. Colbourn, J. H. Dinitz (ed.), The CRC Handbook of Combinatorial Designs,

CRC Press, Boca Raton 1996.

[3] Encyklopedia bryd»a, PWN Warszawa 1996.

[4] E. T. Parker, A. N. Mood, Some Balanced Howell Rotations for Duplicate Bridge

Sessions, Amer. Math. Monthly 62 (1955), 714 { 716.
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Kwadraty Rooma i turnieje brydżowe

Niech N będzie ustalonym zbiorem (n+1)-elementowym. Przypomnijmy, że symbolem P2(N) oznaczamy
zbiór

P2(N) = {A ⊆ N : |A| = 2}.

Kwadratem Rooma o boku n nazywamy dowolną macierz R wymiaru n × n o wyrazach ze zbioru
P2(N) ∪ {?}:

R : {0, . . . , n− 1}2 → P2(N) ∪ {?},

spełniającą następujące trzy warunki:

(R1) każda para {a, b} ∈ P2(N) występuje dokładnie jeden raz w macierzy R,
(R2) każdy element zbioru N występuje dokładnie jeden raz w każdym wierszu macierzy R,
(R3) każdy element zbioru N występuje dokładnie jeden raz w każdej kolumnie macierzy R,

Zauważmy, że wiersze i kolumny kwadratu Rooma numerujemy liczbami od 0 do n− 1.

Kwadraty Rooma mogą być wykorzystane do opisu turniejów brydżowych. Niech N = {0, 1, . . . , n}.
Liczby ze zbioru N są numerami par startujących w turnieju. Jeśli i, j ∈ {0, . . . , n − 1} oraz R(i, j) =
{a, b} ∈ P2(N), to pary o numerach a i b grają ze sobą rozdanie o numerze j w i-tej rundzie turnieju.
Jeśli natomiast R(i, j) = ?, to rozdanie o numerze j nie jest wykorzystywane w i-tej rundzie. Warunek
(R1) mówi, że każde dwie pary startujące w turnieju grają ze sobą dokładnie jeden raz. Warunek (R2)
mówi, że każda para gra (dokładnie jeden raz) w każdej rundzie, zaś warunek (R3) mówi, że każda para
gra każde rozdanie dokładnie jeden raz.

Oto przykładowy kwadrat Rooma o boku 7. Opisuje on przebieg turnieju brydżowego, w którym startuje
8 par o numerach od 0 do 7.

0 1 2 3 4 5 6

0 {0, 7} ? ? {4, 6} ? {2, 3} {1, 5}

1 {2, 6} {1, 7} ? ? {0, 5} ? {3, 4}

2 {4, 5} {0, 3} {2, 7} ? ? {1, 6} ?

3 ? {5, 6} {1, 4} {3, 7} ? ? {0, 2}

4 {1, 3} ? {0, 6} {2, 5} {4, 7} ? ?

5 ? {2, 4} ? {0, 1} {3, 6} {5, 7} ?

6 ? ? {3, 5} ? {1, 2} {0, 4} {6, 7}

Opis turnieju zawarty w tym kwadracie nie jest kompletny. Mianowicie należy jeszcze ustalić na jakiej
linii (NS czy WE) gra każda z par w danej rundzie. Ponadto ze względów organizacyjnych należy podać
numer stołu, na którym dane pary grają ze sobą oraz opisać ruch kart między stolikami. Te kwestie
wyjaśnimy w dalszym ciągu.

Z warunków (R1) – (R3) wynika, że liczba n jest nieparzysta. Powstaje naturalne pytanie, czy dla każdej
liczby nieparzystej n istnieje kwadrat Rooma o boku n. Okazuje się, że jest to prawdą dla n > 5.
Twierdzenia tego nie będziemy tu dowodzić. Pokażemy natomiast konstrukcję kwadratów Rooma dla
liczb n pierwszych takich, że n ≡ 3 (mod 4).

Niech n = 2m+ 1 i niech G będzie grupą przemienną rzędu n. W dalszym ciągu będziemy używać znaku
+ jako symbolu działania w grupie G.

Starterem w grupie G nazywamy dowolny ciąg par uporządkowanych

(

(x1, y1), . . . , (xm, ym)
)

1



elementów grupy G, spełniający następujące dwa warunki:

(1) {x1, . . . , xm} ∪ {y1, . . . , ym} = G \ {0},

(2) {x1 − y1, . . . , xm − ym} ∪ {y1 − x1, . . . , ym − xm} = G \ {0}.

Starter
(

(x1, y1), . . . , (xm, ym)
)

nazywamy silnym starterem, jeśli spełnia następujące warunki:

(3) ∀i ∈ {1, . . . ,m}
(

xi + yi 6= 0
)

,

(4) ∀i, j ∈ {1, . . . ,m}
(

i 6= j ⇒ xi + yi 6= xj + yj
)

,

tzn. wszystkie sumy xi + yi (dla i = 1, . . . ,m) są różnymi niezerowymi elementami grupy G.

Sumatorem dla startera
(

(x1, y1), . . . , (xm, ym)
)

nazywamy ciąg (a1, . . . , am) elementów grupy G speł-
niający następujące warunki:

(5) ∀i ∈ {1, . . . ,m}
(

ai 6= 0
)

,

(6) ∀i, j ∈ {1, . . . ,m}
(

i 6= j ⇒ ai 6= aj
)

,

(7) {x1 + a1, . . . , xm + am} ∪ {y1 + a1, . . . , ym + am} = G \ {0}.

Inaczej mówiąc, sumatorem nazywamy taki ciąg (a0, . . . , am) różnych, niezerowych elementów grupy G,
że ciąg

(

(x1 + a1, y1 + a1), . . . , (xm + am, ym + am)
)

jest również starterem w grupie G.

Przykłady.
1. Ciąg

(

(1, 5), (4, 6), (2, 3)
)

jest silnym starterem w grupie addytywnej ciała Z7. Ciąg (1, 4, 2) jest
sumatorem dla tego startera. Innym sumatorem jest ciąg (4, 2, 1).

2. Ciąg
(

(1, 2), (4, 8), (5, 10), (9, 7), (3, 6)
)

jest silnym starterem w grupie addytywnej ciała Z11. Ciąg
(8, 10, 7, 6, 2) jest sumatorem dla tego startera. Innym sumatorem jest ciąg (4, 5, 9, 3, 1).

Twierdzenie. Jeśli ciąg
(

(x1, y1), . . . , (xm, ym)
)

jest starterem w grupie G rzędu n (przy czym n =
2m+ 1) oraz ciąg (a1, . . . , am) jest sumatorem dla tego startera, to istnieje kwadrat Rooma o boku n.

Dowód. Niech G = {g0, g1, . . . , gn−1}, przy czym g0 = 0. Niech następnie ∞ 6∈ G oraz N = G ∪ {∞}.
Definiujemy kwadrat Rooma R w następujący sposób:

R(i, j) =







{∞, gi}, jeśli i = j,
{gi + xk, gi + yk}, jeśli gi − gj = ak,
?, jeśli element gi − gj nie jest wyrazem sumatora (a1, . . . , am)

dla i, j ∈ {0, . . . , n− 1}.

Musimy wykazać, że tak zdefiniowana macierz R spełnia warunki (R1) – (R3). Najpierw policzymy
niepuste wyrazy macierzy R. Istnieje n wyrazów postaci {∞, gi}: leżą one na przekątnej. Następnie dla
każdego k istnieje n par (gi, gj) (a więc i par (i, j)) takich, że gi − gj = ak. Mianowicie są to pary

(g0, g0 − ak), . . . , (gn−1, gn−1 − ak)

(ponieważ ak 6= 0, więc gi 6= gi − ak, czyli i 6= j).  Lącznie mamy więc mn + n wyrazów niepustych.
Ponieważ

(

n+ 1

2

)

=
n(n+ 1)

2
=
n(2m+ 2)

2
= n(m+ 1) = nm+ n,
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więc liczba wyrazów niepustych jest równa liczbie par należących do zbioru P2(N). Dla dowodu warunku
(R1) wystarczy zatem pokazać, że każda taka para jest wyrazem macierzy R.

Zauważyliśmy już, że wszystkie pary postaci {∞, i} są wyrazami macierzy R. Niech zatem g, h ∈ G oraz
g 6= h. Z warunku (2) wynika, że istnieje w naszym starterze para (xk, yk) taka, że

xk − yk = g − h lub yk − xk = g − h.

Jeśli xk − yk = g − h oraz gi = g − xk i gj = g − xk − ak, to gi − gj = ak i z definicji macierzy R wynika,
że

R(i, j) = {gi + xk, gi + yk} = {g, g − xk + yk} = {g, g − (xk − yk)} = {g, g − (g − h)} = {g, h}.

Jeśli natomiast g − h = yk − xk, to h− g = xk − yk i w podobny sposób pokazujemy, że para {h, g} jest
wyrazem macierzy R.

Sprawdzamy teraz warunek (R2). Niech i ∈ {0, . . . , n − 1}. Mamy pokazać, że każdy element zbioru
N występuje dokładnie jeden raz w wierszu i. Nietrudno zauważyć, że w każdym wierszu macierzy R
występuje dokładnie m + 1 wyrazów niepustych; stąd wynika, że wystarczy pokazać, iż każdy element
zbioru N występuje co najmniej jeden raz w wierszu i. Oczywiście ∞ ∈ {∞, i} = R(i, i), więc element
∞ występuje w tym wierszu. Podobnie gi ∈ R(i, i). Niech więc teraz l 6= i. Pokażemy, że element gl też
występuje w wierszu i.

Ponieważ gl − gi 6= 0, więc istnieje liczba k ∈ {1, . . . ,m} taka, że

gl − gi = xk lub gl − gi = yk,

czyli
gl = gi + xk lub gl = gi + yk.

Niech j będzie liczbą taką, że gj = gi − ak. Wtedy gi − gj = ak oraz

R(i, j) = {gi + xk, gi + yk}.

Zatem gl ∈ R(i, j).

Wreszcie sprawdzamy warunek (R3). Niech j ∈ {0, . . . , n−1}. Znów wystarczy pokazać, że każdy element
zbioru N występuje co najmniej jeden raz w kolumnie j. Ponieważ R(j, j) = {∞, gj}, więc elementy ∞
i gj występują w tej kolumnie. Niech więc l 6= j. Pokażemy, że element gl też występuje w kolumnie j.

Oczywiście gl − gj ∈ G \ {0}, więc z definicji sumatora wynika, że istnieje liczba k taka, że

gl − gj = xk + ak lub gl − gi = yk + ak.

Niech i będzie taką liczbą, że gi = gj + ak. Wtedy gi − gj = ak oraz

R(i, j) = {gi + xk, gi + yk}.

Jeśli gl − gj = xk + ak, to
gl = gj + xk + ak = gi + xk ∈ R(i, j).

Jeśli zaś gl − gj = yk + ak, to

gl = gj + yk + ak = gi + yk ∈ R(i, j).

W obu przypadkach element gl występuje w kolumnie j. To kończy dowód twierdzenia.
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Przypomnijmy teraz pojęcie reszty i niereszty kwadratowej. Jeśli p jest dowolną nieparzystą liczbą pierw-
szą, to liczbę całkowitą a nazywamy resztą kwadratową modulo p, wtedy i tylko wtedy, gdy p - a oraz
istnieje liczba całkowita x taka, że

x2 ≡ a (mod p).

Jeśli natomiast p -a oraz nie istnieje liczba całkowita x taka, że x2 ≡ a (mod p), to liczbę a nazywamy
nieresztą kwadratową modulo p. Resztami kwadratowymi są więc te elementy niezerowe ciała Zp, które
są kwadratami w tym ciele. Zbiór elementów niezerowych ciała Zp oznaczamy symbolem Z

∗
p. Definiujemy

następnie tzw. symbol Legendre’a wzorem

(

a

p

)

=







+1, jeśli a jest resztą kwadratową modulo p,
−1, jeśli a jest nieresztą kwadratową modulo p,
0, jeśli p | a.

W dalszym ciągu będziemy korzystać z następujących własności reszt i niereszt kwadratowych:

1. w zbiorze Z∗p istnieje p−1
2

reszt kwadratowych i p−1
2

niereszt kwadratowych,

2. jeśli g jest generatorem grupy multyplikatywnej Z∗p, to gi jest resztą kwadratową wtedy i tylko wtedy,
gdy wykładnik i jest liczbą parzystą,

3.
(

ab
p

)

=
(

a
p

)

·
(

b
p

)

,

4. iloczyn reszt kwadratowych jest resztą kwadratową,
5. iloczyn niereszt kwadratowych jest resztą kwadratową,
6. iloczyn reszty kwadratowej i niereszty kwadratowej jest nieresztą kwadratową,

7. jeśli ab = 1 w ciele Zp to
(

a
p

)

=
(

b
p

)

, czyli a jest resztą kwadratową wtedy i tylko wtedy, gdy b jest

resztą kwadratową,

8.
(

a2

p

)

= 1,

9.
(

−1
p

)

= (−1)
p−1

2 , czyli liczba −1 jest resztą kwadratową modulo p wtedy i tylko wtedy, gdy p ≡ 1

(mod 4),
10. jeśli p ≡ 3 (mod 4), to a ∈ Z∗p jest resztą kwadratową modulo p wtedy i tylko wtedy, gdy −a jest

nieresztą kwadratową modulo p.

Pokażemy teraz konstrukcję starterów i sumatorów w pewnych grupach przemiennych.

Załóżmy, że p jest liczbą pierwszą oraz p > 3 i p = 4q + 3. Wynika stąd, że liczba −1 jest nieresztą kwa-
dratową modulo p. Niech g będzie generatorem grupy multyplikatywnej ciała Zp. Definiujemy następnie

xi = g2i,

yi = g2i+1

dla i = 0, . . . , 2q. Udowodnimy, że ciąg
(

(x0, y0), . . . , (x2q , y2q)
)

jest silnym starterem w grupie addytywnej
ciała Zp.

Warunek (1) wynika stąd, że

{x0, . . . , x2q} ∪ {y0, . . . , y2q} = {g0, . . . , g4q+1} = {g0, . . . , gp−2} = {1, . . . , p− 1} = Zp \ {0}.

Dla dowodu warunku (2) zauważmy najpierw, że

xi − yi = g2i − g2i+1 = g2i(1− g)

oraz
yi − xi = g2i(g − 1).
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Elementy ciała Zp postaci g2i dla i = 0, . . . , 2q są wszystkimi resztami kwadratowymi modulo p w tym
ciele. Jeśli g − 1 jest resztą kwadratową, to elementy xy − yi dla i = 0, . . . , 2q są wszystkimi resztami
kwadratowymi w ciele Zp i elementy yi − xi są wszystkimi nieresztami kwadratowymi w ciele Zp. Stąd
wynika, że łącznie te różnice wyczerpują cały zbiór Z∗p. Jeśli zaś g − 1 jest nieresztą kwadratową modulo
p, to elementy xi− yi są wszystkimi nieresztami kwadratowymi i elementy yi−xi są wszystkimi resztami
kwadratowymi w ciele Zp, a więc te różnice też wyczerpują zbiór Z∗p.

Warunki (3) i (4) wynikają stąd, że
xi + yi = g2i(g + 1).

Mianowicie g + 1 6= 0, więc xi + yi 6= 0 dla i = 0, . . . , 2q. Ponadto, jeśli xi + yi = xj + yj, to g2i = g2j,
skąd wynika, że i = j.

Przykłady.
1. Liczba 5 jest generatorem grupy multyplikatywnej ciała Z7. Ponadto

50 = 1,

51 = 5,

52 = 4,

53 = 6,

54 = 2,

55 = 3.

Zatem ciąg
(

(1, 5), (4, 6), (2, 3)
)

jest silnym starterem w grupie addytywnej ciała Z7.

2. Liczba 2 jest generatorem grupy multyplikatywnej ciała Z11. Ponadto

20 = 1,

21 = 2,

22 = 4,

23 = 6,

24 = 5,

25 = 10,

26 = 9,

27 = 7,

28 = 3,

29 = 6.

Zatem ciąg
(

(1, 2), (4, 8), (5, 10), (9, 7), (3, 6)
)

jest silnym starterem w grupie addytywnej ciała Z11.

Przypuśćmy teraz, że dany jest dowolny silny starter
(

(x0, y0), . . . , (x2q , y2q)
)

w grupie addytywnej ciała
Zp. Niech ciąg (a0, . . . , a2q) będzie zdefiniowany wzorem ak = −xk − yk dla k = 0, . . . , 2q. Pokażemy, że
ciąg (a0, . . . , a2q) jest sumatorem dla tego silnego startera.

Z definicji silnego startera wynika, że wyrazy tego ciągu są różne i niezerowe. Mamy ponadto

xk + ak = −yk oraz yk + ak = −xk,

skąd wynika, że

{x0 + a0, . . . , x2q + a2q} ∪ {y0 + a0, . . . , y2q + a2q} = {−x0, . . . ,−x2q} ∪ {−y0, . . . ,−y2q} = Zp \ {0},
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co kończy dowód.

Przykłady.
1. Ciąg

(

(1, 5), (4, 6), (2, 3)
)

jest silnym starterem w grupie addytywnej ciała Z7. Ponieważ

−1− 5 = −6 ≡ 1 (mod 7),

−4− 6 = −10 ≡ 4 (mod 7),

−2− 3 = −5 ≡ 2 (mod 7),

więc ciąg (1, 4, 2) jest sumatorem dla tego startera.

2. Ciąg
(

(1, 2), (4, 8), (5, 10), (9, 7), (3, 6)
)

jest silnym starterem w grupie addytywnej ciała Z11. Ponie-
waż

−1− 2 = −3 ≡ 8 (mod 11),

−4− 8 = −12 ≡ 10 (mod 11),

−5− 10 = −15 ≡ 7 (mod 11),

−9− 7 = −16 ≡ 6 (mod 11),

−3− 6 = −9 ≡ 2 (mod 11),

więc ciąg (8, 10, 7, 6, 2) jest sumatorem dla tego startera.

W przypadku silnego startera zdefiniowanego wyżej w grupie addytywnej ciała Zp (gdzie p > 3 oraz
p ≡ 3 (mod 4)) możemy wskazać jeszcze jeden przykład sumatora. Niech g będzie generatorem grupy
Z

∗
p. Wtedy g−1 też jest generatorem tej grupy. Zauważmy także, że g 6= −1 oraz g2 6= −1.

Ćwiczenie. Jeśli (g + 1)(g2 + 1) jest nieresztą kwadratową modulo p, to (g−1 + 1)(g−2 + 1) jest resztą
kwadratową. W szczególności istnieje generator g grupy Z

∗
p o tej własności, że (g + 1)(g2 + 1) jest resztą

kwadratową modulo p.

Weźmy zatem taki generator g grupy Z∗p, że (g+1)(g2+1) jest resztą kwadratową modulo p i zdefiniujmy

ciąg (a0, . . . , a2q) wzorem ak = g2k+2 dla k = 0, . . . , 2q. Pokażemy, że ten ciąg jest sumatorem dla startera

(

(g0, g1), . . . , (g2q, g2q+1)
)

.

Oczywiście wszystkie wyrazy ak są niezerowe i różne. Niech teraz i 6= j. Pokażemy, że

xi + ai 6= xj + aj .

Gdyby bowiem
xi + ai = xj + aj ,

to mielibyśmy kolejno

g2i + g2i+2 = g2j + g2j+2,

g2i(g2 + 1) = g2j(g2 + 1),

g2i = g2j ,

2i = 2j,

i = j,

co daje sprzeczność. W podobny sposób pokazujemy, że jeśli i 6= j, to yi + ai 6= yj + aj . Pokażemy, że
także xi + ai 6= yj + aj . Przypuśćmy bowiem, że

xi + ai = yj + aj .
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Mamy wówczas

g2i + g2i+2 = g2j+1 + g2j+2,

g2i(g2 + 1) = g2j+1(g + 1),

g2i(g + 1)(g2 + 1) = g2j+1(g + 1)2.

Po lewej stronie równości mamy iloczyn dwóch reszt kwadratowych: g2i oraz (g + 1)(g2 + 1). Po prawej
stronie mamy natomiast iloczyn niereszty kwadratowej g2j+1 przez resztę kwadratową (g+1)2. Zatem po
lewej stronie mamy resztę kwadratową, a po prawej stronie nieresztę, co jest niemożliwe. Udowodniliśmy
więc, że zdefiniowany wyżej ciąg (a0, . . . , a2q) jest sumatorem.

Przykłady.
1. Liczba 5 jest generatorem grupy Z

∗
7. Mamy przy tym

(5 + 1)(52 + 1) = 6 · 26 ≡ 6 · 5 = 30 ≡ 2 ≡ 32 (mod 7),

więc (5+1)(52+1) jest resztą kwadratową modulo 7. Widzieliśmy, że z tego generatora otrzymaliśmy
ciąg
(

(1, 5), (4, 6), (2, 3)
)

, będący silnym starterem w grupie addytywnej ciała Z7. Ponieważ

52 = 4,

54 = 2,

56 = 1

w cieleZ7, więc ciąg (4, 2, 1) jest sumatorem dla tego startera. Z tego startera i sumatora otrzymujemy
następujący kwadrat Rooma:

0 1 2 3 4 5 6

0 {∞, 0} ? ? {1, 5} ? {4, 6} {2, 3}

1 {3, 4} {∞, 1} ? ? {2, 6} ? {0, 5}

2 {1, 6} {4, 5} {∞, 2} ? ? {0, 3} ?

3 ? {0, 2} {5, 6} {∞, 3} ? ? {1, 4}

4 {2, 5} ? {1, 3} {0, 6} {∞, 4} ? ?

5 ? {3, 6} ? {2, 4} {0, 1} {∞, 5} ?

6 ? ? {0, 4} ? {3, 5} {1, 2} {∞, 6}

2. Liczba 2 jest generatorem grupy Z

∗
11. Mamy przy tym

(2 + 1)(22 + 1) = 3 · 5 = 15 ≡ 4 = 22 (mod 11),

więc (2+1)(22+1) jest resztą kwadratową modulo 11. Widzieliśmy, że z tego generatora otrzymaliśmy
ciąg
(

(1, 2), (4, 8), (5, 10), (9, 7), (3, 6)
)

jest silnym starterem w grupie addytywnej ciała Z11. Ponieważ

22 = 4,

24 = 5,

26 = 9,

28 = 3,

210 = 1
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w ciele Z11, więc ciąg (10, 7, 6, 2, 1) jest sumatorem dla tego startera. Z tego startera i sumatora
otrzymujemy następujący kwadrat Rooma:

0 1 2 3 4 5 6 7 8 9 10

0 {∞, 0} ? {5, 10} ? ? ? {4, 8} {1, 2} {7, 9} ? {3, 6}

1 {4, 7} {∞, 1} ? {0, 6} ? ? ? {5, 9} {2, 3} {8, 10} ?

2 ? {5, 8} {∞, 2} ? {1, 7} ? ? ? {6, 10} {3, 4} {0, 9}

3 {1, 10} ? {6, 9} {∞, 3} ? {2, 8} ? ? ? {0, 7} {4, 5}

4 {5, 6} {0, 2} ? {7, 10} {∞, 4} ? {3, 9} ? ? ? {1, 8}

5 {2, 9} {6, 7} {1, 3} ? {0, 8} {∞, 5} ? {4, 10} ? ? ?

6 ? {3, 10} {7, 8} {2, 4} ? {1, 9} {∞, 6} ? {0, 5} ? ?

7 ? ? {0, 4} {8, 9} {3, 5} ? {2, 10} {∞, 7} ? {1, 6} ?

8 ? ? ? {1, 5} {9, 10} {4, 6} ? {0, 3} {∞, 8} ? {2, 7}

9 {3, 8} ? ? ? {2, 6} {0, 10} {5, 7} ? {1, 4} {∞, 9} ?

10 ? {4, 9} ? ? ? {3, 7} {0, 1} {6, 8} ? {2, 5} {∞, 10}

Zajmiemy się teraz problemem przydziału parom linii (NS lub WE), na których mają grać w kolejnych
rundach. Niech p będzie liczbą pierwszą taką, że p > 3 oraz p = 4q+3. Niech g będzie generatorem grupy
multyplikatywnej ciała Zp. Wiemy już, że ciąg

(

(x0, y0), . . . , (x2q, y2q)
)

,

gdzie
xi = g2i, yi = g2i+1

dla i = 0, . . . , 2q, jest silnym starterem w grupie addytywnej ciała Zp. Niech następnie ciąg (a0, . . . , a2q)
będzie sumatorem dla tego startera. Definiujemy uporządkowany kwadrat Rooma

R : {0, . . . , p− 1}2 → (Zp ∪ {p})
2 ∪ {?}

wzorem

R(i, j) =







(p, i), jeśli i = j,
(i+ xk, i+ yk), jeśli i− j = ak,
?, jeśli i− j nie jest wyrazem sumatora (a0, . . . , a2q)

dla i, j = 0, . . . , p− 1.

Liczby ze zbioru Zp ∪ {p} = {0, . . . , p} są numerami par startujących w turnieju. Rozdania i rundy
turnieju są numerowane liczbami od 0 dp p− 1. Jeśli R(i, j) = (a, b), to pary o numerach a i b grają ze
sobą rozdanie o numerze j w i-tej rundzie, przy czym para o numerze a gra na linii NS, a para o numerze
b gra na linii WE. Jeśli natomiast R(i, j) = ?, to rozdanie o numerze j nie jest wykorzystywane w i-tej
rundzie.

Dokładnie tak samo jak poprzednio możemy pokazać, że uporządkowany kwadrat Rooma R ma następu-
jące własności:

(R1) dla dowolnych a, b ∈ Zp ∪ {p} takich, że a 6= b dokładnie jedna z par (a, b) i (b, a) jest wyrazem
macierzy R, przy tym występuje w macierzy R w dokładnie jednym miejscu,

(R2) każdy element zbioru N występuje dokładnie jeden raz w każdym wierszu macierzy R,
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(R3) każdy element zbioru N występuje dokładnie jeden raz w każdej kolumnie macierzy R,

Jeżeli pary o numerach a i b grają rozdanie o numerze j na tej samej linii, to mówimy, że są porównywane
w tym rozdaniu. Udowodnimy, że w zdefiniowanym wyżej uporządkowanym kwadracie Rooma każde dwie
pary są porównywane w tej samej liczbie rozdań. Turniej o tej własności nazywamy zazwyczaj turniejem
zbalansowanym.

Definiujemy zatem następującą funkcję

S : Z2p → {−1,+1}

wskazującą, na jakiej linii para o umerze i gra rozdanie o numerze j:

S(i, j) =

{

+1, jeśli para o numerze i gra rozdanie o numerze j na linii NS,
−1, jeśli para o numerze i gra rozdanie o numerze j na linii WE

dla i, j ∈ Zp. Z powyższej definicji macierzy R wynika, że

S(i, j) =











+1, jeśli i = p,
−1, jeśli i 6= p oraz i = j,
+1, jeśli i 6= p, i 6= j oraz i− j = xk + ak dla pewnego k,
−1, jeśli i 6= p, i 6= j oraz i− j = yk + ak dla pewnego k.

Mieliśmy do czynienia z dwoma sumatorami. Przyjrzyjmy się teraz, jak wygląda funkcja S dla tych
sumatorów. Niech najpierw sumator (a0, . . . , a2q) będzie zdefiniowany wzorem

ai = −xi − yi

dla i = 0, . . . , 2q. Wówczas, jeśli i − j = xk + ak, to i − j = −yk. Ponieważ yk − g
2k+1, więc yk jest

nieresztą kwadratową modulo p, a więc −yk jest resztą kwadratową. Jeśli natomiast i− j = yk + ak, to
i − j = −xk oraz −xk jest nieresztą kwadratową modulo p. Zatem definicję funkcji S możemy zapisać
w postaci

S(i, j) =







+1, jeśli i = p,
−1, jeśli i 6= p oraz i = j,
(

i−j
p

)

, jeśli i 6= p oraz i 6= j

dla i, j ∈ Zp.

Drugi sumator (a0, . . . , a2q) był zdefiniowany wzorem

ai − g
2i+2

dla i = 0, . . . , 2q. W tym przypadku wybieraliśmy generator g w taki sposób, by liczba (g + 1)(g2 + 1)
była resztą kwadratową modulo p. Teraz, jeśli i− j = xk + ak, to mamy

i− j = xk + ak = g2k + g2k+2 = g2k(g2 + 1),

czyli
(i− j)(g + 1) = g2k(g + 1)(g2 + 1).

Zatem (i− j)(g + 1) jest resztą kwadratową modulo p. Jeśli natomiast i− j = yk + ak, to

i− j − yk + ak = g2k+1 + g2k+2 = g2k+1(g + 1),

czyli
(i− j)(g + 1) = g2k+1(g + 1)2.
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Zatem (i− j)(g + 1) jest nieresztą kwadratową modulo p. Stąd wynika, że

S(i, j) =







+1, jeśli i = p,
−1, jeśli i 6= p oraz i = j,
(

i−j
p

)

·
(

g+1
p

)

, jeśli i 6= p oraz i 6= j

dla i, j ∈ Zp.

Udowodnimy teraz następujące twierdzenie.

Twierdzenie. Dla dowolnych u,w ∈ Zp takich, że u 6= w zachodzi równość

p−1
∑

j=0

S(u, j) · S(w, j) = −1.

Najpierw udowodnimy dwa lematy.

Lemat 1. W ciele Zp zachodzi równość
p−1
∑

j=1

(

j

p

)

= 0.

Dowód. Równość ta wynika stąd, że w zbiorze {1, 2, . . . , p−1} jest tyle samo reszt kwadratowych modulo
p co niereszt kwadratowych modulo p.

Lemat 2. Jeśli a ∈ Zp oraz a 6= 0, to

p−1
∑

j=0

(

j

p

)

·

(

j + a

p

)

= −1.

Dowód. Zauważmy najpierw, że

p−1
∑

j=0

(

j

p

)

·

(

j + a

p

)

=

p−1
∑

j=1

(

j(j + a)

p

)

=

p−1
∑

j=1

(

j2(1 + aj−1)

p

)

=

p−1
∑

j=1

(

1 + aj−1

p

)

.

Zauważmy następnie, że jeśli j przebiega liczby od 1 do p−1, to 1+aj−1 przebiega (w ciele Zp) wszystkie
liczby różne od 1. Zatem

p−1
∑

j=1

(

1 + aj−1

p

)

=

p−1
∑

j=0

(

j

p

)

−

(

1

p

)

= −1,

co kończy dowód lematu.

Dowód twierdzenia. Musimy udowodnić twierdzenie dla obu rozważanych sumatorów. Niech najpierw
ak = −xk − yk. Wówczas mamy dwa przypadki:

Przypadek 1. Jedna z liczb u i w jest równa p, np. u = p. Wtedy

p−1
∑

j=0

S(u, j) · S(w, j) =

p−1
∑

j=0

S(w, j) =
∑

j 6=w

S(w, j) + S(w,w) =
∑

j 6=w

(

j − w

p

)

− 1 =

p−1
∑

j=1

(

j

p

)

− 1 = −1.
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Przypadek 2. u 6= p oraz w 6= p. Wtedy

p−1
∑

j=0

S(u, j) · S(w, j) =
∑

j 6=u,w

S(u, j) · S(w, j) + S(u, u) · S(w, u) + S(u,w) · S(w,w) =

=
∑

j 6=u,w

S(u, j) · S(w, j) + (−1) ·

(

w − u

p

)

+ (−1) ·

(

u− w

p

)

=

=
∑

j 6=u,w

S(u, j) · S(w, j) + (−1) ·

((

w − u

p

)

+

(

u− w

p

))

=

=
∑

j 6=u,w

(

u− j

p

)

·

(

w − j

p

)

=

=

p−1
∑

j=0

(

u− j

p

)

·

(

w − j

p

)

=

=

p−1
∑

j=0

(

j

p

)

·

(

j + w − u

p

)

=

= −1.

(Ostatnia równość wynika z lematu 2.)

Niech teraz ak = g2k+2. Rozpatrujemy takie same dwa przypadki.

Przypadek 1. Jedna z liczb u i w jest równa p, np. u = p. Wtedy

p−1
∑

j=0

S(u, j) · S(w, j) =

p−1
∑

j=0

S(w, j) =
∑

j 6=w

S(w, j) + S(w,w) =

=
∑

j 6=w

(

j − w

p

)

·

(

g + 1

p

)

− 1 =

(

g + 1

p

)

·

p−1
∑

j=1

(

j

p

)

− 1 =

= −1.

Przypadek 2. u 6= p oraz w 6= p. Wtedy

p−1
∑

j=0

S(u, j) · S(w, j) =
∑

j 6=u,w

S(u, j) · S(w, j) + S(u, u) · S(w, u) + S(u,w) · S(w,w) =

=
∑

j 6=u,w

S(u, j) · S(w, j) + (−1) ·

(

w − u

p

)

·

(

g + 1

p

)

+ (−1) ·

(

u− w

p

)

·

(

g + 1

p

)

=

=
∑

j 6=u,w

S(u, j) · S(w, j) + (−1) ·

(

g + 1

p

)((

w − u

p

)

+

(

u− w

p

))

=

=
∑

j 6=u,w

(

u− j

p

)

·

(

w − j

p

)

·

(

g + 1

p

)2

=

=

p−1
∑

j=0

(

u− j

p

)

·

(

w − j

p

)

=

=

p−1
∑

j=0

(

j

p

)

·

(

j + w − u

p

)

=

= −1.
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Dowód twierdzenia jest więc zakończony.

Udowodnione twierdzenie mówi, że każde dwie pary grają 2q+1 rozdań na tej samej linii i 2q+2 rozdania
na przeciwnych liniach, a więc są porównywane w tej samej liczbie rozdań.

Przykłady.
1. Ze startera

(

(1, 5), (4, 6), (2, 3)
)

i sumatora (4, 2, 1) w grupie addytywnej ciała Z7 otrzymujemy na-
stępujący uporządkowany kwadrat Rooma:

0 1 2 3 4 5 6

0 (7, 0) ? ? (1, 5) ? (4, 6) (2, 3)

1 (3, 4) (7, 1) ? ? (2, 6) ? (5, 0)

2 (6, 1) (4, 5) (7, 2) ? ? (3, 0) ?

3 ? (0, 2) (5, 6) (7, 3) ? ? (4, 1)

4 (5, 2) ? (1, 3) (6, 0) (7, 4) ? ?

5 ? (6, 3) ? (2, 4) (0, 1) (7, 5) ?

6 ? ? (0, 4) ? (3, 5) (1, 2) (7, 6)

2. Ze startera
(

(1, 2), (4, 8), (5, 10), (9, 7), (3, 6)
)

i sumatora (10, 7, 6, 2, 1) w grypie addytywnej ciała Z11
otrzymujemy następujący uporządkowany kwadrat Rooma:

0 1 2 3 4 5 6 7 8 9 10

0 (11, 0) ? (5, 10) ? ? ? (4, 8) (1, 2) (9, 7) ? (3, 6)

1 (4, 7) (11, 1) ? (6, 0) ? ? ? (5, 9) (2, 3) (10, 8) ?

2 ? (5, 8) (11, 2) ? (7, 1) ? ? ? (6, 10) (3, 4) (0, 9)

3 (1, 10) ? (6, 9) (11, 3) ? (8, 2) ? ? ? (7, 0) (4, 5)

4 (5, 6) (2, 0) ? (7, 10) (11, 4) ? (9, 3) ? ? ? (8, 1)

5 (9, 2) (6, 7) (3, 1) ? (8, 0) (11, 5) ? (10, 4) ? ? ?

6 ? (10, 3) (7, 8) (4, 2) ? (9, 1) (11, 6) ? (0, 5) ? ?

7 ? ? (0, 4) (8, 9) (5, 3) ? (10, 2) (11, 7) ? (1, 6) ?

8 ? ? ? (1, 5) (9, 10) (6, 4) ? (0, 3) (11, 8) ? (2, 7)

9 (3, 8) ? ? ? (2, 6) (10, 0) (7, 5) ? (1, 4) (11, 9) ?

10 ? (4, 9) ? ? ? (3, 7) (0, 1) (8, 6) ? (2, 5) (11, 10)

Ostatnim problemem organizacyjnym jest numeracja stołów i opis sposobu poruszania się par i rozdań
w kolejnych rundach. Stoliki, przy których toczy się gra numerujemy kolejnymi liczbami, pozostawia-
jąc między tymi stolikami miejsce na rozdania niewykorzystane w danej rundzie; te miejsca nazywamy
zbiornicami. Para o najwyższym numerze gra przez cały czas na stoliku numer 1 na linii NS. Wszystkie
pozostałe pary poruszają się według tego samego schematu; jego opis nazywamy kartą pilotującą. A oto
otrzymane karty pilotujące turniejów dla 8 i 12 par:
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1WE −−−−→ 3WE −−−−→ 2WE −−−−→ 3NS
x









1← Z← Z← 2← Z← 3← 4









y

2NS ←−−−− 4NS ←−−−− 4WE

1WE −−−−→ 2WE −−−−→ 5NS −−−−→ 3WE −−−−→ 5WE −−−−→ 6WE
x









1← Z← 2← Z← Z← Z← 3← 4← 5← Z← 6









y

4NS ←−−−− 4WE ←−−−− 6NS ←−−−− 3NS ←−−−− 2NS

Na zakończenie wspomnimy jeszcze, że jeśli istnieje turniej zbalansowany dla n par, to liczba n jest
podzielna przez 4. Nietrudny dowód tego faktu pozostawimy Czytelnikowi jako ćwiczenie.
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