Dowody kombinatoryczne

DOWODY KOMBINATORYCZNE

1. Oznaczenia

Przypusémy, ze dany jest zbiér skonczony A. Wtedy

|A| = liczba elementéw zbioru A,
P(A)={B: BC A},
P.(A)={B e P(A): |B|=k}.

W szczegdlnosci

Py(A) ={a},
Pi(A) = {{a}: a€ A},
Pn(4) = {4},
gdzie |A| = m. Ponadto
[n] ={1,2,...,n},
0] = 2,
[1] = {1},
2] = {1,2},
P(n) = P([n]) = P({1,2,...,n}),
Pi(n) = Pi([n]) = P.({1,2,...,n}),
P (0) = Pr(92).

Beda potrzebne dwie funkcje. Jesli 1 < k < n, to
(nMg=n-n—1)-...-(n—k+1).
Dla k& > n przyjmujemy (n); = 0. Wreszcie
nl=Mn),=1-2-...-n
oraz 0! = 1.

2. Reguta dodawania

Zauwazmy bez dowodu, ze jesli A i B sa zbiorami skonczonymi oraz A N B = @, to
|AUB| = |A| + |B|.
Ogoélnie, jesli dane sa zbiory skofniczone Ay, Ag, ..., A, oraz A;,NA; =@ dlai # j, to

|A1 UAsU...UA,| = |A1| + |A2| + ...+ |4,].
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2 Wyklad 1

Stad w szczegdlnosci mamy:

|JAUB|=|(A\B)U(ANB)U(B\ A)| =
=|A\B|+|ANB|+ |B\ 4| =
=|A\B|+|ANnB|+|B\A|+|ANB|—|ANB| =
=[(A\B)U(ANB)|+|[(B\A)U(ANB)|—|ANB| =
= |A|+[B| - |AN B|

oraz

JAUBUC|=[(AUB)UC| =
=|AUB|+|C|-|(AUB)NC| =
=|A|+|B|—-|[ANB|+|C|—-|(AnC)U(BNQC)| =
=|A|+|B|+|C|—|[ANB|-(JANC|+ |BNC| - [(ANC)N(BNCO)|)=
=|A|+ |B|+|C|-|ANB|—|ANC|—|BNC|+|AnBnNC|.

W nastepnym wyktadzie zajmiemy sie uogoélnieniami tych wzoréw.

Regule dodawania mozemy wystowi¢ w nastepujacy sposob. Przypusémy, ze mozemy
wykona¢ n czynnosci; pierwsza konczy si¢ jednym z mj; wynikéw, druga jednym z ms
wynikow i tak dalej, az do ostatniej, konczacej sie jednym z m,, wynikéw. Zaktadamy
przy tym, ze wszystkie te wyniki sg rézne, tzn. zadne dwie z tych czynno$ci nie moga
koniczy¢ sie tym samym wynikiem. Zalézmy nastepnie, ze mamy wykona¢ jedna, dowol-
nie przez nas wybrana czynnos$¢. Mozemy wtedy otrzymac jeden z mi; +mo +...+my,
wynikow.

3. Regula mnozenia

Zaczniemy od nastepujacej oczywistej réwnosci
|A x B = |A] - |B].

Mozemy ja wystowi¢ w nastepujacy sposéb. Przypusémy, ze mamy do wykonania dwie
czynnosci. Pierwsza konczy sie jednym z m wynikéw, druga jednym z n wynikow. Wy-
konanie obu, jedna po drugiej, zakonczy si¢ zatem jednym z m - n mozliwych wynikéw.
Przy tym sformutowaniu zakladamy, ze niezaleznie od wyniku pierwszej czynnosci, druga
konczy sie zawsze jednym z n tych samych wynikow. Inaczej méwiac, zbior wynikéw
drugiej czynnosci jest ustalony; nie zalezy od tego, w jaki sposob zakonczy si¢ pierwsza
czynnosc¢.

Zbior wynikoéw drugiej czynnosci moze jednak zalezeé od tego, jak zakonczyta sie pierw-
sza czynnos¢. Popatrzmy na przyktad. 7 talii 52 kart wyciggamy kolejno dwie karty
i uktadamy kolo siebie (z zachowaniem kolejnosci). Pierwsza czynnoscia jest wyciagnie-
cie pierwszej karty. Moze ona zakonczy¢ sie jednym z 52 wynikéw. Druga czynnoscia
jest wyciagniecie drugiej karty. Widzimy, ze zbiér mozliwych wynikéw drugiej czynno-
Sci zalezy od tego, jakiej karty juz nie ma w talii, czyli od wyniku pierwszej czynnosci.
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Zauwazmy jednak, ze druga czynnos¢, niezaleznie od wyniku pierwszej, zakonczy si¢ jed-
nym z 51 wynikéw, bo niezaleznie, od tego, jaka karte wyciagniemy, w talii pozostanie
51 kart.

Przypu$émy zatem, ze mamy do wykonania dwie czynno$ci. Pierwsza konczy sie jednym
z m wynikow: xq,Z9,...,T,,. Dla kazdego xp zbiér A, mozliwych wynikéw drugiej
czynnosci ma zawsze n elementow:

|Ay| = |As| = ... = |Ap| = n.

Wykonujemy obie czynnosci po kolei. Wynikiem bedzie para (z, y), gdzie x jest wynikiem
pierwszej czynnosci, a y wynikiem drugiej. Zbiér wynikéw ma zatem postac:

{(zp,y): E=1,2,....m,y € Ax}.
Ten zbiér mozemy przedstawi¢ w postaci sumy m zbioréw roztacznych:

{2, y): k=1,2,...,m,y € Ay} =
={(z1,y): y€ At} U{(z2,y): y€ A2} U...U{(zm,y) : y € A}

Kazdy z m zbioréw po prawej stronie ma n elementow, a wiec z reguty dodawania
wynika, ze

H(zk,y): k=1,2,...,m,y € Ax}| =m - n.
Regule mnozenia mozemy zatem wystowi¢ w nastepujacy sposoéb. Mamy do wykonania
dwie czynno$ci. Pierwsza konczy sie jednym z m wynikow. Druga, niezaleznie od wyniku
pierwszej, konczy sie jednym z n wynikéw (przy czym zbiory wynikéw drugiej moga by¢
rézne w zaleznosci od wyniku pierwszej). Wykonanie obu czynnosci po kolei zakonczy
sie wtedy jednym z m - n wynikow.
Regule mnozenia mozemy tatwo uogolni¢ na wigksza liczbe czynnosci. Dokladne jej
sformutowanie pozostawie jako ¢wiczenie.

4. Zliczanie funkcji i podzbioréow

Niech |A] = m i |B| = n. Wtedy z reguly mnozenia wynika natychmiast, ze
|AB| = m™.

Wartoséé f(b) dla kazdego elementu zbioru B wybieramy bowiem na jeden z m sposob6w;
tych elementéw zbioru B jest n, wiec dokonujemy n wyborow.

Podobnie
{f e AB: fiest 1 —1} = (m)n.

Znéw wybieramy n wartosci: pierwsza wartosé f(b) wybieramy na jeden z m sposobdéw,
druga na jeden z m — 1 sposobdéw i tak dalej.

Definiujemy wspoétczynnik dwumianowy (7:) wzorem

(™) = 1Patml.
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5. Permutacje, kombinacje i wariacje
Niech |A| = m. Wtedy mamy nastepujace obiekty kombinatoryczne znane ze szkoty.

1) Wariacjami n-elementowymi z powtérzeniami ze zbioru A nazywamy ciagi
(a1,...,a2) o wyrazach ze zbioru A. Wowczas

{(a1,...,an): ai,...,an € A} = AP = m™.

2) Wariacjami n-elementowymi bez powtérzen ze zbioru A nazywamy ciggi
réznowartosciowe (aq, ..., a,) o wyrazach ze zbioru A. Wéwczas

m!
{(a,...,a,) € A" ¢ a; # a; dlai # j}| = (m), = =)

3) Permutacjami zbioru A nazywamy m-elementowe wariacje bez powtorzen. Wéw-
czas

(a1, am) € A 2 a; # a; dlai # j}| = m!

4) Kombinacjami n-elementowymi ze zbioru A nazywamy n-elementowe pod-
zbiory zbioru A. Wéwczas
m
P,(A)| = .
Pl = ()

Zobaczymy teraz jeden wazny przyktad wystepowania kombinacji. Niech bedzie dany
zbior C sktadajacy sie ze wszystkich ciagéow dtugosci m o dwéch wyrazach a i b, w kto-
rych litera a wystepuje n razy, a litera b wystepuje m — n razy. Ot6z wtedy |C| = (7).
Kazdy taki ciag jest bowiem jednoznacznie wyznaczony przez wskazanie, ktore sposrod
m wyrazéw sa literami a; pozostale sa rowne b. Wskazaé te n wyrazow mozemy wtasnie
na (') sposobéw. W szczegdlnosci istnieje (m;:”) ciagdéw, w ktérych jest dokladnie m
wyrazow rownych a i n wyrazéw rownych b.

Oprécz powyzszych obiektéw znanych ze szkoty zdefiniujemy teraz kombinacje z po-
wtorzeniami. Kombinacje wskazuja, ktére elementy zbioru A zostaly wybrane, bez
uwzglednienia kolejnosci, w jakiej te elementy byly wybierane. Kombinacje z powtorze-
niami wskazuja ponadto, ze elementy zbioru A mogly by¢ wybrane wielokrotnie, przy
czy nadal nie wskazujemy kolejnosci wybierania. Pokazemy teraz dwa sposoby definiowa-
nia takich kombinacji z powtorzeniami. Mozemy przedstawiac je jako funkcje ¢ : A — N,
gdzie liczba c(a) wskazuje, ile razy element a zostal wybrany. Zatem kombinacjami
n-elementowymi z powtoérzeniami ze zbioru A nazywamy funkcje ¢ : A — N takie,

Z c(a) = n.
acA

Popatrzmy na przyklad. Niech A = {p,q,r,s,t} bedzie zbiorem piecioelementowym.
Funkcja ¢ : A — N okre$lona w nastepujacy sposéb
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jest kombinacja, w ktérej element p zostal wybrany 3 razy, element g zostat wybrany 2
razy, elementy r i s po jednym razie i wreszcie element ¢ ani razu. Te kombinacje z po-
wtérzeniami moglibyémy zatem zapisa¢ w postaci ciagu pppqqrs. Taki wtasnie sposdb
zapisu kombinacji z powtérzeniami bedzie podstawg innej definicji. Ten drugi sposob
definiowania kombinacji z powtérzeniami wymaga uporzadkowania najpierw zbioru A.
Przyjmijmy, ze

A=A{ay,az,...,am}.

Kombinacjg n-elementowa z powtorzeniami ze zbioru A nazwiemy teraz dowolny
ciag (x1,x2, ..., x,) elementéw zbioru A, w ktérym dla dowolnych i, 7 = 1,2,...,m, jesli
i < j, to wszystkie wyrazy rowne a; wystepuja przez wszystkimi wyrazami rownymi a;.
Inaczej méwiac, w takim ciggu najpierw wystepuje blok wartosci a1, potem blok wartosci
as i tak dalej az do ostatniego bloku wartosci a,,; moze si¢ zdarzy¢, ze niektoére z tych
blokéw beda puste. W naszym przyktadzie zbioru A = {p,q,r, s,t} takie ciagi beda
sktadac¢ sie z bloku liter p na poczatku, potem beda wystepowaé kolejno bloki liter ¢,
r i s i wreszcie na koncu znajdzie si¢ blok liter t. Przypominamy, ze niektére z tych
blokéw moga by¢ puste. Widzielismy wyzej przyktad takiego ciagu: pppgqrs. W tym
ciggu mieliSmy najpierw blok trzech liter p, nastepnie blok dwdéch liter ¢, po nim dwa
bloki jednoliterowe liter r i s i wreszcie na koncu pusty blok liter ¢.

Zajmiemy sie teraz zliczaniem kombinacji z powtérzeniami. Zaczniemy od przyktadu.
Niech |A| =51 n = 7. Zliczamy zatem kombinacje siedmioelementowe z powtérzeniami
z piecioelementowego zbioru A. Uporzadkujmy elementy zbioru A:

A: {p7Q7T787t}'

WezZzmy znany nam przyklad kombinacji z powtdrzeniami zapisanej w postaci ciggu:
pppqqrs. Oddzielmy pionowymi kreskami bloki liter:

ppplgq|r]s]

Zwracamy uwage na kreske na koncu. Oddziela ona jednoliterowy blok s od pustego
bloku liter t. Teraz mozemy zauwazy¢, ze nie jest juz potrzebne pisanie liter. Wiemy
bowiem, ze w pierwszym bloku musza wystapic litery p, w drugim litery ¢ i tak dalej.
Istotne jest tylko zaznaczenie, ile liter jest w kazdym bloku. Rysujemy zatem kropki
w miejscu liter. Narysujemy wiec 7 kropek, oznaczajacych elementy wybrane podzielo-
nych czterema pionowymi kreskami na pieé czesci. Wskazemy tym samym, ktore kropki
oznaczaja kolejne elementy zbioru A. W naszym przyktadzie otrzymamy nastepujacy
ciag kropek i kresek

oznaczajacy, ze element p zostal wybrany 3 razy (przed piersza kreska sa 3 kropki),
element q zostal wybrany 2 razy (miedzy pierwsza i druga kreska sa 2 kropki), elementy
r i s zostaly wybrane po jednym razie (miedzy kolejnymi kreskami jest jedna kropka),
wreszcie element ¢ nie zostal wybrany ani razu (za ostania, czwartg kreska nie ma ani
jednej kropki). Podobnie zapis
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6 Wyklad 1

oznacza, ze element p zostal wybrany 2 razy, elemeny ¢ i r ani razu, element s zostal
wybrany 4 razy i element ¢ jeden raz. Kazdy ciag siedmiu kropek i czterech kresek odpo-
wiada doktadnie jednej kombinacji z powtérzeniami. Mamy zatem tacznie 11 symboli:
7 kropek i 4 kreski. Z powyzszych rozwazan dotyczacych kombinacji wynika, ze istnieje
(141) réznych ciagéw ztozonych z 7 kropek i 4 kresek.

W ogdélnosci mamy n kropek (wybieramy n elementéw) i m — 1 kresek (dziela one
kropki na m blokéw odpowiadajacych m elementom zbioru A). Mamy zatem (m;le)
ciagébw n kropek i m — 1 kresek i tyle jest n-elementowych kombinacji z powtorzeniami
z m-elementowego zbioru A.

Zwrocémy uwage na dwie rzeczy. Po pierwsze, sposéb kodowania kombinacji z powtérze-
niami za pomoca ciggu kropek i kresek zalezy od uporzadkowania zbioru A. Przy innym
uporzadkowaniu ten sam ciagg bedzie na ogoét oznaczal inng kombinacje. Po drugie, je-
$li naszym zbiorem A jest zbiér [m] z naturalnym uporzadkowaniem, to kombinacje
z powtorzeniami mozemy przedstawi¢ jako ciag liczb od 1 do m, w ktérym najpierw
wystepuja wyrazy réwne 1, potem wyrazy rowne 2 i tak dalej. Inaczej méwiac, taka kom-
binacje mozemy zapisa¢ w postaci ciagu niemalejacego dtugosci n o wyrazach ze zbioru
[m]. Stad wynika, ze istnieje (m;:ﬁzl) niemalejacych ciggéw dlugosci n o wyrazach ze
zbioru [m]. Z tego wniosku kilkakrotnie dalej skorzystamy.

6. Podstawowe wlasnosci wspotczynnikéw dwumianowych

() = 1P

gdzie |A| = m. Oczywiscie dla n > m mamy P,(A) = &, czyli (7') =0 dlan > m.
Przyjmujemy ponadto, ze (') = 0 dla n < 0.

Przypominamy, ze

Zauwazmy nastepnie, ze

Py(A)={o} oraz P, (A)={A}.

[)-()-

Niech teraz 0 < n < m. Udowodnimy, ze

o () =m (020

Niech |A| = m. Rozpatrujemy zbior

Zatem

B={(a,N): a€ N € P,(A)}.

Zliczamy dwoma sposobami elementy zbioru B. Po pierwsze

B= |J {(aN): acN},

NeP,(A)

Wyktady z kombinatoryki
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przy czym sumowane zbiory sa roztaczne dla réznych N. Z reguly dodawania mamy

zatem Bl Z {(a,N): a€ N}| = Z nzn(ZZ)

NeP,(A) NeP,(A)

7, drugiej strony
B=|J{(a,N): ac NeP,(A)},
acA

przy czym znéw sumowane zbiory sa rozlaczne (tym razem dla réznych a). Zatem

Bl=Y |{(a,N): ae N € P,(A)}| =

= Z H(a,{a}UK): K€ P, 1(A\{a})}| =
a€A

= Z H{(a,K): K € P, 1(A\{a})}| =
a€A

Poniewaz liczba elementow zbioru skonczonego nie zalezy od sposobu zliczania tych
elementéw, wiec otrzymujemy réwnosé

o (2) o (220
(-2 ()

Zazwyczaj nie przedstawiamy dowodéw tozsamosci kombinatorycznych w sposéb tak
sformalizowany. Przedstawiamy natomiast ,historyjke”, ktéra mozna tatwo sformalizo-
wacé i ktora traktujemy jako dowdd. Jest to tzw. dowdéd kombinatoryczny. A oto
przyklad historyjki bedacej dowodem tozsamosci (1.2).

z ktorej otrzymujemy

Przypusémy, ze w naszej firmie pracuje m oséb. Chcemy wybraé¢ sposréd nich n oséb
(n > 0), ktére otrzymaja nagrode oraz chcemy jedna z nagrodzonych os6b awansowac.
Na ile sposobow mozemy tego dokonadé?

Po pierwsze wybieramy osoby do nagrody. Mozemy to zrobi¢ na (’:) sposobow. Na-
stepnie wsrod wybranych oséb wskazujemy osobe przeznaczona do awansu. Mozemy to
zrobi¢ na n sposobow. Z reguty mnozenia wynika, ze istnieje n - (Z‘) sposobow lacznego
wyboru.

Mozemy takze wybra¢ najpierw osobe¢ do awansu: mamy m mozliwosci. Te osobe takze
nagradzamy, mamy wiec juz jedna osobe nagrodzona. Sposréd pozostatych m — 1 oséb
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dobieramy jeszcze n—1 oséb do nagrody; mozemy to zrobi¢ na (’Z;__ll) sposobow. Z reguty

mnozenia wynika, ze mamy lgcznie m - (7,?__11

Wreszcie, tak jak poprzednio, stwierdzamy, ze liczba sposobéw wyboru nie zalezy od
metody zliczania. Otrzymujemy zatem réwnosé (1.2):

m m—1
n( >:m-( >, (1.2)
n n—1
Tozsamosé (1.3) pozwala obliczaé¢ wspélezynniki dwumianowe. Popatrzmy na przyklad:

TN_T (6Y_T.6 (5\_7.65 (4_7 65 4 (8)_
4) 4 \3) 4 3 \2) 4 3 2 \1) 4 3 2 1 \0o)
7

= —— - =7.5=35.
Przyktad ten uogélniamy w nastepnym twierdzeniu.

) sposobow wyboru.

co konczy dowdd.

Twierdzenie 1.1. Jesli 0 <n < m, to

(7:) B #'—n)' (1.4)

Dowdéd. Stosujemy indukcje wzgledem m. Zauwazmy najpierw, ze dla dowolnego n i dla

n = 0 mamy
m m! m)!
=1 oraz ——— = —=1,
0 0-(m—-0) ml

(%) = wenar

W szczegblnosci teza twierdzenia jest prawdziwa dla m = 0.

czyli

Zaktadamy nastepnie, ze dla pewnego m i dowolnego n takiego, ze 0 < n < m prawdziwa

jest rownosé
m m)!
n) nl-(m—n)’

Niech teraz 0 < n < m + 1. Mamy dowies¢, ze
m+1\ (m+1)!
n ) nl-(m+1-n)
Wiemy juz, ze ta rownosé jest prawdziwa dla n = 0. Niech zatem n > 0. Z réwnosci

(1.3) otrzymujemy
m+1\ m+1 m
n on n—1/)
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Poniewaz 0 < n — 1 < m, wiec z zatozenia indukcyjnego otrzymujemy

m B m! B m!
(") - (=Dl (m—(n—1) (=Dl (m+1-m

Stad dostajemy

m+1) m+1 m]! B
( n )_ n  (n—D!-(m+1-n)
B m!-(m+1) B
(=Dl n-(m+1-n)
(m+1)!

nl-(m+1—n)’
c. b. d. o.

Twierdzenie 1.1 mozna udowodni¢ w inny sposéb. Zastandéwmy sie, jak mozna utworzy¢
dowolna permutacje ustalonego m-elementowego zbioru A. Wykonujemy trzy czynno-
Sci: najpierw wybieramy n-elementowy podzbiér B zbioru A, nastepnie porzadkujemy
elementy zbioru A, wreszcie porzadkujemy elementy zbioru A \ B, ustawiajac je za
elementami zbioru B. Nietrudno zauwazy¢, ze w ten sposob kazda permutacje zbioru
A otrzymamy dokladnie jeden raz. Popatrzmy teraz, ile mozliwych wynikéw da kazda
z tych trzech czynnoéci. Pierwsza ma (") mozliwych wynikéw, druga n!, trzecia (m—n)!
wynikéw. Z reguly mnozenia otrzymujemy zatem

(’:) ‘! (m—n)!l = ml,

WE =

Pokazemy teraz dowdd nastepujacej tozsamosci, podobnej do tozsamosci (1.2):

n~(?:>:(m—n+1)-<nnjl). (1.5)

Niech |A| = m. Znéw dwoma sposobami zliczamy elementy zbioru

czyli

B= |J {(aN): acN}.

NeP,(A)

Tak jak poprzednio, zbiér N € P, (A) mozemy wybra¢ na (C’Z) sposobéw, a jego element
a mozemy wybraé na n sposobéw. To daje lacznie n - () par (a, N). Mozemy postapi¢
inaczej. Najpierw wybieramy zbiér N’ € P,,_1(A). Mozemy to zrobié na (n’fl) sposobéw.
Nastepnie wybieramy a € A\ N’ i przyjmujemy N = N’ U {a}. Element a mozemy
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wybraé¢ na m — n + 1 sposob6w, co daje lacznie (m —n+1) - (T:fl) par (a, N). W ten
spos6b rownoséé (1.5) zostata udowodniona.

Paragraf ten zakonczymy dowodem tozsamosci bedacej naturalnym uogélnieniem toz-
samosci (1.2). Udowodnimy, ze

m\ [n m\ [(m—k
= ) 1.6
Niech M bedzie zbiorem m-elementowym. Bedziemy zlicza¢ na dwa sposoby elementy

zbioru

A={(N,K): KCNCM,(|K|=k|N|=n}.

Zbior N mozemy wybra¢ na (’;;) sposobow. Nastepnie jego podzbior k-elementowy K

mozemy wybra¢ na (}) sposobéw. To daje laczng liczbe (™) (%) sposobéw wyboru.

Mozemy jednak wybiera¢ te zbiory w innej kolejnosci. Najpierw wybieramy zbiér K;
mamy (7}?) sposobow wyboru. Nastepnie sposrod pozostalych m — k elementow zbioru
M wybieramy n — k elementéw. Lacznie z juz wybranymi elementami utworza one zbiér
N. Te n — k elementé6w mozemy wybraé na (ZLL—_]I;) sposob6w. Lacznie daje to (') (ZLL—_]I;)
sposobéw wyboru elementéow zbioru A. Znéw liczba elementéw zbioru A nie zalezy od

kolejnosci zliczania, co dowodzi réwnosci (1.6).

Do tego dowodu mozna ulozy¢ historyjke podobng do historyjki w dowodzie tozsamosci
(1.2). Przypusémy, ze w naszej firmie nadal pracuje m oséb. Chcemy nagrodzi¢ n z nich
oraz k nagrodzonych oséb awansowa¢. Na ile sposobow mozemy to zrobi¢? Zliczamy
te sposoby wyboru dwiema metodami. Najpierw wybieramy osoby do nagrody: na (Z‘)
sposobow, nastepnie sposréd nich wybieramy k os6b do awansu: na (Z) sposobow. To
daje lewa strone réwnosci (1.6). Mozemy tez najpierw wybraé¢ osoby do awansu (i jedno-
czesnie nagrody): na (7]’;) sposobow, a nastepnie dobra¢ brakujace n—k oséb do nagrody:
na (7:;__:) sposobow. To daje prawa strone. Zauwazmy takze, ze dla k = 1 otrzymujemy
réwnosé (1.2).

7. Trojkat Pascala

Ustawmy wspotezynniki dwumianowe w tablicy:

Tablice te nazywamy trojkatem Pascala. Widzimy zasade umieszczania wspotczyn-
nikéw dwumianowych w trojkacie Pascala. Liczba m we wspotczynniku (Z‘) oznacza
numer wiersza, przy czym wiersze numerujemy od zera. Liczba n oznacza kolejny nu-
mer wspotczynnika w wierszu, przy czym znoéw numerujemy miejsca od zera. Zauwazmy
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nastepnie, ze w wierszu o numerze m mamy m + 1 wspotczynnikéw numerowanych licz-
bami n od zera do m. Mozemy sobie oczywiscie wyobrazié¢, ze wszystkie wiersze sg
nieskonczone i ich wyrazy sa numerowane liczbami catkowitymi. Poniewaz (77’;) =0 dla
n < 01in > m, wiec wszystkie wspoétczynniki dwumianowe nieuwidocznione w trojkacie
Pascala sa rowne zeru. Inaczej mowiac, w trojkacie Pascala pokazujemy tylko niezerowe
wspotczynniki dwumianowe.

Pierwsze wiersze trojkata Pascala wygladaja nastepujaco:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Zbadamy teraz wlasnosci trojkata Pascala.

Zauwazmy, ze kazdy wiersz tréjkata Pascala zaczyna sie i konczy jedynka. Wynika to

z réwnosci (1.1):
m m
= =1.
(5)=C)

Nastepnie zauwazmy, ze kazdy wiersz jest symetryczny:

([)-(m)

Wynika to stad, ze jesli |A| = m, to zbiory P,(A) i Pp,—n(A) sa réwnoliczne, funkcja
f:Py(A) — P,_n(A) okreslona wzorem f(B) = A\ B ustala t¢ rownolicznosé. Inaczej
moéwige, wybér n elementow ze zbioru A jest tym samym, co odrzucenie pozostalych
m — n elementéw tego zbioru A.

Wreszcie najwazniejsza wlasno$é trojkata Pascala. Kazdy wspélczynnik dwumianowy
(C’Z), gdzie 0 < n < m, jest suma dwéch wspodlczynnikow stojacych bezposrednio nad
nim. Te zaleznos¢ mozna zapisa¢ wzorem

(ZL) - (7:—_11) " (mn_ 1)' (18)

Podamy teraz trzy dowody tego wzoru.

Dowdd 1. Korzystamy z réwnosci (1.5) (podstawiajac m — 1 w miejsce m). Mamy

zatem
() (220,

Teraz, korzystajac réwniez z réwnosci (1.3), dostajemy
m—1 m—1 m—1 m-—-n m—1 m-—n m—1
+ — + . — (1 + ) . —
n—1 n n—1 n n—1 n n—1
_m m—1 _(m
T n n—1) \\n)
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Dowéd 2. Korzystamy ze wzoru (1.4). Mamy zatem

(7:—_11) + (m;l): (n—ﬁ._(:n)!—n)! + n!.&l:;ﬂ_ -

(m—1)! N (m—1)! _
(n—D!'(m—-n—-!-(m—n) (n-—1!n-(m—-—n-1)

m—1)! 1 1
- (n—1)<!-(m—)n—1)!'<m—n+ﬁ>:
(m—1)! m
n—D-(m—n—-1)! (m—n)n
B (m—1!-m
C(n=D!n-(m—n-1! (m—n)

~ o= ()

Dowéd 3. Podamy teraz dowdd kombinatoryczny. W naszej firmie, razem z dyrektorem,
pracuje m osob. Chcemy, by na konferencje pojechato m oséb. Na ile sposobow mozemy
je wybrac?

Mamy dwa przypadki. W pierwszym przypadku zakladamy, ze dyrektor jedzie na konfe-
rencje. Wtedy z pozostatych m—1 os6b musimy wybraé¢ n—1 oséb. W drugim przypadku
zakladamy, ze dyrektor nie jedzie na konferencje. Wtedy z pozostatych m — 1 os6b mu-
simy wybra¢ n osoéb jadacych na konferencje. Z reguly dodawania wynika teraz wzor
(1.8).

To rozumowanie mozna tatwo sformalizowa¢. Mianowicie zauwazamy, ze
P,(m)=P,(m—-1)U{AU{m}: A€ P,_1(m—1)},

przy czym zbiory po prawej stronie sa roztaczne oraz oczywiscie

|P(m —1)] = (7:) oraz [{AU{m}: A€ P, y(m—1)}| = <m_1).

n—1

Dopiszmy do trdjkata Pascala wspolczynniki (’:) dlan <0in>m:

(%) (%) (o)
(%) 0

Zauwazmy, ze W pierwszym wierszu wystepuja same zera z wyjatkiem jednego miejsca:

)-
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We wszystkich nastepnych wierszach kazdy wspoélczynnik powstaje z potozonych nad
nim zgodnie ze wzorem (1.8). Dlatego odtad we wzorze (1.8) nie bedziemy przyjmowaé
zadnych zalozen o m i n, poza oczywistym zalozeniem, ze m —1 > 0, czyli m > 1.

Jeszcze jedna wazna wlasnosé tréjkata Pascala otrzymujemy z réwnosei (1.5). Miano-

wicie z rownosci
m m
. — — 1) - 1.5
n (n) (m—n+1) (n - 1) (1.5)

Przypusémy teraz, ze m jest liczba parzysta: m = 2p. Niech teraz n < p. Wowczas

wynika, ze

— 1 1 2p+1 2 1 2
m—-_n+l_m+ 1= p + 1> n+ _1>_n_1:1,

n n n - n n

()=

Niech teraz n > p, czylin — 1 > p. Wowczas

skad wynika, ze

—n+1 1 2+ 1 2(n— 1) +1 2n — 1 2
montl _mtl Al 20Dl ol 2

n n n n n n

skad wynika, ze

Podsumowujac, jesli m = 2p, to

(5) =) < (1) = () =e () = () < ()

Przypusémy taraz, ze m jest liczba nieparzysta: m = 2p + 1. Niech najpierw n < p.
Wowczas

— 1 1 2 2 2 2 2
m—mn-+ :m+ 1= D+ 1> n+ _1>_n_1:1,

n n n n n

skad wynika, ze

s|3
3

S
|
—_

Niech nastepnie n = p + 1. Wtedy

m—n+1_2p+1—p—1+1_p+1_1
n B p+1 Cop+1

)
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(pibl) - (ZL)

Wreszcie niech n > p+ 1, czyli p < n — 1. Wowczas

skad wynika, ze

— 1 1 2 2 2(n—1 2 2

n n n n n

T
(=)< ()= () < () -7 < () -()

Paragraf ten zakonczymy wzorem na sume wspétczynnikow dwumianowych jednego

wiersza tréjkata Pascala:
" /m
= 2", 1.9
> (") (19

n=0

skad wynika, ze

Dowdéd. Zauwazmy, ze, jesli |A| = m, to
P(A)=PFPy(A)U P (A)U...UP,(A),

przy czym zbiory po prawej stronie sg roztaczne oraz

- (2

dlan=0,1,...,m. Réwnosé¢ (1.9) wynika teraz z reguly dodawania.

8. Wzér dwumianowy Newtona

W tym paragrafie podamy dwa dowody wzoru znanego (przynajmniej czeSciowo) ze
szkoty. Dla dowolnych liczb rzeczywistych a i b i dowolnej liczby naturalnej n > 1

zachodzi réwnosé: .
(@a+b)" =) (Z) a" " rp*, (1.10)
k=0

Wzér (1.10) nazywamy zazwyczaj wzorem dwumianowym Newtona.

Dowdéd 1. Stosujemy indukcje ze wzgledu na n. Dla n = 1 mamy
1

1 _ 1 1
P = Z (k)al Fpk = (O)a1b0+ (1)aobl —a+b=(a+0b) =L
k=0
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Przypus$émy nastepnie, ze dla pewnej liczby naturalnej n réwnosé (1.10) jest prawdziwa:

(a+b)" = i (Z) a" ok,

k=0

Mamy udowodnié, ze

n+1
(a+b)" =" <” Z 1> a"t kP,
Skorzystamy w tym celu z réwnoéci (1.8):

(a—l—b)”+1 (a+b)" - (a+b) =

- (X (Z) a”_kbk> (a+b) =

3 =
= O

Il
E
R
> 3
N———— — \/ N
Q Q
3
_|_
—
x>
S
=
_I_
3
M+
A

Il Il Il
o
3 3
(1= 1= IJE |
s R
3 > 3
> +
—_
N—
3
I
o
I

>
I
=

>
I
=

co konczy dowdd.

Dowéd 2. Przyjrzyjmy sie lewej stronie:

(a—i—b)”z\(a%—b)-...-(a—l—b)}.

n czynnikéw

Po wymnozeniu czynnikéw w n nawiasach otrzymamy sume iloczynéw: dla kazdego
wyboru a lub b z kolejnego czynnika otrzymamy jeden skladnik sumy. Mamy zatem
lacznie 2" sktadnikéw; kazdy z nich jest postaci a”*b* dla pewnego k. Sktadnik o™ *b*
powstaje w wyniku wyboru b z k£ czynnikéw a + b; z pozostalych n — k czynnikéw
wybieramy a. Poniewaz mamy (Z) mozliwosci k£ wyboréw b z n czynnikow a + b, wiec
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sktadnik a™~*b*F pojawi sie (Z) razy w naszej sumie. Zatem po uproszczeniu jednomian

a™ Fb* wystapi ze wspélezynnikiem (Z) Poniewaz k jest oczywiscie jedna z liczb od 1

do n, wiec ostatecznie otrzymujemy sume wystepujaca po prwej stronie wzoru (1.10),
c. b. d. o.

9. Cztery dowody jednej tozsamosSci

W tym paragrafie udowodnimy nastepujaca tozsamosé¢ dla n > 1:

gh (Z) =n. 2L, (1.11)

Podamy cztery dowody tej tozsamosci.

Dowdéd 1. Skorzystamy najpierw ze wzoru (1.2). Wiemy, ze:

e () -ar (-5 ()2 00) 55

Teraz wystarczy skorzystaé z réwnosci (1.9):
n—1
— 271,—1’
(")

Dowdéd 2. Prowadzimy dowdd przez indukcje ze wzgledu na n. Niech najpierw n = 1.

Mamy wtedy
1
1 1 1
k . — . 1 . == ]_
k=0

1-271 =1

I
LLU7JL

skad wynika réwnos$¢ (1.11).

oraz

Y

co dowodzi, ze wzor (1.11) jest prawdziwy dla n = 1.

Zalézmy teraz, ze réwnosé (1.11) jest prawdziwa dla pewnej liczby n. Wykazemy, ze jest
ona tez prawdziwa dla liczby n + 1. Mamy zatem udowodni¢, ze

%k-(nzl):(n%—l)ﬂn.

k=0

W dowodzie skorzystamy ze wzoru (1.8):

(kﬁl)+ <Z) - (n;:l)
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A oto obliczenia:

n+1 n+1 n
n+1 n+1 n+1
I;k-(k)_Zk-<k)_ k-(k)+n+1_

k=1 k=1
" n n n
_Zk (k)+ k (k_1)+n+1—
k=1 k=1
n—1
=n-2" 1+Z(k+1)‘(k>+"+1:
k=0
n—1 n n—1 n
=>"k (k)+2(k)+n-2”_l+n+1:
k=0 k=0
=n-2" 42" 1 4n-2" 1 hn+1=
=(n+1)-2"

Dowdéd 3. Skorzystamy z prostego wniosku ze wzoru dwumianowego Newtona. Miano-
wicie dla kazdej liczby rzeczywistej x prawdziwa jest réwnosé:

(1+2)" = ki:() <Z) 2",

Po obu stronach znaku rownosci mamy wiec dwie funkcje, ktérych wartosci w kazdym
punkcie sa réwne. Sa to wielomiany, a wiec funkcje rézniczkowalne. Ich pochodne sg
wiec tez réwne. Popatrzmy wiec na te pochodne:

(A+2)") =n-(1+z)"!

<1+; (Z) .a:’f)l = k:k-. <Z) Lkl

oraz

Zatem mamy rownosé

w ktorej wystarczy podstawi¢ x = 1.

Dowdéd 4. Jest to dowdd kombinatoryczny. Zauwazmy najpierw, ze wzér (1.11) mozna
zapisa¢ w nastepujacej rownowaznej postaci:

ék(’;) —n. 2L, (1.11)
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Przypusémy zatem, ze w naszej firmie pracuje n oséb. Chcemy nagrodzi¢ pewne osoby
i jedna z nagrodzonych os6b dodatkowo chcemy awansowac¢. Na ile sposobéw mozemy
to uczynic?

Rézne wybory tych oséb bedziemy zlicza¢ dwiema metodami. Po pierwsze, mozemy
najpierw zdecydowac, ile oséb nagradzamy, potem wybraé¢ osoby, ktére nagrodzimy
i na koncu wybierzemy jedna z tych nagrodzonych oséb, by ja awansowac¢. Przypusémy
wiec, ze zdecydowaliSmy sie nagrodzi¢ k oséb. Oczywiscie k jest jedna z liczb od 0
(gdy nikogo nie chcemy nagrodzi¢) do n (gdy chcemy nagrodzi¢ wszystkich). Osoby do
nagrody mozemy teraz wybra¢ na (Z) sposobow. Przy kazdym takim wyborze jedna
osobe do awansu mozemy wybrac¢ na k sposobow. Dla danej liczby k& mamy wiec £ - (Z)
sposobow wykonania zadania. Liczba wszystkich sposobéw jest zatem réwna

Mozemy tez popatrzeé¢ na to samo zadanie z drugiej strony. Najpierw wybierzmy jedna
osobe do awansu, a potem z pozostatych n — 1 os6b wybierzmy niektére do nagrody. Te
jedna osobe do awansu mozemy oczywiscie wybra¢ na n sposobéw. A pewna liczbe po-
zostalych oséb do nagrody mozemy wybraé na 2"~ ! sposobéw — bo tyle jest podzbioréw
zbioru liczacego n — 1 elementéw. Lacznie mamy n - 2"~ ! sposobéw wykonania zadania.
To konczy dowdd réwnosei (1.11).

10. Tozsamo$é Cauchy’ego (tozsamo$é Vandermonde’a)

W tym paragrafie udowodnimy tozsamosé, z ktérej kilkakrotnie skorzystamy w dalszym
ciggu. Udowodnimy mianowicie, ze dla dowolnych liczb naturalnych m, n i k£ zachodzi

(") = (")

Tozsamosé (1.12) nosi nazwe tozsamosci Cauchy’ego (lub tozsamo$ci Vander-
monde’a). Pokazemy teraz trzy dowody tozsamosci Cauchy’ego.

Dowéd 1. Zastosujemy indukcje wzgledem m. Pokazemy, ze jesli m jest dowolna liczba
naturalna, to dla dowolnych liczb naturalnych n i k zachodzi réwnosé (1.12). Spraw-
dzamy najpierw, ze ta réwnos¢ zachodzi dla m = 0 i dowolnych n i k, tzn.

S (6")-()

Zauwazmy, ze dla j # 0 mamy (2) = 0. Zatem suma po lewej stronie sktada si¢ tylko
z jednego sktadnika dla j = 0. Mamy zatem dowies¢, ze

(0)("0) = (2)
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co jest oczywiste.

Przeprowadzimy teraz krok indukcyjny. Przypu$émy wiec, ze tozsamosé¢ Cauchy’ego
zachodzi dla pewnej liczby m i wszystkich liczb naturalnych n i k:

S0 (5

Pokazemy, ze wtedy dla dowolnych n i k£ zachodzi réwnosé

A Ol (6] ObliCZenla:

> (") S () (M) () -
( |

SO
("2 (G-
()37

Dowdd 2. Jeszcze raz wykorzystamy réwnosé

(1+2)" = Zn: (Z)x’f

k=0

Popatrzmy na nastepujacy iloczyn wielomianow:

m n
my\ ny\
(1+x>m+n:(1+m)m'(1+m)n: Z()J . ()J
=0 \J =0\
Po lewej stronie réwnosci mamy oczywiscie wielomian stopnia m + n. Po prawej stronie
mamy iloczyn dwoch wielomianéw, jeden stopnia m i drugi stopnia n, a wiec jest to
takze wielomian stopnia m+n. Poréwnajmy wspoétczynniki stojace przy ¥ w obu wielo-
m—+n

mianach. Po lewej stronie mamy zgodnie ze wzorem dwumianowym sktadnik ( N )xk
Po prawej stronie, zgodnie ze wzorem na mnozenie wielomianéw, mamy

() (1)

J=0
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> (1))

Poréwnujac te wspotczynniki w obu wielomianach otrzymamy dowodzong réwnosé.

czyli

Dowdd 3. Znéw konczymy dowodem kombinatorycznym. W naszej firmie pracuje m+n
0s6b: m kobiet i n mezczyzn. Checemy nagrodzi¢ k oséb. Oczywiscie osoby do nagrody
mozemy wybra¢ na (m,‘:”) sposobow. Te liczbe sposobéw mozemy jednak otrzymac
w wyniku innego rozumowania. Najpierw zdecydujmy, ile kobiet powinno dosta¢ na-
grode. Niech j oznacza liczbe nagrodzonych kobiet. Oczywiscie j jest jedna z liczb od 0
(gdy nie nagrodzimy zadnej kobiety) do k (gdy nagrodzimy same kobiety). Dla kazdej
wartosci j kobietom mozemy przyzna¢ nagrody na (7;‘) sposobéw. Gdy rozdzielimy juz
nagrody miedzy kobiety, zostanie nam k — j ,wolnych” nagréd do rozdziatu miedzy
mezczyzn. Tych mezczyzn do nagrody oczywiscie mozemy wybra¢ na (kfj) Sposobow.
Lacznie, dla kazdej warto$ci £ mamy (7;‘) (k:‘j) sposobéw przydziatu k nagréd. Teraz
wystarczy zsumowac¢ otrzymane liczby sposobow ze wzgledu na j, by otrzymac¢ wzor
(1.12).

Interesujacym wnioskiem z tozsamosci Cauchy’ego jest rownosé

20 - () 119

ktora otrzymujemy przyjmujac m = n = k. Mamy wtedy

G- -2 00 -20)

j=0 7=0 J

11. Wybory ze zbioréw uporzadkowanych

W dowodach kombinatorycznych, ktore widzielismy do tej pory, wybieraliémy na po-
czatku dowolny zbior skoniczony i nie byla istotna zadna jego dodatkowa struktura.
W tym paragrafie pokazemy kilka dowodéw kombinatorycznych, w ktorych istotne be-
dzie to, ze wybierzemy zbiér uporzadkowany. Dla ustalenia uwagi bedzie to zbiér [n] dla
pewnej liczby naturalnej n z naturalnym porzadkiem.

Udowodnimy najpierw, ze dla dowolnych liczb naturalnych m i n zachodzi réwnosé
m
k 1
Z( +n):<m+nf ) (1.14)
i n n+
Dowéd. Zauwazmy, ze

Poyi(m+n+1)= U{A: |A|=n+1 oraz max(A)=k+n+1} =
k=0

= U{A: k+n+1eA oraz [AN[k+n]|=n}.
k=0
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Zbiory bedace sktadnikami sumy po prawej stronie oczywiscie sg roztaczne oraz

{A: k+n+1€A oraz |[AN[k+n]|=n}|= (k%k—n)

Rownosé (1.14) wynika zatem z reguly dodawania.

Ten dowdd mozna opisa¢ stownie w nastepujacy sposob. Mamy wybrac¢ n+ 1 elementow
ze zbioru [m + n + 1]. Najpierw wybieramy najwiekszy element naszego zbioru. Niech
bedzie nim liczba [. Nastepnie ze zbioru [l — 1] wybieramy pozostale n elementéw.
Zauwazmy, ze n + 1 < | < m + n + 1. Liczbe [ mozemy zatem zapisa¢ w postaci
l=k+n+1, gdzie 0 < k < m. A wigc: najpiew wybieramy liczbe k + n + 1, gdzie
k € {0,...,m}, a nastepnie ze zbioru [k + n| wybieramy n elementéw.

Podstawiajac m — n w miejsce m i zmieniajac granice sumowania we wzorze (1.14)
otrzymujemy jego posta¢ réwnowaznag:

i (S) - (7::11) (1.15)

k=n

Popatrzmy na kilka przykladéw tego wzoru:

i (k) B (n + 1)
1)\ 2 )

k=1

i (k’) B (n + 1)
2)  \ 3 )

k=1

i K\ (n+1
3/ \ 4 )

k=1

Ze wzoréw tych skorzystamy w nastepnym paragrafie.

—

1.16)

~—~

1.17)

—

1.18)

Udowodnimy teraz nastepujacy wzor:

:Zok(n—k) — (";1> (1.19)

Mianowicie
Ps(n+1) = O{{a,b,c}: aclk], b=k+1, cen+1]\[k+1]}.
k=0

Wystarczy teraz zauwazy¢, ze zbiory wystepujace w sumie po prawej stronie sa roztaczne
oraz

H{a,b,c}:ae[l@], b=k+1, ce[n+1]\[k+1]}}:k(n—k).

Inaczej méwiac, trzy elementy a, b i ¢ zbioru [n + 1] wybieramy w nastepujacy sposéb:
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e najpierw ustalamy liczbe £ =0,...,n,
e potem wybieramy a spo$réd k najmniejszych liczb zbioru [n+ 1] (tzn. sposrdd liczb
1,...,k),

e nastepnie wybieramy b = k + 1,
e wreszcie wybieramy ¢ sposréd n — k najwiekszych elementéw zbioru [n + 1] (tzn.
spoérdd liczb k4 2,...,n+1).

Paragraf ten zakonczymy dowodem nastepujacej tozsamosci:

Zn: (Q"n_ k) Lok —gm, (1.20)

k=0
Rozpatrujemy zbiér P(2n + 1). Mozemy przedstawi¢ go w postaci sumy
P2n+1)=Pi(2n+1)UP_(2n+1),
gdzie
P,(2n+1)={Ae€ P2n+1): |A| >n+1}, P_(2n+1)={A € P(2n+1): |A| <n}.
Zauwazmy, ze dla dowolnego zbioru A € P(2n + 1)
AeP.(2n+1) & 2n+1]\Ae P_(2n+1).

Stad wynika, ze

1
P2+ 1) = |P_(2n+1)| = 5 [P+ 1)| = 5 - 221 =220 = g

N —

Zbiory A nalezace do P, (2n + 1) maja co najmniej n + 1 elementéw. Bedzie nas inte-
resowaé polozenie elementu (n + 1)-go w zbiorze A (liczac od najmniejszego elementu,
w kolejnosci rosnacej). Zauwazmy, ze

P,(2n+1)= U{A€P+(2n+1): 2n—k+1€A oraz |AN[2n— k]| =n}.
k=0

Inaczej méwiac: mamy wybraé co najmniej n+ 1 elementéw ze zbioru [2n+1]. Najmniej-
sze n elementéw wybieramy ze zbioru [2n — k], potem wybieramy element 2n — k + 1
i wreszcie dopeliamy dowolnymi elementami wybranymi ze zbioru [2n+1]\ [2n—k+1],
czyli sposréd k najwiekszych elementéw zbioru [2n + 1]. Zatem oczywiscie

2n — k
’{AEP+(2n+1): 2n—k+1€ A oraz |Aﬂ[2n—k”:n}’:<nn ).Qk‘

Ponadto zbiory wystepujace w sumie po prawej stronie sa rozltaczne. Do zakonczenia
dowodu wystarczy sprawdzié, jaki jest zakres zmiennosci parametru k. Ot6z oczywiscie
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2n — k < 2n, skad wynika, ze k > 0. Ponadto 2n — k > n, skad wynika, ze k < n. Zatem
k €{0,...,n}. To konczy dowdd.

12. Sumy poteg liczb naturalnych

Przyjmijmy oznaczenie
n
=> =14k
j=1

gdzie n,k > 1. W tym paragrafie wyprowadzimy wzory na Si(n) dla k = 0,1,2,3.
Pokazemy mianowicie, ze

So(n) =n,
<n+1) _n(n+1)
2 2 ’
1 [2n+2 nn+1)(2n+1)
Sa(n) 1 ( 3 )Z 6 )
<n—|—1) _ n*(n+1)?
2 4

Rownosé Sp(n) = n jest oczywista. W poprzednim paragrafie udowodnilismy réwnosé

(1.16):
S (1)=("7)

kilk - (""QH) - w (1.21)

Mamy zatem

Liczby T,, = S1(n) nazywamy liczbami tréjkatnymi. Tozsamosé (1.21) wraz z naste-
pujacym rysunkiem ttumaczy te nazwe:

°
° o o
° o o o o o
° o o o o o e o 0o o
° o o o o o o o 0 0 e 0o 0 0 0
Ty Ts T3 Ty 15

Inny dowdd tozsamosci (1.21) pokazemy na przyktadzie. Dwie ,piramidki” majace po
T5 kwdratow ustawiamy obok siebie tak jak na rysunku:
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Po potaczeniu ich otrzymujemy prostokat o wymiarach 6 x 5:

Ogdlnie 27, = (n+ 1) - n, skad dostajemy

Nastepnie udowodnimy, ze:

~ 5, nn+1)(2n+1)
];k = : .

Skorzystamy tym razem z réwnosci (1.17):

>(5)-("3)

Mamy bowiem

k=1 k=1
skad dostajemy
6
k=1
czyli
NS B LU
k=1 k=1
nin+1)(n—1) nnh+1) nn+1)
= = . 2 — 1 =
3 2 g (Gn-1+3)
n(n+1)(2n + 1)

Pokazemy teraz dowdd kombinatoryczny réwnosci

n k2=1'(2n+2)
Z 4 3 ’
k=1

(1.22)

(1.23)
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Z niej dostajemy natychmiast

N, 1 (2n+2\  (2n+2)2n+1)(2n)  n(n+1)(2n+1)
E:k_f”< 3 )_ 4-6 B 6 '

Definiujemy dwa zbiory:
A={(i,j.k): 1<i,j<k<n},

oraz
B={(i,j,k): 1<i<j<k<2n}.

Pokazemy najpierw, ze |A| = S2(n). Mianowicie

— U LGi k) ivje K]}

k=1

oraz zbiory
A ={(i,4,k): i,j € [k]}

dla réznych k sa roztaczne. Zauwazmy ponadto, ze |Ax| = k?; z reguly dodawania wynika
zatem, ze |A| = Sa(n). Wykazemy teraz, ze

2n + 2
ol (22)

Zauwazmy, ze zbiér B jest zbiorem wszystkich niemalejacych ciaggéw diugosci 3 o wy-
razach ze zbioru [2n]|. Z rozwazan dotyczacych kombinacji z powtérzeniami wynika,
ze takich ciagow jest tyle, ile 3-elementowych kombinacji z powtérzeniami ze zbioru

(2n)-elementowego, czyli wlasnie (*";?).

Definiujemy teraz funkcje f : B — A w nastepujacy sposéb:

f(2i,25,2k) = (i, 4, k),
f(28,24,2k—1) = (§ + 1,4, k),

f(26,2 = 1,2k) = (4,4, k),

F(20,2) 1,2k~ 1) = (i, ),

f(22_1 2]72k>:(2 .]7 )7
f(2i—1,25,2k—1) = (j + 1,4, k),

f(20—1,2j —1,2k) = (1,5, k),

f(2i—1,25—1,2k—1) = (i, 4, k).

Sprawdzenie, ze f(i,j, k) € Adla (i, j, k) € B pozostawiamy jako ¢wiczenie. Na przyklad

f(1,4,6) = (1,2,3).
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Mozna tez tatwo pokazaé, ze jesli ¢ < 7, to

FH(, 4, k) = {(2i,24,2k), (20 — 1,24, 2k), (20 — 1,25 — 1,2k), (20 — 1,2 — 1,2k — 1)}
oraz jesli ¢ > j, to

F7H(,4,k)) = {(24,2i—1,2k—1), (24, 2i—1,2k), (24, 2i—2, 2k—1), (2j—1, 2i—2, 2k—1) }.

Na przyktad
F71((1,2,3)) = {(1,3,5),(1,3,6),(1,4,6), (2,4,6) }.

Podobnie
F71((2,1,3)) = {(1,2,5),(2,2,5),(2,3,5),(2,3,6) }.

Z tej whasnosci funkeji f wynika, ze 4 - |A| = | B|, co konczy dowdd tozsamosci (1.23).

Na zakonczenie udowodnimy tozsamo$é

gkﬁ - ("; 1)2 - 7"2(”4+ g (1.24)

Kwadrat o boku dtugosci T), podzielmy na T2 kwadratéw jednostkowych, a nastepnie
na n czedci tak jak na rysunku (dla n = 4):

1 2 3 4

Dtugosci odcinkéw, na jakie podzieliliSmy lewy i dolny bok kwadratu wynosza kolejno:
1,2,...,n. Niech G} oznacza liczbe kwadratow jednostkowych zawartych w k-tej czesci.
Wtedy nietrudno zauwazy¢, ze

12T — k2(kI 12 k2(k4— )2 %2 (b 1)% = (k= 1)) = %2 A — P
Stad wynika, ze
So(n) = G =72 — M,
k=1
co konczy dowdd tozsamosci (1.24).
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Naszkicujemy jeszcze jeden dowdd kombinatoryczny tozsamosci (1.24). Definiujemy dwa
zbiory

oraz
B={((4,7),(k,1)): 0<i<j<n, 0<k<l<n}.

Pozostawiamy jako ¢wiczenie wykazanie, ze

1 2
A = S3(n) oraz |B| = ("; ) .

Nastepnie definiujemy funkcje f: A — B wzorem
(), (B, D) jeslii <,
FO, 5,k =S ((k,01), (5, 0))  jeslid > j,
((G:0), (k, 1) jedlii = j.
Na przyktad
f(1,2,3,4) = ((1,2),(3,4)),
f(27 17374): ((374>7(]‘7 ))7
f(1,1,3,4) = ((1,4),(3,4)).
Pozostawiamy rowniez jako ¢wiczenie sprawdzenie, ze funkcja f przeksztalca zbior A

wzajemnie jednoznacznie na zbior B.

13. Sumy naprzemienne wspolczynnikéw dwumianowych

Udowodnimy teraz, ze jesli n > 1, to

Z(_l)k. <Z) —0. (1.25)
k=0

Dowéd. Zdefiniujmy najpierw dwa zbiory

P={neN: 2|n},
N={neN: 2{n}.

Tozsamo$¢ (1.25) mozemy teraz zapisa¢ w postaci
n n
> ()= ()
k€[n)NP k€[n)nN

czyli

] U Pk(n)‘:‘ U Pk(n)’.

ke[n]nP ke[n]NN
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Nietrudno zauwazy¢, ze funkcja
f:P(n)— P(n)

okreslona wzorem

_ A\ {n} jeslin € A,
f(A>:A_{n}:{AU{n} ;eélingéA

dla A € P(n) jest funkcja przeksztalcajaca wzajemnie jednoznacznie zbior )  Pi(n)
ke[n]NP
na zbiér  |J  Pi(n) i na odwrét (zauwazmy bowiem, ze f~1 = f).
ke[n]nN

Oczywiscie, jesli n = 0, to

zi:(—l)k' (Z) =(-1)" (g) =1 (1.26)

k=0

Na zakonczenie udowodnimy, ze jeslin > 1im > 0, to

m_k‘n__m‘n—l
> (-1 <k)_( 1) ( . > (1.27)
k=0

Rozpatrujemy te sama funkcje f : P(n) — P(n) okreslong wzorem f(A) = A — {n}

dla A € P(n). Wiemy, ze funkcja f jest roznowartosciowa. Bedziemy rozpatrywacé teraz
dwa przypadki.

Przypadek 1. m = 2p. Tozsamosé (1.27) przyjmuje postaé
=) S 6t) = ()
£ \2k) £ \2k+1 2p

czyli
-1

2 () (%) -2 () 1274

k

Zdefiniujmy trzy zbiory:

p
P = Px(n),
k=0

p—1

N = U Poi1(n),
k=0

R=Py(n—1)={A€ Py(n): n¢ Al.
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Zauwazmy teraz, ze f(P\ R) = N, co dowodzi tozsamosci (1.27a).

Przypadek 2. m = 2p + 1. Tozsamosé (1.27) przyjmuje teraz postaé

260 S ) (620

zi‘; (;f) " (27;;11) ”Z (21;1 1)‘ (1.27b)

k k=0

czyli

Zdefiniujmy trzy zbiory:

p
P = Pu(n),
k=0

p—1

N = Para(n),
k=0

R = P2p+1(’l’b— 1) = {A € P2p+1(n) In gA}

Zauwazmy teraz, ze f(P) = N\ R, co dowodzi tozsamosci (1.27b). W ten sposéb dowdd
tozsamosci (1.27) zostal zakonczony.

14. Zliczanie drég

Mamy dany prostokat o wymiarach m xn podzielony na mn kwadratéw jednostkowych.
Chcemy obliczy¢ liczbe drog prowadzacych z punktu A do punktu B, spelniajacych
zalozenie: w czasie przechodzenia drogi wolno poruszaé sie tylko w prawo i do gory.

B

N

rn

A\ J

Y
m

Przyklad takiej drogi widzimy na nastepnym rysunku:
B

rn

A\ J

Y
m
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Kazda taka droge mozemy zakodowaé za pomocg m + n znakéw: m poziomych i n pio-
nowych kresek. Kolejnos¢ tych kresek odpowiada przechodzonym odcinkom poziomym
i pionowym od punktu A do punktu B. Powyzsza droge mozemy zatem zakodowaé za
pomocy ciggu

Oczywiste jest tez, ze kazdy taki ciag koduje doktadnie jedna droge. Ciag sklad sig
z m + n znakoéow. Jest on wyznaczony jednoznacznie po wskazaniu, na ktérych miej-
scach znajduja sie kreski poziome (réwnowaznie: kreski pionowe). Zatem istnieje (m;”)

m—i—n))

(réwnowaznie: ( . takich ciggéw, a wiec i tyle rozwazanych drog. Mamy zatem

liczba drég z A do B — (m N ”) _ (m + ”) (1.28)

m n

Te interpretacje kombinatoryczna wspotczynnika dwumianowego jako liczby drég mozna
wykorzysta¢ do dowodu tozsamosci kombinatorycznych. Udowodnimy najpierw tozsa-

moéé (1.14):
f: (k;:"> - (m:f;”) (1.14)

k=0

Wezmy prostokat o wymiarach m x (n + 1). Kazda droga prowadzaca z A do B w do-
kladnie jednym miejscu przechodzi z przedostatniej na ostatnia linie pozioma (i dalej
juz poziomo zmierza do B). Niech punkt C' bedzie ostatnim punktem naszej drogi znaj-
dujacym si¢ na przedostatniej linii:

B

~n + 1

A Y]

T <

Y
m

Niech odlegtos¢ punktu C' od lewego skraju prostokata wynosi k kratek. Wtedy istnieje
doktadnie (k:”) drog prowadzacych z A do C'. Poniewaz kazda droga z A do B prowadzi
przez jeden taki punkt C, z ktérego nastepnie przechodzi do ostatniej poziomej linii
i dalej poziomo do B, wiec taczna liczba drog jest réwna sumie

()

k=0
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m+n+1

et ), co konczy

Z drugiej strony, ze wzoru (1.28) wynika, ze ta liczba drog jest réwna (
dowod.

Udowodnimy teraz tozsamos$¢ (1.13).

() -()

WeZzmy kwadrat o boku dtugosci n kratek. Kazda droga z A do B przechodzi przez
doktadnie jeden zaznaczony punkt lezacy na przekatnej kwadratu.

B

A

Przypusémy, ze nasza droga przechodzi przez punkt C' potozony w odleglosci k kratek
od lewego boku kwadratu. Wtedy ten punkt lezy takze w odlegtosci k£ kratek od boku
gbrnego.

n—=k
‘ B
k
C
n—=k
A

k

Kazda droge z A do B przechodzaca przez punkt C' dzielimy na dwie drogi: z A do C
iz C do B. Droga z A do C znajduje sie wewnatrz prostokata o wymiarach kx(n—Fk); jest
zatem (Z) takich drég. Droga z C' do B znajduje sie wewnatrz prostokata o wymiarach
(n — k) x k; takich drég jest tez (7). Z reguly mnozenia wynika, ze istnieje (2)2 drég
z A do B przechodzacych przez punkt C. Sumujac te liczby drég dla k£ = 0,1,...,n,
otrzymujemy tozsamosé (1.13).

15. Zliczanie funkcji monotonicznych

W tym paragrafie zajmiemy sie zliczaniem funkcji monotonicznych f : [m] — [n]. Naj-
pierw rozpatrujemy funkcje rosnace. Zauwazmy, ze funkcje rosnaca wyznacza jej zbior

Wyktady z kombinatoryki



32 Wyklad 1

wartosci. Stad wynika, ze liczba funkcji rosnacych f : [m] — [n] jest réwna (::1) Oczywi-
Scie takie funkcje istniejg, o ile 1 < m < n. Nietrudno zauwazy¢, ze funkcji malejacych
jest tyle samo.

Nastepnie zajmiemy sie funkcjami niemalejagcymi. Udowodnimy nastepujace twierdze-
nie.

Twierdzenie 1.2. Niech m,n > 1. Liczba niemalejacych funkcji f : [m] — [n] jest

réwna (mtf;_l).

Dowdéd 1. Dla dowolnej funkeji f : [m| — [n] definiujemy funkcje g : [m| — [m+n — 1]
wzorem

g(k) = f(k) + k=1

dla £ =1,...m. Mamy zatem

g(1) = f(1),
9(2) = f(2) +1,
g(3)=f(3)+2,

gm—1)=f(m—1)+m — 2,
g(m) = f(m)+m — 1.

Poniewaz 1 < f(k) < n dla k € [m], wiec
1<fk)<flk)+k—-1=gk)< f(k)+m—-1<m+n-—1.

Zatem rzeczywiscie g : [m] — [n]|. Teraz pokazujemy, ze funkcja f jest niemalejaca
wtedy i tylko wtedy, gdy funkcja g jest rosnaca. Przypusémy zatem, ze funkcja f jest
niemalejaca oraz 1 < k <1 < m. Wtedy f(k) < f(l), skad wynika, ze

gk =f(B)+k—1<f(D+Ek—-1<f()+1-1=g(l).

Na odwrét, przypusémy, ze funkcja g jest rosngca oraz 1 < k < m. Wtedy g(k) <
g(k+1), czyli
FR)Y+k—1< f(k+1)+(k+1)—1.

Zatem
fR)+k—-1< f(k+1)+k,

czyli
flk) < f(k+1)+ 1.

Stad dostajemy f(k) < f(k+1). Z dowolnosci k wynika, ze funkcja f jest niemalejaca.
Wreszcie pokazujemy, ze kazda funkcja rosnaca g : [m| — [m + n — 1] powstaje w ten
sposob z pewnej funkcji f. Ot6z funkcje f definiujemy wzorem

f(k) =g(k) =k +1
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dla & = 1,...,m. Szczegbly dowodu, ze f : [m] — [n] oraz ze f jest niemalejaca,
pozostawiamy jako ¢wiczenie. Do zakonczenia dowodu wystarczy zauwazy¢, ze istnieje
(™= funkeji rosnacych z [m] do [m +n — 1].

m
Dowdéd 2. Funkcja niemalejaca f : [m| — [n] jest po prostu ciagiem niemalejacym
dlugosci m o wyrazach ze zbioru [n]. Przypominamy, ze za pomoca takich ciagéw de-
finiowaliSmy kombinacje z powtorzeniami. Zatem liczba tych ciagéw jest réwna liczbie
m-elementowych kombinacji z powtérzeniami z n-elementowego zbioru [n], a wiec jest
rowna (m:fl_ 1), czyli (mtf;_l). Kazda taka kombinacje kodowalismy za pomoca ciagu
kropek i kresek. Ze wzgledu na znaczenie tego kodowania przypomnijmy je w kontekscie
kodowania funkcji niemalejacych.

Kazda funkcje niemalejaca f : [m] — [n] kodujemy za pomoca ciagu m +n — 1 symboli:
m kropek i n — 1 pionowych kresek. Popatrzmy na przyktad. Niech m = 8 in = 7.
Wezmy funkcje f : [8] — [7] zdefiniowana nastepujaco:

~
—_

—
[\

~
w

W~
N e e e e N N N

~

—
at

~
=2}

~
\]

A~ N N S N N/~
I
NN oo Ot NN e

—
0]

Kodem tej funkcji bedzie ciag oémiu kropek i szeéciu kresek:

Pionowe kreski dziela cigg na 7 czesci odpowiadajacych mozliwym wartosciom funkcji
f. Kolejne kropki odpowiadaja argumentom. Jedli k-ta kropka lezy w [-tej czedci, to
f(k) = 1. Zatem pierwsza kropka lezy w pierwszej czesci, druga i trzecia w drugiej
czesci, czwarta w piatej czesci, piata i szosta w széstej czesci 1 wreszcie siddma i 6sma
w siodmej czesci. Ogdlnie mamy m kropek odpowiadajacych argumentom i n —1 kresek
dzielacych ciag na n czesci odpowiadajacych mozliwym warto$ciom. Teraz wystarczy
zauwazy¢, ze kazdy taki ciag koduje doktadnie jedng funkcje niemalejaca i na odwrét,
kazda funkcja niemalejaca ma dokladnie jeden kod. Wreszcie zauwazmy, ze kod jest
catkowicie wyznaczony, gdy wskazemy, na ktorych miejscach znajduja sie¢ kropki; jest
zatem (m+”_1) takich kod6w i tyle jest funkcji niemalejacych f : [m] — [n].

m
Dowdd 3. Wykorzystamy prostokat o wymiarach m x (n — 1) do sporzadzenia wykresu
funkcji. Na dolnym boku prostokata numerujemy kolejne kratki liczbami od 1 do m.
Na lewym boku numerujemy linie tworzace kratki liczbami od 1 do n. Nastepnie zazna-
czamy pogrubiona linia m poziomych odcinkéw jednostkowych. Jesli f(k) =, to w k-tej
kolumnie zaznaczamy odcinek znajdujacy sie na [-tej linii poziomej. Zwracamy uwage
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na to, ze powstaje wykres funkcji, w ktéorym wartosci nie sa punktami, ale odcinkami.
Oto przyktad takiego wykresu dla m = 8 i n = 7 i funkcji f okreslonej w dowodzie 2:

= N W ok OO 3

1 2 3 4 5 6 7 8

Poziome odcinki laczymy nastepnie odcinkami pionowymi, otrzymujac tym samym
droge z punktu A do punktu B, spelniajaca warunek sformulowany w poprzednim
paragrafie. Oto droga utworzona z wykresu naszej funkcji f:

B

— N W A O~
I

1 2 3 4 5 6 7 8

Zauwazmy teraz, ze kazda funkcja niemalejaca definiuje w ten sposéb doktadnie jedna
droge z A do B i na odwr6t: kazda droga z A do B spelniajaca warunek z poprzed-
niego paragrafu definiuje doktadnie jedna funkcje niemalejaca. Stad wynika, ze istnieje
(mtz_l) takich funkcji. To konczy dowdd twierdzenia.

16. Liczby Catalana
W tym paragrafie rozwiazemy nastepujace zadanie:

Zadanie. Oblicz, ile jest funkcji niemalejacych f : [n] — [n] spelniajacych warunek

f(k)y<k dlak=1,...,n. (%)

W rozwigzaniu tego zadania wykorzystamy kodowanie funkcji niemalejacych za pomoca
drég. Niech zatem dany bedzie prostokat wymiaru n x (n — 1). Na dolnym boku nume-
rujemy kratki liczbami od 1 do n, na lewym boku numerujemy linie od 1 do n. Wiemy
juz, ze kazda funkcja niemalejaca f : [n] — [n] definiuje dokladnie jedna droge z punktu
A do punktu B. Dodatkowy warunek () nalozony na funkcje f oznacza, ze droga od-
powiadajaca funkcji f nie moze przekroczy¢ przerywanej linii zaznaczonej na rysunku
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(gdzie przyjeto n = 8):

= N W ks OO N
N

1 2 3 4 5 6 7 8

Interesujace nas drogi z A do B nieprzekraczajace przerywanej linii zliczymy inaczej: od
liczby (2:__11) wszystkich drég z A do B odejmiemy liczbe drog przekraczajacych te linie.
Narysujmy wiec nowg przerywang linie, potozona o jedna kratke wyzej. Droga przekra-
czajaca dolng lini¢ przerywana musi mie¢ punkt wspélny z wyzsza linia przerywana.
Niech C bedzie pierwszym punktem na drodze z A do B polozonym na tej wyzszej linii
przerywanej.

B

= N W ks OO N
N

1 2 3 4 5 6 7 8

Czes¢ drogi od punktu A do punktu C odbijamy teraz symetrycznie wzgledem wyzszej
linii przerywanej. Otrzymujemy droge z punktu A’ do punktu B.

3<

Y
n+1

Odwrotnie, kazda droga z punktu A’ do punktu B musi przeciaé¢ te wyzsza linie prze-
rywang. Niech C' bedzie pierwszym punktem wspolnym drogi i tej linii przerywane;j.
Odbijajac symetrycznie czesé A'C tej drogi wzgledem linii przerywanej, otrzymujemy
droge z A do B przekraczajaca dolng linie przerywana. Zatem interesujaca nas liczba
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drég z A do B przekraczajacych dolng linie przerywang jest réwna liczbie drog z A" do
B, czyli (2”_1).

n—2
Liczba funkcji f : [n] — [n] spelniajacych warunek (x) jest zatem réwna

() -(Gn)

Skorzystamy teraz ze wzoru (1.5):

m m
. — _ 1) - . 1.5
n (n) (m—n+1) <n—1) (1.5)
Mamy wéwczas
2n —1 2n —1 2n —1
—1)- =2n—-1—(n—-1 1) - = 1) -
-0 () = 1- e nan - (T =@y (7)),
czyli
2n—1\ n—-1 (2n-1
n—-2) n+l n—1)"
Stad otrzymujemy
2n —1 2n —1 _ 2n —1 n—1 2n —1 _
n—1 n—-2) \n-1 n+1 n—1/)
<1 n—l) 2n —1 B
n+1 n—1)
_ 2 2n —1 _ 1 2n 2n —1 _
Con+1 n—1) n+1 n n—1/)
B 1 2n
S on+1 n)
c - 1 (2?1)
n+1 n

nazywamy liczbami Catalana. Oto kilka poczatkowych liczb Catalana:

Liczby

Ci=1, Cy=2, C3=5 Ci=14, Cs5=42, Cg=132, C;=429.

17. Podzial zbioru na bloki réwnoliczne

Nastepne zadanie kombinatoryczne, ktorym bedziemy sie zajmowac, polega na zliczaniu
podzialéw zbioru na réwne czeSci. Przypusémy, ze dany jest mn-elementowy zbior A.
Chcemy wiedzieé, iloma sposobami mozemy podzieli¢ go na m zbioréw n-elementowych:

A:Alu...UAm, |A1|::|Am|:7’b
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Kazdy taki podzial mozemy tatwo otrzymac z pewnej permutacji catego zbioru A. Mia-
nowicie jako pierwszy zbiér podziatu (czyli A;) bierzemy zbior skladajacy sie z elemen-
téw stojacych na pierwszych n miejscach, jako drugi zbidr (czyli As) bierzemy zbior
elementow stojacych na nastepnych n miejscach itd. Wreszcie zbior A, sktada sie z ele-
mentow stojacych na ostatnich n miejscach. Oczywidcie ten sam podzial otrzymamy na
0g0t z réznych permutacji catego zbioru A.

Liczbe podzialow wyznaczymy dzielac liczbe wszystkich permutacji przez liczbe permu-
tacji dajacych ten sam podzial zbioru A. Wszystkich permutacji jest oczywiscie (mn)!.
Ten sam podzial otrzymamy z permutacji rézniacych sie porzadkiem elementéow w kaz-
dym bloku n-elementowym oraz rézniacych sie porzadkiem tych blokéw. Kazdy blok
n-elementowy mozemy uporzadkowac¢ na n! sposobéw. Takich blokow jest m, wiec tacz-
nie mamy (n!)” sposobéw uporzadkowania elementéw wewnatrz kazdego bloku. Wresz-
cie mamy m! sposobow uporzadkowania tych m blokéw. To ostatecznie daje liczbe
(n!)™ - m! permutacji wyznaczajacych ten sam podzial zbioru A. Zatem liczba podzia-
téw wynosi

(mn)!
(nh)y™ - m!”

Wyprowadzimy stad nastepujacy wniosek. Poniewaz liczba podziatléw zbioru jest liczba
catkowita, wiec
(D)™ - m! | (mn)!

Otrzymany wniosek pozwoli nam latwo rozwiazaé¢ nastepujace zadanie teorioliczbowe
(XLIIT Olimpiada Matematyczna, zawody III stopnia, zadanie 6).

Zadanie. Udowodnij, ze dla dowolnej liczby naturalnej k
(k,!>k2+k+1 ‘ (kB)!
Rozwigzanie. Najpierw podstawimy m = n = k i otrzymamy
(EDF kY| (R2)!

czyli
(D] (k2)!

Nastepnie podstawimy m = k? oraz n = k i otrzymamy
(R (R)1] ()
Laczac ze soba ostatnie dwie zaleznosci tatwo otrzymamy
(KD (RS ] (k)1

czyli ostatecznie
(k‘!)k2+k+1 | (k3)|
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18. Operator réznicowy
Niech f: R — R. Definiujemy funkcje Af : R — R wzorem

(Af)(@) = f(z+1) = f(2).

Operator A tworzacy z funkcji f funkcje Af nazywamy operatorem rdéznicowym.
Ten operator réznicowy mozna iterowaé. Definiujemy mianowicie cigg funkcji A*f dla
k=1,2,... wzorami:

Alf=Af,
AMLF = A(A*)),
Czasami definiujemy ponadto AYf = f. Popatrzmy teraz na kilka przykladéw.

(AMf)(x) = (A )() flz+1) = f(x),
(A*f)(z) = (AA'))(@) = (Af) (@ +1) = (Af)(z) =
=(f(x+2) = flz+1) - (fz+1) - f(x)) =
f(w+2)— flz+1) + f(2),
(AAZN)(@) = (A* )z +1) — (A*f)(2) =
=(fle+3) =2f(x+2)+ fle+1)) = (f(z+2) = 2f(z + 1) + f(2)) =
(

(A*f) (=)

+3
f(ac+3)—3f(m+2)+3f(ac+1) f(x),
(AAP))(x) = (A )@ +1) — (A% f)(2) =
=(f(x+4) =3f(x+3)+3f(x+2)— f(z+1))—
—(f(z+3)=3f(x+2)+3f(x+1) - f(z)) =
=flz+4)—4f(x+3)+6f(x+2)—4f(x+ 1)+ f(x)

7)

(Af)(x)

i tak dalej. Udowodnimy teraz twierdzenie ogolne.
Twierdzenie 1.3. Niech f : R — R. Wtedy dla dowolnego k£ > 1 i dowolnego z € R

mamy
Ek: <> flz+ 7). (1.29)

Jj=

Dowdéd. Stosujemy indukcje wzgledem k. Dla £ = 1 mamy

L= (A'f)(z) = f(z+1) — f(z)

oraz
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W kroku indukcyjnym zakladamy, ze dla pewnego k£ mamy

BF 1)) = 3 (<1 (F)rw s

i dowodzimy, ze

=kj< i 1>f(:v+3)+§:0(—1)’“‘”1<k>f(w+y>
=§;< T S R R e e W FEET
r e (B o+ 3 e (e -

+(—1ﬁﬁ4—%+n(k)f@x+k—+1):

e ] (NS FERR S @RI

+

(—1)FHtm ey (Z :[ 1) fla+k+1)=

k+1

_l’_

o (M ) -

|
Ll

c. b. d. o.

Operatory réznicowe A i A™ mozna stosowaé takze do ciagdw o wyrazach rzeczywistych.

Niech f: N — R. Definiujemy wtedy
(Af)(n) = f(n+1) = f(n)
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oraz

Alf=Af,
AFTLE = A(AFf).
Z twierdzenia 1.3 otrzymujemy wtedy nastepujacy wniosek:
Whiosek 1.4. Niech f: R — R. Wtedy dla dowolnego k£ > 1 i dowolnego x € R mamy

k
(AFF)(e— k) =3 (-1 (’;)ﬂx . (1.30)

=0

Dowdéd otrzymujemy zmianiajac najpierw kolejnos¢ sumowania:

k
k _ k(K o) —
AF () =3 (-1) (j)ﬂ )

prd J
- Jzi:o (—1) (I;)f(m +k—j),

a nastepnie podstawiajac x — k w miejsce x.
Whiosek 1.5. Niech f: N — R. Wtedy dla dowolnego k£ > 1 i dowolnego n > 0 mamy

k

k _ kg (F n - i
(A5 =32 (-1 (") s+ (1.31)
W szczegdlnosci dla n = 0 dostajemy
k
(k
(AR)0) =) (=1)*7( ) F(5)- (1.32)
X G)r

Dla dowodu wystarczy rozszerzy¢ funkcje f na caty zbiér R, przyjmujac na przyktad

0 dla x < 0,
flz) = {f([:c]) dlaz >0,

gdzie [z] oznacza cze$é catkowita liczby rzeczywistej .
19. Zastosowania operatora réznicowego

Zaczniemy od wykazania, ze operator réznicowy jest operatorem liniowym. Przypusémy
zatem, ze mamy dane dwie funkcje f,g: R — R i dwie liczby rzeczywiste a i b. Definiu-
jemy funkcje h : R — R wzorem

hz) =a-f(z) +b-g(x)
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dla z € R. Wéwczas

(Ah)(z )=h(fﬂ+ )—h($)=a-f($+1)+b-g($+ 1)—a-f(x)=b-g(z) =
a-(Af)(x) +b-(Ag)(x)

dla z € R. Inaczej méwiac

(Ala-f+b-9))(z) = (a-(Af) +b- (Ag))(x)
dla z € R, czyli
(A(a-f+b-9) = (a - (Af)+b-(Ag)).
Stad tatwo wynika przez indukcje, ze

(AF(a- f+b-g)) = (a- (AFf) +b- (AFg))

dla k > 1.
Niech teraz funkcja f : R — R bedzie okreslona wzorem f(z) = 2" dla x € R. Wtedy

(Af) () = flz+1) = f(z) = (z+1) Z_:( )

dla x € R. Zatem funkcja Af jest wielomianem stopnia n — 1. Stad i z liniowosci
operatora A wynika, ze jesli f jest wielomianem stopnia n, to Af jest wielomianem
stopnia n — 1. Przez indukcje wzgledem k latwo dowodzimy, ze AF f jest wielomianem
stopnia n — k dla k = 1,...,n. W szczegdlnosci A™ jest wielomianem stalym. Stad
nastepnie wynika, ze dla k > n + 1 funkcja A* f jest tozsamosciowo réwna 0.
Udowodnimy teraz przez indukcje, ze jesli funkcja f : R — R jest okredlona wzorem
f(z) = 2™ dla z € R, to (A"f)(x) = n! dla z € R. Te réwnoé¢ bedziemy zapisywaé
w skrocie jako A"x™ = n!.

Dla n =1 mamy f(z) =z dla z € R. Zatem

(A'f)z)=fz+1) - fla)=z+1—-2=1=1!
Zalézmy teraz, ze dane sa funkcje fr : R — R okreslone wzorem fi(z) = z* dla k > 0

i x € R. Zalézmy takze, ze A™f, = n!. Pamietamy réowniez, ze A" fr, = 0 dla k < n.
Chcemy udowodnié, ze A" f, 1 = (n+ 1)!. Otéz zauwazmy najpierw, ze

(Afnr1)(@) = fag1(@+1) = fopr() = (@ + 1) — 2" =

_ ]:O (n;— 1)$k _ (};) <n+1)fk> @)

Afn_;’_l Z (n + 1) fk

k=0

dla z € R. Zatem
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Stad dostajemy

(A fri1) = (A™(Afng1)) = A" (

e
| 3
o
VRS
S
= +
—_
N——
=
N——
I
=
3
o
RS
/N
S
= +
—_
N———
>
3
=
N————
I

= <n+1)(A”fn):(n+1)-n!:(n+1)!

n

Pokazemy teraz kilka przyktadéw wykorzystania twierdzenia 1.3 oraz wnioskow 1.41 1.5
do dowodu tozsamosci kombinatorycznych.

Przyktad 1. WeZzmy funkcje f : R — R okre$long wzorem f(z) =1 dla z € R. Wtedy
dlan > 1 mamy A" f =01 z tozsamosci (1.30) dostajemy

@ =m =3 0 () e -0 =3 (1),

k=0 k=0

czyli

Jest to tozsamosé (1.25).

Przyktad 2. Wezmy funkcje f : R — R okreslona wzorem f(z) = x dla x € R. Wtedy
dlan > 2 mamy A" f =01 z tozsamosci (1.30) dostajemy

@ = 3 0 (1) -1 =30 0 () - b

k=0 k=0
czyli dla z = n mamy )
kzo(—l)k(’;) (n— ) =0
Poniewaz
;:0 - @ (n—k)= ; (=1)" (Z n— ;:o (—1) (’; h—
) gk
=2 ()
wiec - (_1)’%(2) =0. (1.33)

k=0
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Nietrudno obliczyé¢, ze
1

(—1)’%( > = (1.34)
k

oraz

(—1)’%(2) = 0. (1.35)

Przyktad 3. Niech n > 1. Wezmy funkcje f : R — R okre$long wzorem f(x) = z™ dla
x € R. Wtedy A™f = n! iz tozsamodci (1.30) dostajemy

n

@)= =3 0 (1) =1 = 30 0 () - wr

czyli kzon =
kZ:O (-1)* (Z) (@ — k)" =nl. (1.36)

Nietrudno sprawdzi¢, ze ta tozsamo$¢ jest prawdziwa takze dla n = 0.

Przyktad 4. Wezmy funkcje f : N — R okreslong wzorem f(n) = 2" dlan € N. Wtedy
nietrudno zauwazy¢, ze A" f = f dlan > 11 z tozsamoéci (1.32) dostajemy

n

@0 =3 0 () s = 3 (1)

k=0 k=0
czyli

Zn: (-1 * (Z) 2k =1, (1.37)

k=0
Ta tozsamos¢ jest tez prawdziwa dla n = 0.
Przyklad 5. Niech dana bedzie liczba naturalna m. Definiujemy funkcje f : N — R

WZOoremnl n
m n
s = (")

dla n > 0. Z réwnosci (1.32) dla ciaggu f otrzymujemy

k
(AFF)(0) = 3 (~1)F (’;‘)f(j),

=0

)
o))
() )
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Z drugiej strony udowodnimy przez indukcje, ze

@ nm= ("),

m — k

Dla k = 1 mamy

(A*F)(n) = (Af)(m) = f(n+1) — f(n) = (””” ¥ 1) _ (”” ”) _

m m
m+n m+n m+n m+n
— + - = :
)+ G = ()= G
W kroku indukeyjnym zatézmy, ze

@i = (.

m—k
Mamy udowodnié, ze
@ = ("),
Oto6z
(A% 1)) = (A1) () = (A*])n+1) — (A ) (n) =
() G = G () - () -
_ (m”i o 1).

Stad otrzymujemy réwnosé

() =) v

Przyjmujac teraz m = n + k, otrzymujemy

-:(_Dj (?) (njffk_j) - (n;:k) (1.39)

Przyklad 6. Niech teraz p i ¢ beda dowolnymi liczbami naturalnymi i przyjmijmy

o=(",")
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dla n > 0. Z réwnosci (1.32) dla ciagu f otrzymujemy
i i it ;
@O =3 (-1 (4) 160
§=0

czyli

I
<
M
o
\’:
_T_,
<.
VRS
o, .
S~
N
i)
<
(N
~_

Z drugiej strony udowodnimy przez indukcje, ze
; ; (P—n—1
@inm = (P,
q—1
Dla ¢ = 1 mamy

p—n—1

(A 1)) = (Afm) = fn+1) = s = (P ) - (p ‘") _

C )0 0)
= — +

q q q—1

W kroku indukeyjnym zatézmy, ze

@ = ("),

q—1

I
|
A/~
=
< |
| 3
=
—_
~_

Mamy udowodnié, ze

@ = (")

" (A*f)(n) = (A(A'f))(n) = (AT f)(n+ 1) = (A’ f)(n) =
()0
)T ) -
()

Stad otrzymujemy réwnosé

S ()00 e
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Dzielac obie strony przez (—1)! i korzystajac z tego, ze (—1)™7 = (—1)7, otrzymujemy

(L) (o)

Przyjmujac teraz p = n + 2k i ¢ = n, otrzymujemy

S () ()R

J=0

19. Tozsamoéé Li Zen-Szua

W ksiazce opublikowanej w Nankinie w 1867 roku chifiski matematyk Li Zen-Szua podal
szereg interesujacych tozsamosci — zgodnie z chinska tradycja bez dowodu. Wéréd tych
tozsamosci znalazta sie nastepujaca:

i k\? (n+ 2k —i _(n+k 2 (1.42)
£\ i 2k k) '
=0

Tozsamosé te nazywamy dzisiaj tozsamoscia Li Zen-Szua. W tym paragrafie udo-

wodnimy te tozsamos¢, korzystajac z wynikow uzyskanych w poprzednim paragrafie.
Najpierw jednak udowodnimy dwie tozsamosci pomocnicze.

Niech k i j beda liczbami naturalnymi takimi, ze 7 < k. Wtedy

> () (-0 s

() (-2 OO0-2O00)-

Druga tozsamo$¢ ma postac:

CECH)-CEOCT)
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Udowodnimy ja korzystajac kilkakrotnie z tozsamosci (1.5). Mianowicie

CENEI ()
(T
(n+2k—j) (nm—j)
()
()
_ (n;%f:k—g) <n+k>

Dowodzimy teraz tozsamosci Li Zen-Szua.

> () ()=S0 e () ()
~sr () () () -
e () () () -
e ()
)
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W dowodzie korzystaliémy najpierw z tozsamosci (1.41), potem z (1.43), nastepnie
z (1.44) 1 wreszcie z (1.39).

20. Wspoélczynniki wielomianowe

Wspétezynnik dwumianowy (Z‘) jest réwny liczbie n-elementowych pozdbioréow zbioru
m-elementowego. Inaczej méwiac, jest on réwny liczbie podzialéow zbioru m-elemen-
towego na dwa zbiory: pierwszy n-elementowy i drugi (m — n)-elementowy. Nalezy tu
zwroci¢ uwage na ustalona kolejnosé zbiorow. Ta definicja wspolczynnika dwumianowego
ma naturalne uogolnienie.

Przypusémy, ze dany jest ciag liczb (nq,...,nx) takich, ze ny + ...+ np = m. Wsp6bl-
czynnikiem wielomianowym (mmnk) nazywamy liczbe ciagéw (Aq, ..., Ay) takich,
ze:

Al,...,Ak - [m],

zbiory Ay, ..., Ax sa parami roztaczne,

A1 U. . UA, = [m],

‘A1| =ni,.. ,‘Ak| = Ng.

W szczegdlnosci dla k = 2 mamy (mmm) = (T’Z), gdzie po lewej stronie mamy wspol-

czynnik wielomianowy, a po prawej znany nam wspolczynnik dwumianowy.

Rodzine parami roztacznych podzbiorow zbioru A, dajacych w sumie caly zbiér A, na-
zywamy podzialem tego zbioru A. Jedli ustalimy kolejnosé zbiorow w tej rodzinie, czyli
jesli mamy do czynienia z ciagiem (a nie zbiorem) podzbioréw zbioru A, to bedziemy mé-
wi¢ o uporzadkowanych podziatach zbioru A. Wspélczynnik wielomianowy (nl"’ink)
jest zatem réowny liczbie uporzadkowanych podziatéw zbioru [m] na k podzbioréw, z kté-
rych pierwszy ma n; elementow, drugi ma ny elementow i tak dalej, az wreszcie ostatni
ma ny elementéw.

m

o) (gdzie ny + .+ ny = m) jest
liczba ciagéw (x1, ..., T, ) dlugosci m o wyrazach ze zbioru [k], majacych n; wyrazéw
réwnych 1, no wyrazéw réwnych 2, ... i wreszcie majacych ng wyrazéw rownych k.
Symbolicznie mozemy to zapisa¢ w nastepujacy sposob:

Inaczej mowiac, wspotczynnik wielomianowy (

’{fé[k][m]:|f‘1(1)|=n1,---,|f‘1(k)|=nk}!=( m )

ny,...,Nng

Wspdlezynniki wielomianowe maja nastepujaca wlasnosé (ktéra moze by¢ wykorzystana
takze do zdefiniowania ich przez indukcje wzgledem k):

(o) = Gt G50 @49
N1y e ey Mgy M1 Nk41 niy...,Ng

Aby bowiem podzieli¢ zbiér [m| na k+1 zbioréw, wybieramy najpierw ny1-elementowy
zbiér Ag.1, a nastepnie zbiér majacy pozostale m — npy; elemenéw dzielimy na k
podzbioréw. Stad wynika nastepujace twierdzenie.

Twierdzenie 1.6. Jesliny +...4+np =m, to

m m!
= 1.46
(nl,...,nk> nyl-..oong! (1.46)
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Dowody kombinatoryczne 49

Dowéd. Stosujemy indukcje wzgledem k. Dla k = 2 mamy ni +ns = m, skad dostajemy
ne = m — ni. Mamy teraz

( m ) (m) m! m!
ni, No ny ni!-(m—mnq)!  nyl-ng!

W kroku indukcyjnym mamy natomiast

(o) = o) G 50)
Nyyeey Mgy ME41 Nk+1 Ny, ..., Nk

B m)! .(m—nkﬂ)!
nk+1!~(m—nk+1)! nl'nk'
m!
ol cn! cnpaq!’
1e e k- k+1°

co konczy dowod.

Z tozsamosci (1.45) wynika, ze

(nl, mnk) B (:Z) ' (m;2n1> (m o _n.k. - nk_l). (1.47)

Paragraf ten zakonczymy podaniem uogélnienia wzoru dwumianowego Newtona. Ten
wzor ttumaczy nazwe wspotczynnika wielomianowego. Mamy mianowicie wzor

(a+...+a)™= Y ( m >~a?1~...~agk. (1.48)

nNyy...,Ng

Dowéd tego wzoru, podobny do dowodu wzoru (1.10), pozostawiamy jako ¢wiczenie.

21. Jeszcze jeden dowdd tozsamoscei Li Zen-Szua

Przypomnijmy tozsamosé Li Zen-Szua:
Z’“: > (n+2k—i\  [(n+k\’ 1.42)
—\i 2k o\ k) '

Udowodnimy ja przy dodatkowym zatozeniu, ze k < n. Dokladniej méwiac, pokazemy
dowod kombinatoryczny tozsamosci nieco ogélniejszej. Przypusémy zatem, ze k < [ oraz

k <n. Wowczas
SOOCE -0 e

Pomnézmy obie strony tej tozsamosci przez (k;:l) Otrzymamy

SOOCETIC - o
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Skorzystamy teraz ze wspotczynnikéw wielomianowych. Stosujac kilkakrotnie tozsamosé
(1.45), otrzymujemy

n+k+1—i (n+k+1l—i k+1 B
k—il—in—iii) n—i k—il—i,i,i)

B (MS:ZZ_Z:) (kjl) | (szjﬁiiz) B
R VR LD NN
() () ()
(001 (-
()00 6)

Tozsamos¢ (1.50) jest zatem réwnowazna tozsamosci

i ntk+l—i \ _ (n+k\(n+l\ [ k+1 (51)
e \k =i, —i,n — 1,01 O\ k l k) '

Udowodnimy teraz tozsamos$é (1.51) przy zalozeniu, ze k = min{k,l,n}.

Niech A bedzie zbiorem wszystkich tréjek (7, p, o), gdzie:
e 7 jest dowolnym ciagiem dtugosci k£ + 1 majacym k wyrazéw réwnych 111 wyrazow
réwnych 2.
e p jest dowolnym ciagiem dtugosci [ +n majacym [ wyrazéw réwnych 2 i n wyrazow
réwnych 3.
e 0 jest dowolnym ciggiem dtugosci k+n majacym k wyrazow rownych 1in wyrazoéow
rownych 3.
Inaczej méwiac, A = A; x Ag X As, gdzie

Ay ={r e {1,277 =k, |71 (2)| = 1},
Ay = {pe {2,311 p7H2)| = 1,1p7'(3) = n},
Ay ={o € {1,367 (1) =k, |o7(3)| = n}.

Oczywiscie istnieje (kzl) ciagéw T, (”;rl) ciagbéw p oraz (

= (1) i () - ()
()

Wyktady z kombinatoryki
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Niech teraz B bedzie zbiorem wszystkich ciagéw 7 dlugosci n+k—+1—1i, (gdzie i przebiega
zbiér {0,1,...,k}) majacych:

e k — 1 wyrazéw rownych 1,

e [ — ¢ wyrazow réwnych 2,

e n — i wyrazow réwnych 3,

e | wyrazéw réwnych 4,

e | wyrazoéw rownych 5.
Inaczej méwigc, niech X oznacza zbidr wszystkich ciagéow skonczonych o wyrazach
w zbiorze [5]. Wtedy

gdzie
Bi={r € X: |t ()| = k=i, |77 Q)| = 1=, [T )| = n—i, |77 (4)| = i, [T~ (5)| = i}

dlai=0,1,..., k. Oczywiscie jesli 7 € B;, to 7 : [n+k+1—1i] — [5]. Wprost z definicji
wspotczynnikéw wielomianowych wynika, ze

n+k+10—1
B (k—z,l—z,n—z,z z)

dla:=0,1,...,k. Zatem

k .
n+k+1—1
B| = .
Bl Z(k—i,l—i,n—i,i,i)

=0

Wystarczy teraz dowie$¢, ze zbiory A i B maja tyle samo elementéw. W tym celu
pokazemy, w jaki spos6b mozna z tréjki ciagéow (m, p, o) € A utworzy¢ ciag 7 € B tak,
by otrzymana odpowiednio$¢ byta wzajemnie jednoznaczna.
Przypu$émy zatem, ze mamy tréjke ciagéw (m,p,0) € A. Pamietajmy, ze ciagi 7 i p
maja po k wyrazéw réownych 1, ciagi p i 0 maja po [ wyrazéw rownych 2 oraz ciagi mi o
maja po n wyrazéw réwnych 3. Niech € oznacza ciag pusty. Przyjmijmy na poczatku, ze
7 = €. W kolejnych krokach bedziemy dopisywaé¢ wyrazy na koncu ciagu 7, skreslajac
przy tym pewne wyrazy ciagow m, p, o. Robimy to, kierujac si¢ nastepujacymi regutami:
1) jesli m = o1 = 1, to z kazdego z ciagéw 7 i 0 usuwamy pierwszy wyraz i na koncu
ciggu 7 dopisujemy 1;
2) jesli m; = p1 = 2, to z kazdego z ciaggbéw 7 i p usuwamy pierwszy wyraz i na koncu
ciggu 7 dopisujemy 2;
3) jesli p1 = o1 = 3, to z kazdego z ciagbéw p i 0 usuwamy pierwszy wyraz i na koncu
ciagu 7 dopisujemy 3;
4) jesli my = 1, pr = 21 01 = 3, to z kazdego z ciggbéw 7, p i 0 usuwamy pierwszy
wyraz i na koncu ciaggu 7 dopisujemy 4;
5) jesli my = 2, pp = 3101 =1, to z kazdego z ciagbéw 7, p i 0 usuwamy pierwszy
wyraz i na koncu ciagu 7 dopisujemy 5.

Wyktady z kombinatoryki
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Nietrudno zauwazy¢, ze jesli wszystkie ciagi m, p i o sa niepuste, to zachodzi doktadnie
jeden warunek opisany w punktach od 1) do 5) powyzej. Musimy zastanowic sie, jak wy-
gladaja dwa pozostale ciagi, jesli jeden z nich stanie sie pusty (w wyniku dokonywanych
skreslen pierwszych wyrazow). Przypu$émy zatem, ze w pewnym momencie w czasie
konstrukcji ciagu 7 usuwamy jedyny wyraz ktéregos z ciagdéw, np. z ciagu o. Przypu-
$émy, ze do tego momentu wlacznie i razy stosowaliSémy regule 4) (usuwajac pierwszy
wyraz kazdego ciagu), j razy stosowaliSmy regule 5) oraz p, ¢ i r razy stosowali$my
odpowiednio reguly 1), 2) i 3). Zatem:

e 7 ciaggu 7 usuneliémy ¢ + p wyrazow réwnych 11 j + ¢ wyrazéw rownych 2;

e 7 ciggu p usuneliSmy i 4 ¢ wyrazéw réwnych 2 i j 4+ r wyrazéw réwnych 3;

e 7 ciagu o usuneliSmy j 4 p wyrazéw rownych 11 ¢ 4+ r wyrazéw rownych 3.
Poniewaz z ciaggu o usuneliSmy wszystkie wyrazy, wiec j+p = k oraz i +r = n. W ciagu
7 pozostalo zatem k — (i +p) = (j +p) — (i + p) = j — i wyrazéw réwnych 1 oraz
Il — (j + q) wyrazéw réownych 2. W ciagu p pozostalo natomiast [ — (i + ¢) wyrazéw
réwnych 2 orazn— (j+7r) = (i+7r)— (j + 1) =i — j wyrazéw réwnych 3. Zauwazmy
jednak, ze i — j = —(j — 7). JeSli @ # j, to jedna z liczb i — j i j — i jest ujemna,
co jest niemozliwe. Zatem 7 = j. To pokazuje, ze w chwili, gdy usuniemy wszystkie
wyrazy ciagu o, w pozostalych ciggach pozostang juz tylko wyrazy réwne 2. Ponadto
liczba czwoérek dopisanych do ciagu 7 jest réwna liczbie dopisanych piatek. Poniewaz
l—(j+q) =1—(i+q), wiec w ciagach 7 i p zostalo tyle samo dwdjek. To znaczy, ze od
tej chwili bedziemy stosowaé juz tylko regute 2), do ciagu 7 dopisujac [ — (j +¢q) dwdjek.

Podobnie bedzie, gdy wyczerpiemy wszystkie wyrazy ciggu 7 lub p. Jesli zatem usu-
niemy wszystkie wyrazy ktoregos z trzech ciagdéw, to od tego momentu do konca be-
dziemy stosowaé reguly od 1) do 3). Moze sie tez okazaé, ze usuniemy jednoczesnie
pierwsze wyrazy z trzech ciagow diugosci 1; wtedy jednoczesnie wszystkie trzy ciagi
stang sie puste. Poprzednie rozumowanie obejmuje takze ten przypadek; nigdzie nie za-
ktadalismy, ze liczba pozostatych dwdjek jest rozna od zera. WykazaliSmy przy tym, ze
w otrzymanym ciagu 7 liczba czworek jest réwna liczbie piatek. Jesli ¢ razy dopisaliSmy
do ciagu 7 czwoérke i tyle samo razy piatke, to takze k — i razy dopisalismy jedynke (bo
jeszcze tyle jedynek musieliSmy usunaé z ciagu ), | — i razy dopisaliémy dwdjke i n — 1
razy trojke. Otrzymany ciag 7 nalezy zatem do zbioru B.

Popatrzmy teraz na trzy przyktady zastosowania opisanej procedury. W kolejnych wier-
szach wyrazy usuwane z ciagéw 7, p i o i dopisywane do ciagu 7 sa wyttuszczone. We
wszystkich przyktadach k= 2,1 =31in = 4. A oto pierwszy przyktad:

m p o T
(1,2,1,2,2)  (3,2,2,3,3,2,3) (1,3,1,3,3,3) (1)

(2,1,2,2) (3,2,2,3,3,2,3)  (3,1,3,3,3) (1,3)

(2,1,2,2) (2,2,3,3,2,3) (1,3,3,3) (1,3,2)

(1,2,2) (2,3,3,2,3) (1,3,3,3) (1,3,2,1)

(2,2) (2,3,3,2,3) (3,3,3) (1,3,2,1,2)

2) (3.3,2,3) (3,3,3) (1,3,2,1,2,3)

(2) (3,2,3) (3,3) (1,3,2,1,2,3,3)

(2) (2,3) (3) (1,3,2,1,2,3,3,2)
€ (3) (3) (1,3,2,1,2,3,3,2,3)
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Z ciagow ™ = (1,2,1,2,2), p=(3,2,2,3,3,2,3) i 0 = (1,3,1, 3, 3,3) otrzymalidmy ciag
T =1(1,3,2,1,2,3,3,2,3). Zauwazmy, ze w ciagu 7 nie ma ani jednej czworki i piatki;
za kazdym razem korzystaliSmy bowiem z regut od 1) do 3). Gdy skresliliSmy wszystkie
wyrazy ciggu m, w dwoch pozostalych ciagach mieliémy po jednej trojce. A teraz drugi
przyktad:

m p o T

(2,2,1,2,1)  (3,2,3,2,3,3,2) (3,1,1,3,3,3) (3)

(2,2,1,2,1)  (2,3,2,3,3,2) (1,1,3,3,3) (3,2)

(2,1,2,1) (3,2,3,3,2) (1,1,3,3,3) (3,2,5)

(1,2,1) (2,3,3,2) (1,3,3,3) (3,2,5,1)

(2,1) (2,3,3,2) (3,3,3) (3,2,5,1,2)

(1) (3,3,2) (3,3,3) (3,2,5,1,2, 3)

(1) (3,2) (3,3) (3,2,5,1,2,3,3)
(1) (2) (3) (3,2,5,1,2,3,3,4)

Tym razem z ciagéow m© = (2,2,1,2,1), p = (3,2,3,2,3,3,2)i 0 = (3,1, 1, 3,3, 3) otrzy-
mali$my ciag 7 = (3,2,5,1,2,3,3,4). Po jednym razie korzystaliémy z regut 4) i 5); to
dato po jednym wyrazie 4 i 5. Zauwazmy, ze w tym przyktadzie jednoczesnie wyczerpa-
liSmy wszystkie wyrazy trzech ciagdéw. Wreszcie popatrzmy na trzeci przyktad:

T p o T

(1,1,2,2,2)  (3,2,2,3,3,3,2) (3,3,3,1,3,1) (3)
(1,1,2,2,2)  (2,2,3,3,3,2) (3,3,1,3,1) (3,4)
(1,2,2,2) (2,3,3,3,2) (3,1,3,1) (3,4,4)

(2,2,2) (3,3,3,2) (1,3,1) (3,4,4,5)

(2,2) (3,3,2) (3,1) (3,4,4,5,3)
(2,2) (3,2) (1) (3,4,4,5,3,5)
(2) (2) € (3,4,4,5,3,5,2)

W tym przyktadzie z ciagow = = (1,1,2,2,2), p=(3,2,2,3,3,3,2)ioc =(3,3,3,1,3,1)
otrzymalismy ciag 7 = (3,4,4,5,3,5,2). Zauwazmy, ze w ciagu 7 nie wystepuje wyraz
réwny 1; mianowicie w tym przyktadzie i = k = 2.
Z kazdego ciagu 7 € B mozemy w jednoznaczny sposéb otrzymacé tréjke ciagéw (m, p, o)
nalezaca do zbioru A. Najpierw przyjmujemy 7 = p = o = e. Pdézniej kierujemy sie
nastepujacymi regutami:
1) jesli 7y = 1, to na koncu ciaggéw 7 i o dopisujemy jedynke,
2) jesli 71 = 2, to na koncu ciagdéw 7 i p dopisujemy dwdjke,
3) jesli 7, = 3, to na koncu ciagdéw p i o dopisujemy trojke,
4) jesli 71 = 4, to na koncu ciagéw m, p i o odpowiednio dopisujemy jedynke, dwojke
itrojke,
5) jesli 71 = 5, to na koncu ciggéw 7, p i 0 odpowiednio dopisujemy dwdjke, trojke
i jedynke,
6) za kazdym razem z ciagu 7 usuwamy pierwszy wyraz.
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(1,3,2,1,2,3,3,2,3). Tak

jak poprzednio wyrazy usuwane z ciagu 7 i dopisywane do ciagéw m, p i o sa wytlusz-

czone:

Dziatanie tej procedury zilustrujemy przyktadami. Niech 7

54
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réwnoliczne i w ten sposéb dowéd uogdlnionej tozsamosci Li Zen-Szua (1.44) jest za-

Szczegoly dowodu pozostawiamy jako éwiczenie. Widzimy zatem, ze zbiory A i B sa
koniczony.

Nietrudno zauwazy¢, ze z dowolnego ciaggu 7 € B otrzymamy rzeczywiscie trojke cia-
gow (7, p, o) nalezaca do zbioru A i Ze opisane dwie procedury sa odwrotne do siebie.

Wreszcie trzeci przyktad:
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Spis tozsamosei kombinatorycznych
0)-0)-
() a)
)26
(7:) = T (14)
e (n) s
() () - 0) =
()= (") 0
OG-y e
()
(a+) :g(’;) ke (1.10)
;k(Z):n 21 dlan > 1 (1.11)
> (6" - (") 012
>(5) - (%) 013
£ -
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> ()-() 119

> (1)- (") 110

> ()=("3) a1

2 ()=("7) a9
sren-(3) =

> (") = (120

I O a2
o s ) .

foot (70

- (r77) -
St (}) =0 dunz1 (1.25)

S vt (3) =1 dwn—o (1.26)
S () = () 127
liczba drég 2 A do B = <m+ ”) - ( (1.28)

m
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a4 = Y (1) (") se+d) (1.29)
B0 =3 D (5) s (1.30)
(A*f)(n) = i 0 (B stoee ) (131)

(A*£)(0) :jé(‘” (5)50) (1.32)

Z (—1)%(7;) —0 dlan>2 (1.33)

kz_: (—1)’%(;) =1 (1.34)

Zi: (—1)%(2) =0 (1.35)

Z::(—nk(’;) (z — k)" = nl (1.36)
2(—1)”—k(2)z’f =1 (1.37)
Sl o
SO
L)) = (G 10
ST () o
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(o) = o) G 50)
N1y e ey Mk M1 Nk+1 Ny ..,k

SO

> (OO0 -

i n+k+l—i  (n+k
= \k — il —i,n— i, -\ k

7

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

Wyktady z kombinatoryki



Zasada wlaczen i wytaczen 1

ZASADA WEACZEN I WYEACZEN

1. Przypomnienie
[n]={1,...,n} dlan >0,

Pu(n) ={AC[n]: |A| =k}

Przyjmiemy réwniez oznaczenie
Po(n) = {AC [n] : |A| > k}.
Przypominamy, ze w wyktadzie 1 udowodniliSmy nastepujace dwie rownosci:
|AUB| = |A| + |B| — |AN B| (2.1)
oraz
JAUBUC|=|A|+|B|+|C|—|ANnB|—-|ANC|—|BNnC|+|AnBNC|. (2.2

Udowodnimy teraz twierdzenie bedace uogoélnieniem tych dwoch réwnosci na przypadek
dowolnej liczby zbioréw skonczonych.

2. Wzér wlaczen i wylagczen

Twierdzenie 2.1. Jesli Aq,..., A, sa zbiorami skonczonymi, to
n
ArU. U4 =30 (=R 3 [N 4. (2.3)
k=1 TePy(n) jET

Dowdé6d. Wprowadzmy oznaczenie:

Sk(Bi,....Bu)= Y )ﬂ Bj).

TeP,(m) jeT

Teza twierdzenia przybiera wtedy postac:

AT U UA =D (1)M1Sk(Ar,. ., Ay).
k=1

Twierdzenia dowodzimy przez indukcje wzgledem n. Dla n = 1 twierdzenie jest oczy-
wiste. Dla n = 2 i n = 3 bylo juz udowodnione. Zaktadamy teraz, ze dla dowolnych n
zbioréw (gdzie n > 2) twierdzenie jest prawdziwe i dowodzimy, ze jest prawdziwe dla do-
wolnych n+1 zbioréw. Niech wiec A1, ..., A,+1 beda dowolnymi zbiorami skoniczonymi.
Wéwcezas

A1 U...UAp| = (A1 U...UA,) UA, 1| =
=|A1U...UA,| + |Ans1|l — (A1 U...UA) N Appq| =
=[AU...UA |+ Aps1| — [(AANApi) U U(A, N Apgq)]-
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Korzystamy teraz dwukrotnie z zalozenia indukcyjnego: dla zbioréw Aq,..., A, oraz
dla zbioréw A1 N Api1,..., An N Apyq:

n

|A1 Uu...u An| = Z (_1)k+1Sk(A17 .- '7An>7

k=1
n

(AN A1) U U (AN Apy)| = Z (DS (A1 N Angr, oy Ap N Apgr).
k=1

Zauwazmy nastepnie, ze

A1 UL U A |+ [Anpa| = S1(Ar, oo An) + [Ana | + Z (1) *1Sk(Ay,. .., Ap) =
k=2

= [As]+ A Al + A |+ (D) Sk(A, . Ay) =
k=2

= S1(A1, . Apgn) + ) (“DFTS(Ar, L A)
k=2

oraz
(ATNA 1)U U4, NA) =Y (D) S(AinA,,.. ., AnNAuy) =
k=1
n—1
= (DM (AN Apgr, - An N Apg)+
k=1
+(_1)n+15n(A1 N An—|—17 ceey An N An-l—l) =
n—1
= (D" (AN Apgr, - An N Apg)+
k=1
(=D (AL N A )N N (AN Apy)| =
n—1
= (D) Sk(A1 N Anga, ooy A N Apgr) + (D" A N N AN Ay | =
k=1
= (—D*Sko1 (AN Ay, A NV Apg) — ()" P2 A1 N N Ay N Apg| =
k=2
= (—D*Sk—1 (AN Angr, . A N Anp) = (—1)" 2S04 (A1, . An) =
k=2
= - Z (_1>k+15k—1(A1 N ATL+17 ceey An N An—l—l) - (_1)n+25n+1(A17 ) An—|—1)'
k=2
Zatem

n

|A1 Uu...uU ATL| = Sl(A17 .- -7An+1> + (_1>k+1SK(A17 .- '7An>+
k=2

Wyktady z kombinatoryki
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+ Z (_1>k+15k—1(A1 N ATL+17 ceey An N An—l—l) + (_1)n+25n+1(A17 ) An—!—l) =

= S1(A1,..., Any1) +Z DR (SL(AL, .o Ap) + Spga(Ar, .oy Apyr))+

+(=1)"*28, 11 (AL, ..., Angr).
Nastepnie zauwazmy, ze
Sk(Ar, .. AL + Sk—1 (AN Ay, A N A1) = Sk(Aq, ..oy Angr)
Stad ostatecznie dostajemy
|[A1U...UA,| =

= S1(A1, ..., Apy1) +Z DS (AL, . Apgr) + (“D)28, 00 (A, Apgy) =

n+1
_Z k+15k A17~-~7An+1)7

co konczy dowodd twierdzenia.

Wzor (2.3) nazywamy wzorem wlaczen i wylaczen.

Inny dowdd. Przegladamy kolejne sktadniki sumy stojacej po prawej stronie réwnosci

i przy kazdym elemencie iloczynu [\ A, rysujemy znak plus lub minus w zaleznosci
JET

od tego, czy liczba | () A;| wystepowala w sumie ze znakiem plus czy minus. Inaczej

€T
mowiac, jesli zbior T] ma nieparzysta liczbe elementéw, to rysujemy znak plus; jesli zas
zbior T' ma parzysta liczbe elementéw, to rysujemy znak minus.

Zilustrujemy te procedure (w przypadku sumy trzech zbioréw AUBUC) serig rysunkéw.
Dowodzimy réwnosci

JAUBUC|=|A|+|B|+|C|—|ANnB|—-|AnC|—|BnNnC|+|AnBnNC]|.

Przegladamy sktadniki sumy po prawej stronie i rysujemy znaki plus kolejno przy kaz-
dym elemencie zbioréw A, B i C, potem znaki minus przy kazdym elemencie zbiorow
ANB, ANC i BN C, wreszcie znaki plus przy kazdym elemencie zbioru AN BN C.

Rysunek 1: zbiory A, B i C wraz z zaznaczonymi przykladowymi elementami (po jednym
elemencie w kazdej sktadowej).

Wyktady z kombinatoryki



4 Wyklad 2

Rysunek 2: przy kazdym elemencie zbioru A rysujemy znak plus

&

Rysunek 3: przy kazdym elemencie zbioru B rysujemy znak plus

&

Rysunek 4: przy kazdym elemencie zbioru C' rysujemy znak plus

&

Rysunek 5: przy kazdym elemencie zbioru A N B rysujemy znak minus

&

Wyktady z kombinatoryki
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Rysunek 6: przy kazdym elemencie zbioru A N C rysujemy znak minus

Rysunek 7: przy kazdym elemencie zbioru B N C rysujemy znak minus

Rysunek 8: przy kazdym elemencie zbioru A N B N C' rysujemy znak plus

Zauwazamy, ze przy kazdym elemencie sumy A U B U C liczba narysowanych plusow
jest o jeden wieksza od liczby narysowanych minuséw: przy elementach nalezacych do
jednego zbioru narysowalisémy tylko jeden plus, przy elementach nalezacych do dwéch
zbioréw narysowaliSmy dwa plusy i jeden minus, wreszcie przy elementach nalezacych
do wszystkich trzech zbioréw narysowalisSmy cztery plusy i trzy minusy. To daje réwnos¢

(liczba pluséw) — (liczba minuséw) = |AU B U C|.

Wyktady z kombinatoryki
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Nietrudno przy tym zauwazy¢, ze w kazdym z siedmiu powyzszych krokow liczba nary-
sowanych znakow byla réwna liczbie elementow rozpatrywanego zbioru. Stad dostajemy
réwnosé

(liczba pluséw)—(liczba minuséw) = |A|+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANBNC]|,

z ktorej wynika réwnosé (2.2).

Powr6émy do dowodu twierdzenia 2.1. Znéw zauwazamy, ze prawa strona réwnoéci (2.3)
jest réznicg miedzy liczba pluséw i liczba minuséw. Wystarczy zatem pokazacd, ze przy
kazdym elemencie sumy zbiorow A; U...U A, narysowaliémy o jeden plus wiecej. Niech
x € Ay U...UA,. Niech nastepnie

Inaczej méwiac, x € A; wtedy i tylko wtedy, gdy j € M. Oznaczmy m = |M|; oczywiscie
m > 0. Niech teraz T € Py(n) i popatrzmy na zbiér () Aj;; jest to jeden ze zbioréw
JjET
wystepujacych po prawej stronie réwnosci (2.3). Jeli T'\ M # &, to oczywiscie mamy
z & () Aj. Przypu$émy zatem, ze T' C M. Wtedy przy elemencie = rysowaliSmy znak
JjeT
plus lub minus, w zaleznosci od parzystosci k: plus dla nieparzystych k, minus dla
parzystych k. Dla danego k liczba takich zbiorow T' jest réwna (’g) Liczby pluséw

i minuséw narysowanych przy x sg zatem réwne

liczba pluséw = Z (7:)

2tk

liczba minuséow = Z (7{?),

k>0,2|k

skad dostajemy

liczba pluséw — liczba minuséw = Z (—1)k+1 (m) :

k=1 k
Z réwnodci (przypominamy, ze m > 0)
m o m B
k=0
wynika, ze
m - k(MY
(o) (i) =»
k=1
czyli
- m “ m
1=-) (-1F =) (1)
S0t () = e ()

Wyktady z kombinatoryki



Zasada wlaczen i wylaczen 7

Stad wynika, ze przy elemencie x narysowaliémy o jeden plus wiecej. Tak jest dla kazdego
elementu x sumy A; U...U A,. To zas oznacza, ze suma po prawej stronie réwnosci
bedzie réwna liczbie elementéw sumy A; U. ..U A,,, co konczy dowdd.

3. Liczba funkcji z jednego zbioru skonczonego na drugi zbiér skonczony

Twierdzenie 2.2. Dane sa dwa zbiory skoniczone A i B. Niech |A] = m i |B| = n.
Wtedy

{f € AB: fjest ,na”}| = Z (—1)’“(7;) (m— k)" (2.4)

k=0

Dowdéd. Bez zmniejszenia ogblnosci mozemy przyjaé, ze A = [m|i B = [n]. Definiujemy
zbiory Ay, ..., A, w nastepujacy sposob:

Aj={f€AP: j &Ry}
dla 7 =1,2,...,m. Inacze] méwiac

A= (A\{7H".

Korzystajac ze wzoru wtaczen i wytaczen otrzymujemy

1A U. ..U Ay :i(—l)kﬂ 3 )ﬂ A
k=1

TGPk(m) JjeT

Niech zatem T' € Py(m). Wtedy

(4= ) A\ D7 = (A\T)",
JjeT JjeT

skad otrzymujemy

= ’(A\T)B} = (m—k)".

n

JeT

Zatem

AU UAR[ =) (=D Y (m—k)n =) (—1)FH! (’Z) (m — k)™
k=1

Do zakonczenia dowodu wystarczy zauwazy¢, ze suma zbioréw A; U...U A,, sklada sie
z tych funkcji f: B — A, ktére nie sa ,na”. Zatem

{fe AP fiest na”} =AP\ (A U...UA,,),

Wyktady z kombinatoryki
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czyli
{f e AB: fijest ma’}=m" —|[A U...UA,|=
SED M G R
k=1 k
=m" + Z (—l)k (7]:}) (m—k)" =
k=1
=St (),
k=0
c. b. d. o.

4. Liczba nieporzadkéw

Permutacja zbioru skonczonego A nazywamy funkcje réznowartosciowg m : A — A
przeksztalcajaca zbiér A na siebie. Punktem stalym permutacji m nazywamy taki
element a zbioru A, dla ktérego m(a) = a. Nieporzadkiem nazywamy permutacje bez
punktéw statych. Zbiér wszystkich permutacji zbioru A oznaczymy symbolem S(A),
a zbiér nieporzadkéw zbioru A symbolem D(A).

Powyzsza definicja permutacji nie jest identyczna z definicja przyjeta w wyktadzie pierw-
szym. Pokazemy teraz, ze w pewnym sensie te dwie definicje opisuja te same obiekty
kombinatoryczne. Przypu$émy zatem, ze mamy dany zbiér skonczony A. Ustalmy pewne
uporzadkowanie tego zbioru:

A={ay,az,...,a,}.

Niech 7 : A — A bedzie permutacjg zbioru A w sensie powyzszej definicji. Przeksztal-
cenie m mozemy wtedy utozsamic¢ z ciagiem (w(aq),7(az),...,m(an)) elementéw zbioru
A. Oczywiscie ten ciag jest réznowartosciowy, a wiec jest permutacja zbioru A w sensie
definicji z wykladu pierwszego. Zwréémy uwage na to, ze utozsamienie przeksztatcenia
7 z ciagiem elementow zbioru A jest zalezne od przyjetego na poczatku uporzadkowania
zbioru A. Zauwazmy tez, ze w przypadku, gdy A = [n], obie definicje pokrywaja sie.
Niech wreszcie D,, oznacza liczbe nieporzadkéw zbioru n-elementowego, to znaczy np.
D,, = D(|n]) dla n > 0. Przyjmujemy ponadto Dy = 1.

Twierdzenie 2.3 Niech |A| =n > 0. Wtedy
D, = \D(A)\—nl.i(_wk (2.5)
" L '
=0

Dowéd. Definiujemy zbiory Ay, ..., A, w nastepujacy sposdb:
Aj ={meS(A): =(j) =}
dla j =1,...,n. Mamy wéwczas

1A, U... U A, :Zn:(—nk“ 3 ‘ﬂ Aj].

k=1 TePy(n) jET

Wyktady z kombinatoryki
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Niech teraz T' € Py(n). Wowczas

N 4= ir: 7() =k ={r: Vi€ T() =)t ={r: 7| T =id}.

JeT JeT

Stad wynika, ze

NAf=o

JjeT
Zatem
AyU. U4, =3 (—1)RH ’ﬂA‘: DR ST (k)=
k=1 TeP,(n) JET k=1 TEP;(n)
n n '
ST ED)E M) ek = S (R k) =
S () e = 3D ) b
k=1 k=1
n !
= e
k:l( S

Nastepnie zauwazamy, ze suma zbioréw A; U. ..U A,, sktada sie z tych permutacji, ktore
maja co najmniej jeden punkt staly. Zatem

D(A) = S(A)\ (A, U...UA,),

skad wynika, ze

n

= = k1 1
|D(A>|—n!—|A1U...UAn|_n!—;(—l) =

n

_nl+z k n' Z(—l)k-%;:
- (—1)’“

—nl.

k=0

To konczy dowdd twierdzenia.

Z powyzszego twierdzenia wyprowadzimy wniosek dotyczacy prawdopodobienstwa wy-
losowania nieporzadku. Przypusémy, ze losujemy permutacje ustalonego zbioru n-ele-
mentowego A i pytamy o to, jakie jest prawdopodobienstwo tego, ze wylosujemy niepo-
rzadek. Zbiorem zdarzen elementarnych Q w tym przypadku jest zbior S(A) wszystkich
permutacji zbioru A; przyjmujemy, ze wylosowanie kazdej permutacji jest jednakowo
prawdopodobne. Interesuje nas prawdopodobienstwo zdarzenia D(A) C €. To prawdo-
podobienstwo jest réwne

s}
S
=
|
IS
=
|
(7=
0
—_
=

k!
k=0

Wyktady z kombinatoryki
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Zauwazmy, ze

n _1 k
i 3 C o
k=0 )

skad wynika, ze dla duzych n rozwazane prawdopodobienstwo jest w przyblizeniu réwne
e~ ! ~0,367879 (juz dla n = 9 uzyskujemy dokladno$é¢ przyblizenia 6 cyfr po przecinku).

5. Uogdblnienie wzoru wlaczen i wylagczen

Przypusémy, ze mamy dane zbiory skonczone Aq,..., A, C X, gdzie X jest ustalonym
zbiorem skoniczonym. Przyjmiemy, ze

ﬂ A; = X.
JED

Korzystajac z tej umowy, mozemy wystowi¢ zasade wlaczen i wylaczen w inny sposéb.
ZastanOowmy sie, ile elementéw zbioru X nie nalezy do zadnego ze zbiorow Aq,..., A,.
Ot6z mamy

X\ (AU VA = X[ =D DM ST | 4

k=1 TePy(n) j€T

“Ualezor 2 04l

JED TEPy(n) jET

:ké(_nk S ’ﬂ Aj’.

TEPy(n) jET

Niech nadal Ay,..., A, C X. Przyjmiemy wtedy oznaczenie:
Dy (X, A1,... . An)={zecX: [{ien]: zc A} =r},

gdzie 0 < r < n. Inaczej méwiac, D, (X, Ay,..., A,) jest zbiorem tych elementéw zbioru
X, ktore naleza do zbioréw A; dla dokladnie r indeksow i. Jesli zbiory Aq,..., A, sa
ponumerowane bez powtorzen, to D,.(X, Ay, ..., A,) jest zbiorem tych elementéw zbioru
X, ktore nalezg do doktadnie r zbiorow sposérod A, ..., A,. W dalszym ciggu, bedziemy
pisa¢ w skrécie, ze element zbioru X nalezy do doktadnie r zbiorow sposréd Ay, ..., Ay,
majac na mysli to, ze istnieje dokladnie r indekséw ¢ takich, ze ten element nalezy do
zbioru A;.

Pokazalismy przed chwila, ze

n

Do(X, A1, A) =3 (1% Y )ﬂAj]. (2.6)

k=0 TePy(n) jET

Te rownosé mozna uogolnic.

Wyktady z kombinatoryki
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Twierdzenie 2.4 Niech A4, ..., A, beda skoniczonymi podzbiorami zbioru skoniczonego
X. Wéwcezas dla dowolnego » = 0,1, ..., n mamy

|DT(X,A1,...,A,1)\:i(—l)k_"(fj) 3 ]ﬂAj’. (2.7)

k=r TeP,(n) jeT
Dowdéd. Niech R € P.(n). Wyznaczymy liczbe tych x € X, ktére maja wlasnosé:
x € A; wtedy i tylko wtedy, gdy j € R.
Inaczej mowiac, wyznaczymy liczbe tych x € X, ktore naleza doktadnie do tych zbioréw
A;, dla ktérych j € R.
Niech
B = ﬂAJ oraz Bj:BﬂAj
JER

dla 7 € R. Naszym celem jest wyznaczenie liczby elementéw zbioru

() (B\ By),

JER
czyli obliczenie Dy(B, B;,, ..., B, ), gdzie [n] \ R = {i1,...,in—r}.

Ze wzoru (2.6) wynika, ze

|Do(B, Biy, ..., Bi, )| =Y (1) Z ’m Bj’ —

k=0 TePy([n)\R) JET
= > DN @nB)| =
k=0 TePy([n]\R) JET
k=0 TePy([n]\R) JET i€R
_ > (N a)n (N a)] =
k=0 TePr([n]\R) iER JET
- SOE0 N A=
k=0 TePy([n]\R) JETUR
=Y Y A=
k=0 TEPy . (In]) JET
RCT
=Y > coN A=
k=r T€P([n]) JET
RCT
- Y "N Aj’.
T jeT
RCTC[n]

Wyktady z kombinatoryki
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Dla ustalonego zbioru R obliczylismy, ile jest takich z € X, ktore naleza do doktadnie
tych zbioréw A;, dla ktérych j € R. Teraz chcemy obliczy¢, ile jest takich z, ktoére
naleza do dokladnie r zbioréw A; (doktadniej: chcemy obliczy¢, ile jest takich z, dla
ktorych [{i € [n] : = € A;}| = 7). W tym celu musimy zsumowaé otrzymane liczby dla
wszystkich r-elementowych podzbioréw R zbioru [n]. Mamy zatem

D (X, Ay LA = Y Y T 4

ReP,(n) RQTTg[n] JeET
- Y A
TeP>,(n) ReP.(T) JeET
T r

= > <r (=D Ay =
TEPZT(TL) JjeT

n k .,
2 2 () erinal-
k=r T€Py(n) jET

n ., k‘
=S (0) 2 |nal
k=r TePr(n) JET

co konczy dowod twierdzenia.

6. Liczba permutacji majacych r» punktow stalych

W tym paragrafie obliczymy, ile jest permutacji zbioru n-elementowego majacych do-
ktadnie r» punktow statych. Niech

D,(A)={reSA): [{icA: n(i)=1i}|=r}.

W szczegdlnosci Do(A) = D(A).
Twierdzenie 2.5 Niech |A| = n i niech 0 < r < n. Wtedy

n! n—r . k
Dy (a) =25 B 28)

Dowdd. Sposéb 1. Wybieramy najpierw zbioér r punktéw stalych permutacji, a na-
stepnie permutujemy pozostate elementy tak, by nie utworzy¢ nowego punktu statego;
inacze] mowiac permutacja pozostalych elementéw jest nieporzadkiem. Stad wynika
wWzOr

k! r! k!

n n! nTr 1)k n! n—r. . 1\k
DT(A):(>.DH_T:%.(H_T>I.Z( 1 :—"Z( "

Sposdb II. Korzystamy z twierdzenia 2.4. Definiujemy zbiory A4, ..., A,, w nastepujacy
Sposob:

Aj ={reS5(4): 7(j) = Jj}

Wyktady z kombinatoryki
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dla j = 1,...,n. Tak jak w dowodzie twierdzenia 2.3 stwierdzamy, ze dla T' C [n]
zachodzi réwnosé
N4

JET

= (n—k)!

7 twierdzenia 2.4 otrzymujemy teraz

D) = D) A =3 0 (F) S0 |

k=r TePy(n) jeET

k=0

co konczy dowod twierdzenia.

7. Srednia liczba punktéw statych

Niech |A| = n. Przypus$émy, ze wybieramy losowo jedna permutacje ze zbioru S(A).
Oznaczmy przez p, prawdopodobienstwo tego, ze wylosowana permutacja bedzie miata
doktadnie r punktéw statych. Z twierdzenia 2.5 wynika, ze

Niech zmienna losowa X bedzie okreslona wzorem

X(m)=NHjeA: n(j) =3}

Wyktady z kombinatoryki
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Zatem X () jest liczba punktéow stalych permutacji m. W tym paragrafie obliczymy
wartos¢ srednia zmiennej X.

7 definicji wartosci sredniej mamy

n
~Y rop
r=0

Mamy zatem

n 1 n—r 1
f— . f— — —_ k . —
DI N D MEN S
r=0 r=1 k=0
- N e T kD
— (r—1)! — L el (r—1! k!
Korzystamy teraz ze wzoru
n n—r ]
B)BUIED ) ST
r=1 k=0 j=1lr=1

Mamy zatem

ot por
B _2 ( —(1_>!1 -)i;TQ §J>'!_-<1j>!—r>! B _2 (&1—)1)' (r —(1j>!_- 8!— e
S () - S ()

_ : <—]1'>J g(_ly (J)

Stad ostatecznie

-5 G o ()- 5
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Zasada wlaczen i wylaczen 15

Srednia liczbe punktéw statych permutacji mozna obliczy¢ znacznie prosciej, korzystajac
z nastepujacej wlasnosci wartosci sredniej zmiennych losowych:

EXi1+...+X,)=EX1)+...+ E(X,).
Zdefiniujmy teraz n zmiennych losowych Xy, ..., X,:
1 jesli m(i) =1,
Xi(m) = {0 jesli (i) # i.
Nietrudno zauwazy¢, ze wtedy X = X1 + ...+ X,,, gdzie X jest zmienna losowa zdefi-
niowana wyzej. Nastepnie tatwo obliczyé¢, ze E(X;) = P(X =1) = % Stad dostajemy

E(X) = BE(X1) + ...+ B(X,) = n - -

- =1,
n

8. Problem par malzenskich

W tym paragrafie rozwiazemy nastepujacy problem pochodzacy od Lucasa (le probléme
des ménages). Dany jest okragly stél, wokét ktérego mamy posadzié na numerowanych
miejscach n par maltzenskich w taki sposéb, by panie i panowie siedzieli naprzemian i by
zadna pani nie siedziata obok swojego meza. Lucas pytal o to, na ile sposobéw mozemy
te osoby posadzi¢ wokét stotu z zachowaniem podanych regul. Popatrzmy najpierw na
przyklad. Oto okragly st6t z 12 miejscami (a wiec tutaj n = 6):

12

Przede wszystkim widzimy, ze panie musza zajac¢ albo miejca parzyste, albo nieparzyste.
Ponumerujmy wiec oddzielnie liczbami od 1 do 6 miejsca parzyste i nieparzyste:

Wyktady z kombinatoryki
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Najpierw posadzimy panie. Ich miejsca mozemy wybrac¢ na 2-n! sposoboéw: musimy zde-
cydowaé, czy wybieramy miejsca parzyste, czy nieparzyste, a nastepnie na wybranych
miejscach mamy n! mozliwosci posadzenia n pan. Ponumerujmy panie: K1, Ko, ..., K,,
przy czym przyjmujemy, ze pani K; siedzi na miejscu ¢. Dla ustalenia uwagi przypu-
s¢my, ze panie posdziliSmy na miejscach parzystych, czyli bialych na rysunku drugim.
Ponumerujmy nastepnie panéw: My, M, ..., M, przy czym zaktadamy, ze pan M; jest
mezem pani K;. Przykladowy sposéb posadzenia n panéw widzimy na nastepnym ry-
sunku:

Widzimy, ze usadzenie panéw jest zgodne z wymaganiami, jesli spetnione sa nastepujace
warunki:

e pan M nie siedzi na zadnym z miejsc 11 2,

e pan My nie siedzi na zadnym z miejsc 2 1 3,

e pan M3 nie siedzi na zadnym z miejsc 3 i 4,

e pan M, nie siedzi na zadnym z miejsc 4 i 5,

e pan Mj5 nie siedzi na zadnym z miejsc 5 i 6,

e pan M;g nie siedzi na zadnym z miejsc 61 1.
Ogoélnie dla n par warunki te mozemy sformutowaé¢ w trzech punktach:

e zaden z panéw M; (dla i =1,...,n) nie moze siedzie¢ na miejscu 1,

e zaden z panéw M; (dlai=1,...,n — 1) nie moze siedzie¢ na miejscu i + 1,

e pan M, nie moze siedzie¢ na miejscu 1,
Niech teraz (i) oznacza numer miejsca, na ktérym siedzi pan M;. Naszym celem jest
znalezienie liczby p(n) permutacji m € S([n]), spelniajacych nastepujace warunki:

1) 7(i) #idlai=1,...,n,
2) w(i) #i+1dlai=1,...,n—1,
3) m(n) # 1.
Liczba M (n) wszystkich mozliwych sposobéw posadzenia n par malzenskich bedzie

M(n)=2-n!-u(n). (2.9)

Wyktady z kombinatoryki
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Definiujemy 2n zbioréw:
Agi_lz{ﬂ'GS([n) (2 ’L} dlai=1,...,n,

] )
Api={reS(n]): i) =i+1} dai=1,...,n—1,
Agy = {m € S(n)) : m(n) =1}

Wowczas
p(n) = SR\ (AU .UAz,)| = Do(S([n), Av, o As) = S0 (<15 D7 () 4]
k=0 TeP,(2n) jET

Niech T € Py(2n). Chcemy obliczy¢
Nl

Zauwazmy, ze

ﬂAj:Q,

wtedy i tylko wtedy, gdy spelniony jest co najmniej jeden z trzech warunkow:
1) 20 —1,2i € T dla pewnego i = 1,...,n,
2) 2i,2i+1 €T dla pewnegoi=1,...,n—1,
3) 1,2n e T.

Przypu$émy bowiem, ze

mE ﬂA

oraz spelniony jest warunek pierwszy dla pewnego i. Wtedy m € Ag;_1 N Ag;, czyli
m(i) = i oraz w(i) = ¢ + 1, co jest niemozliwe. Podobnie, jesli spelniony jest warunek
drugi dla pewnego i, to m € Ag; N Agjyq, czyli (i) = i+ 1 oraz w(i + 1) = i + 1.
To takze jest niemozliwe. Wreszcie, jesli 1,2n € T, to m € A; N Agy,, czyli n(1) = 1
oraz m(n) = 1, co takze jest niemozliwe. Na odwrét, jesli zaden z tych trzech warunkéw
nie jest spelniony, czyli w zbiorze T nie wystepuja dwie kolejne liczby (liczby 2n i 1
traktujemy tu jako liczby kolejne), to w permutacji 7 mamy ustalone k wartosci. Takie
permutacje istnieja i jest ich (n — k)!. Zauwazmy, ze wtedy oczywiscie k < n.
WprowadZzmy na uzytek tego dowodu nastepujace oznaczenia. Oznaczmy przez g(n, k)
liczbe takich zbioréw B € Py(n), ze

a) jedlii€ B,itoi+1¢Bdlai=1,...,n—1,
b) jeslin € B, to 1 ¢ B.

Oznaczmy nastepnie przez h(n, k) liczbe zbioréw B € Py (n) spelniajacych tylko powyz-
szy warunek a):

a) jesliie B,toi+1¢Bdlai=1,...,n—1,

Wyktady z kombinatoryki
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Wtedy

pn) =Y (=DF-(n—k)!g(2n,k). (2.10)
k=0
Naszym celem jest zatem obliczenie g(2n, k).
Lemat 2.6. h(n, k) = ("77).
Dowdéd. Sposdéb I. Mamy policzyé, ile jest k-elementowych podzbioréw zbioru [n]
nie zawierajacych dwoch kolejnych liczb. Kazdy k-elementowy podzbiér zbioru [n] jest
zbiorem wartosci doktadnie jednej funkcji rosnacej f : [k] — [n]. Warunek, ze ten

podzbior nie zawiera dwoch kolejnych liczb jest rownowazny nastepujacej wlasnosci
funkcji f:
f@+1)—f)>2 dlai=1,2,...,n—1. (%)

Dla dowolnej funkcji f : [k] — [n] definiujemy funkcje g : [k] — [n — k + 1] wzorem
g(t) = f(i) —i+1

dlaz=1,2,..., k. Mamy zatem

g(1) = f(1),

Nietrudno zauwazy¢, ze funkcja f spelnia warunek (x) wtedy i tylko wtedy, gdy funkcja
g jest rosngca. Zatem funkcji f : [k] — [n] spelniajacych warunek (x) jest tyle, ile funkcji
rosnacych g : [k] — [n — k + 1], a wiec (”_ZH

Sposéb I1. Rozumowanie bedziemy ilustrowaé¢ przyktadem, w ktérym n = 131 k = 4.
Narysujmy w jednej linii n — k koéteczek.

O (0] (0] O O (0] (0] (0] O

Tworza one n—k+1 (w naszym przyktadzie n—k+1 = 10) wolnych miejsc: jedno przed
wszystkimi koteczkami, n — k — 1 miejsc miedzy kolejnymi kéteczkami i jedno na koncu,
za wszystkimi kéleczkami. Z tych n — k + 1 miejsc wybierzmy k miejsc (w naszym
przyktadzie bedzie to miejsce pierwsze, miejsce miedzy trzecim i czwartym kotkiem,
miejsce miedzy siodmym i é6smym kétkiem oraz miejsce miedzy ésmym i dziewigtym
kotkiem) i wstawmy w nie czarne kotka:

[ ] O O (0] [ ] O O (0] (0] [ ] @] [ (0]

Mamy razem n koétek, w tym k czarnych. Sposéb wstawiania gwarantuje, ze zadne dwa
czarne kétka nie beda staly obok siebie. Taki ciag kolek koduje podzbiér zbioru [n]:

{i € [n] : na i-tym miejscu stoi czarne kétko}.

Wyktady z kombinatoryki
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W naszym przykladzie jest to zbiér {1,5,10,12}. Zauwazmy wreszcie, ze czarne kotka
mozemy wstawi¢ na ("_'k““) sposobow, co konczy dowdd lematu.

Lemat 2.7. g(n, k) = "¢ - (”Ek)

Dowdd. Zliczamy zbiory B € Py(n) spelniajace warunki a) i b).

Najpierw zajmiemy sie takimi zbiorami B, ze 1 € B. Wtedy 2 ¢ B oraz n ¢ B.
Ponadto zbiér B \ {1} € Pr_1({3,...,n — 1}) spelnia warunek a). Stad wynika, ze
istnieje h(n — 3, k — 1) takich zbioréw B.

Zajmijmy sie nastepnie takimi zbiorami B, ze 1 ¢ B. Wtedy zbiér B € Px({2,...,n})
spelnia warunek a). Istnieje zatem h(n — 1, k) takich zbioréw B. Zatem

gn, k) =h(n—3,k—1)+h(n—1,k) =
-(E) ()
o () ()=

_n n—=k
Cn—k k ’
c. b. d. o.

Twierdzenie 2.8. Liczba sposobéw posadzenia n par malzenskich przy okraglym stole
jest rowna

n

M(n) :2.n!.2(—1)k.2n2fk . <2”k_ k) (n—k)! (2.11)

k=0

Dowdéd. Z réwnosci (2.9) i (2.10) wynika, ze liczba sposobéw posadzenia n par malzen-
skich przy okraglym stole jest rowna

n

M(n)=2-n!-pn)=2-n-> (=1)F - (n—k)!-g(2n, k).
k=0

Korzystajac z lematu 2.7 otrzymujemy

n

M(n)=2-nl-3" (~1)*- Qﬁ x (2"]; k) S(n— k),

k=0

c. b. d. o.

9. Sumy poteg liczb naturalnych

Przypomnijmy z wyktadu 1 oznaczenie

n
Sk(n):ij:1k+...+nk,
j=1

Wyktady z kombinatoryki
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gdzie n, k > 1. Z wyktadu 1 wiemy, ze

So(n) =n,

Sy(n) = <”‘2“) _ n(n; 0

Saln) = i | (2n3+ 2) _ n(n—|—1)6(2n+1)7
S3(n) = (n;1)2 = 8y (n)? = M_

Wyprowadzimy teraz pewien wzoér ogolny. Bedzie to wzor rekurencyjny, pozwalajacy
obliczy¢ Si(n), jesli sa znane wszytkie S;(n) dla j < k.
Twierdzenie 2.9. Jesli n,k > 1, to

k
nk = Z (—1)7+1 (’;’) Sk_;(n). (2.12)

Zanim udowodnimy to twierdzenie, przyjrzymy sie jego poczatkowym przypadkom i po-
kazemy, jak z niego mozna otrzymaé¢ wzory na Si(n) dla k < 3. Oczywiscie

Son) =1+ ... +n’ =n.
Teraz, korzystajac z twierdzenia 2.9 dla k£ = 2 mamy
2 2 2 2
n® = ; (1) (J) Sp—j(n) = (1) Si(n) — (2) So(n) =281 (n) — n,

skad otrzymujemy
251(n) =n*+n=n(n+1),

czyli
Nastepnie, dla £k = 3 mamy

n’ i 1 (3 a0 = (7)) = (3) 3100+ () 8ot =

J

1
:352(n)_3.%+n7
skad dostajemy
1 2n3 43 1)—2
3Sg(n):n3+3~%_n: n° + n(z+ ) n:

23 +3n7+3n—2n) n@2n*+3n+1)
= 5 = 5 =
~nn+1)2n+1)
= 5 ,

Wyktady z kombinatoryki
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czyli

Sy(n) = n(n+1)(2n + 1).

Wreszcie dla n = 4 mamy

o (Yo

=1

(1) st ()&W+<®&W%(®%mpz

<.

nn+1)(2n+1) n(n+1) B
Ss(n) = 6 *4“—3———"—

Sz(n) —n(n+1)2n+1)+2n(n+1) —

skad wynika, ze

4S3(n) =n* +nn+1)2n+1) —2n(n+1) +n=

=n-(n®+Mn+1)2n+1)—2(n+1)+1) =
=n-((PP+1)+n+1)2n+1-2) =
=n-(n+1)(n*—n+1)+m+1)2n-1)) =
=nn+1)(n*—n+1+2n—1)=nn+1)(n®+n) =
=n?(n+1)%,

czyli

Sa(n) = (n4—|— 1)
Udowodnimy teraz twierdzenie 2.9.
Dowéd. Wezmy zbior
X=mn"={(x,...,2): x1,...,21 € [n]}.

Wtedy oczywiécie | X | = n¥. Definiujemy teraz nastepujace podzbiory zbioru X:
A ={(z1,...,2) € X : Vi (z; <zpy)}

dla m = 1,..., k. Inaczej méwiac, do zbioru A,, naleza te ciagi, w ktérych najwiekszy
wyraz znajduje si¢ na m-tym miejscu. Oczywiscie ciagi majace najwiekszy wyraz na
kilku miejscach, naleza do kilku takich zbioréw A,,. Na przyktad, jeslin =5ik =7, to
(1,3,4,2,5,4,2) € A5 oraz (1,3,4,2,1,4,2) € A3 N Ag. Ogodlnie, niech T' € P;(k), gdzie
1 <75 <k. Wtedy

ﬂ Am:U{(ml,...,xk)EX: Vm €T (z, =1) oraz Vm € [k]\ T (z, <1)}.
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Zauwazmy nastepnie, ze
H(zy,...,20) €EX : Vm €T (2, =1) oraz Vm € [K]\ T (x, <1)}| =177
oraz zbiory
{(z1,...,25) € X : Vm €T (xy, =1) oraz Vm € [k]\ T (z,, <1)}
dla réznych [ sa roztaczne. Zatem

— Zlk_j = Sk_j(’l’b>.

meT =1

Wreszcie
X=A1U...UAg,

a wiec z zasady wlaczen i wytaczen otrzymujemy

X=3 0" T () A

Jj=1 TeP;(k) meT
k
oy Z ‘]+1 Z Sk ]
Jj=1 TeP;(k)
k
. k
=30 (4) s
=1 J
czyli
k
- Z H—l( )Sk i(n),
71=1
c. b. d. o.

10. Dwie tozsamosci

Rozwazania tego paragrafu beda w zasadzie powtdérzeniem rozwazan z paragrafu 3.

Zajmiemy sie funkcjami f : [n] — [m] i bedziemy chcieli policzy¢ funkcje f spelniajace

dla pewnego k warunek [k] C Ry. Definiujemy zbiory Ay, ..., Ay w nastepujacy sposob:
Aj={fem™: j¢Ry}

dla j = 1,..., k. Korzystajac ze wzoru wtaczen i wylaczen, podobnie jak w paragrafie
3, otrzymujemy

k
|A1U...UAk\—Z( 1)i+1 ‘
TeP;(k) i€T

S

=1

DIty (m—g)" =

TCP;(k)

.
-
i
S
|

<.
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Funkcje, ktére nas interesuja, tworza zbior [m]™ \ (4; U...U A). Zatem liczba takich
funkcji jest réwna

k k
=3 () om g = 3o () o
J=1 Jj=
W szczegdlnosci, jesli k = n oraz m > n, to istnieje n! takich funkcji. Zatem

S (1p (M)on—sr =nt dlamzn (213)

i=0 J

Zdefiniujmy teraz wielomian W (x) wzorem

k=0

Jest to wielomian stopnia co najwyzej n. Z tozsamosci (2.13) wynika jednak, ze te sama
warto$é¢ n! przyjmuje on w nieskonczenie wielu punktach:

W(m)=mn! dlam > n.

Stad wynika, ze ten wielomian jest wielomianem stalym, czyli

Zn: (—1)k (Z) (z — k)" = n! (2.14)

k=0

7 rozumowaniem, ktére przeprowadziliSmy, pozwalajacym przej$¢ od tozsamosci udo-
wodnionej dla liczb naturalnych do réwnosci wielomianéw, spotkamy sie jeszcze w na-
stepnych wyktadach.

11. Nieré6wnosci Bonferroniego

Udowodnimy teraz dwie nieréwnosci, zwane nieré6wnosciami Bonferroniego. Oto
one:

2r
AU UAL =Y (=DM Y 4 (2.15)
k=1 TEPr(n) JeT
oraz
2r+1
AU UA, < Y (=R 3 1) 4. (2.16)
k=1 TEP,(n) JeT

Powtarzamy drugi dowod zasady wtaczen i wylaczen polegajacy na przegladaniu kolej-
nych sktadnikéw sumy stojacej po prawej stronie nieréwnosci i rysowaniu przy kazdym

elemencie iloczynu () A; znaku plus lub minus w zaleznosci od tego, czy liczba | (] A;
JET jE€T
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wystepuje w sumie ze znakiem plus czy minus. Inaczej méwiac, jesli zbiér T' ma nie-
parzysta liczbe elementéw, to rysujemy znak plus; jesli zag zbior T' ma parzysta liczbe
elementéw, to rysujemy znak minus.

Tak jak w poprzednim dowodzie zauwazamy, ze prawa strona réwnosci (2.3) jest réznica,
miedzy liczba pluséw i liczba minuséw. Musimy zatem oszacowac¢ réznice miedzy liczba
pluséw i minuséw narysowanych przy kazdym elemencie sumy zbioréow A; U...U A,,.
Zajmiemy sie najpierw nieréwnoscia (2.15). Mamy teraz pokazaé, ze przy kazdym ele-
mencie sumy zbioréw A;U...UA, narysowaliSmy co najwyzej o jeden plus wiecej. Niech
xr € Ay U...UA,. Tak jak poprzednio, niech

Inaczej méwiac, © € A; wtedy i tylko wtedy, gdy j € M. Oznaczmy m = |M|; oczywidcie
m > 0. Niech teraz T € Py(n) i popatrzmy na zbiér () Aj;; jest to jeden ze zbioréw
JjET
wystepujacych po prawej stronie réwnosci (2.3). Jesli T'\ M # &, to oczywiscie mamy
z & () Aj. Przypu$émy zatem, ze T' C M. Wtedy przy elemencie = rysowaliSmy znak
JjeT
plus lub minus, w zaleznosci od parzystosci k: plus dla nieparzystych k, minus dla
parzystych k. Dla danego k liczba takich zbiorow T' jest réwna (’:) Liczby pluséw

i minuséw narysowanych przy x sg zatem réwne

liczba plusow = Z <;Z:> .

k=1
! m
liczb . for
1CZDa MINUSOwW kg_l <2k _ 1>,

skad dostajemy

2r
liczba pluséw — liczba minuséw = Z (—1)k+1 (7;;) :
k=1

Tym razem korzystamy z réwnosci (1.27) (przypominamy, ze m > 0):
2 m m—1 m—1
—1)* = (-1)* = :
2 (i) =0 ( )= (%)

Mamy teraz dwie mozliwosci. Jedli m — 1 < 2r, czyli m < 2r (tzn. element x nalezy do
co najwyzej 2r zbioréw A;), to tak jak poprzednio

liczba pluséw — liczba minuséw = 0.

(m—l) -
2r -

Wyktady z kombinatoryki
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skad wynika, ze
czyli

Zatem

2r m 2r m

_\k+1 _ 1k
S o (1) == ev () <o
k=1 k=1
Stad wynika, ze przy elemencie z narysowaliémy co najwyzej tyle pluséw, ile minusow.
Zatem dla kazdego elementu x sumy A; U...UA, w obu przypadkach narysowaliSsmy co
najwyzej o jeden plus wiecej, co dowodzi nieréwnosci (2.15). Dowdd nieréwnosci (2.16)
jest analogiczny i pozostawimy go jako ¢wiczenie.
Z powyzszego dowodu wynika, ze jedli kazdy element sumy A; U...U A, nalezy do co
najwyzej 2r zbioréw A;, to nieréwnos¢ (2.15) staje sie réwnoscia. Jesli natomiast istnieje
co najmniej jeden element nalezacy do wiecej niz 2r zbioréw A;, to nieréwnosé (2.15)
jest ostra. Podobnie jest z nier6wnoscia (2.16). Jesli kazdy element sumy A; U...U A4,
nalezy do co najwyzej 2r + 1 zbioréw A;, to mamy réwnos¢; w przeciwnym przypadku
nieré6wnos¢ jest ostra.
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Spis tozsamosci kombinatorycznych
|AUB| = |A|+ |B| — |AN B| (2.1)

JAUBUC|=|A|+|B|+|C|—|ANnB|—-|ANnC|—|BNnC|+|AnBNC|. (2.2

ATU U4 =3 (DR Y mAj]. (2.3)

k=1 TePy(n) JET
{f € AB: fjest ,na”}| = Z(—l)k(?Z) (m— k)" (2.4)
k=0
o 1\k
Dy =ty Y (25
k=0 )
Do(X, Ay, A) =3 (-1)F Y )ﬂAj]. (2.6)
k=0 TeP,(n) jeT
DX, A1, ..., A = (—1)k—r(l:) 3 ]ﬂ Aj’. (2.7)
k=r TeEP,(n) jeT
n! w— (—1)*
Dy ="y Y (2.9
k=0 ’
M(n)=2-n!-pu(n) (2.9)
p(n) = (=1)F - (n— k)l - g(2n, k). (2.10)
k=0
M(n) =2-nl H( e ( . ) (n— k)! (2.11)
k __ _1\J+1 k (n
= (j)sk_x ) (2.12)
2 (—-1)/ <j)(m—j)”:n! dla m > n. (2.13)
Y (M) (2 — k)" = nl )
S0 ()t = (2.14)
1A U...UA,| > - (- Y ‘ﬂAj]. (2.15)
k=1 TePy(n) jET
1A, U...UA,| < . (—F Y ]ﬂAj‘. (2.16)
k=1 TEPr(n) JeT
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ROWNANIA REKURENCYJNE

1. Ciagi arytmetyczne i geometryczne

Z najprostszymi réwnaniami rekurencyjnymi zetknelismy sie juz w szkole. Zacznijmy od
przypomnienia definicji ciggu arytmetycznego. Niech beda dane dwie liczby rzeczywiste
a i r. Ciggiem arytmetycznym nazywamy ciag (a,) liczb rzeczywistych okreslony
wzorami

ag=a, apt1 =an,+r dlan>0.

Ze szkolty znamy tez wzoér ogdllny (lub wzdr jawny) ciagu arytmetycznego (a,,):
a, = a4+ nr

dlan=20,1,2,...
W podobny sposob definiujemy ciagi geometryczne. Zalézmy, ze dane sa liczby rze-
czywiste a i ¢q. Ciagiem geometrycznym nazywamy ciag (a,) liczb rzeczywistych
zdefiniowany wzorami

ap=a, apt1=apq dlan>0.

Znéw wzér ogdlny ciagu geometrycznego (a,) jest znany ze szkoly:
an = aq
dlan=0,1,2,...

2. Wieze Hanoi

Znaczenie rownan rekurencyjnych w kombinatoryce polega na tym, ze wielokrotnie
umiemy dos¢ latwo znalezé rozwigzanie rekurencyjne zadania kombinatorycznego, pod-
czas gdy znalezienie wzoru ogdlnego nie jest oczywiste. Z drugiej strony, znamy wiele
metod otrzymywania wzoréw ogdlnych z réwnan rekurencyjnych. Kilka takich metod
poznamy w tym i nastepnym wykladzie. Zacznijmy od przyktadu: zadania o tzw. wie-
zach Hanoi.

Lamigléwka o nazwie ,Wieze Hanoi” wyglada w nastepujacy sposéb. Mamy trzy pa-
teczki. Na jedna z nich nadziano 64 krazki w kolejnosci od najwigkszego na dole do
najmniejszego na gorze. Nalezy przenies¢ wszystkie krazki z jednej paleczki na druga,
przy czym wolno za kazdym razem przenosi¢ tylko jeden krazek i nie wolno ktasé wiek-
szego krazka na mniejszy. W czasie przenoszenia wolno ktasé¢ krazki na wszystkich trzech
paleczkach. Ile najmniej ruchéw (tzn. pojedynczych przeniesien krazkéw) potrzeba, by
przenies¢ wszystkie 64 krazki?

Oznaczmy przez H, najmniejsza liczbe ruchéw, ktore nalezy wykonaé by przeniesé n
krazkow z jednej pateczki na inna. Jest przy tym obojetne, z ktorej palteczki na ktéra
przenosimy te krazki. Réwniez jest obojetne, czy na tych paleczkach juz leza jakies
krazki, byle byly one wieksze od wszystkich krazkéw, ktore przenosimy. Oczywiscie
Hy = 0. Przypusémy, ze umiemy przenies¢ n krazkéw w minimalnej liczbie H,, ruchéw.
Chcemy teraz przenies¢ n+1 krazkéw z pierwszej paleczki na druga. W ktéryms momen-
cie bedziemy musieli przenie$¢ najwiekszy krazek, lezacy na samym dole na pierwszej
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pateczce. Oczywiscie musimy przedtem zdja¢ z niego wszystkie mniejsze krazki. Nie
moga one tez leze¢ na drugiej paleczce, bo tam mamy polozy¢ najwiekszy krazek. Mu-
simy zatem przenies¢ n krazkéw z pierwszej pateczki na trzecia. Wykonamy w tym celu
H,, ruch6w. Nastepnie przenosimy najwiekszy krazek (to jest jeden ruch) i wreszcie
przenosimy n krazkéw z trzeciej pateczki na druga (tu znéw mamy H,, ruchéw). Razem
wykonamy wiec 2- H,, + 1 ruchéw. Widzimy, ze z jednej strony jest to minimalna liczba
ruchéw, ktore musimy wykonaé, a z drugiej, ze ta liczba ruchéw jest tez wystarczajaca.
Zatem otrzymujemy rownanie rekurencyjne:

Hy=0, Hy1=2-H,+1 dlan>0.

Obliczmy kilka poczatkowych wyrazéw ciagu (H,,):

Hy =0,

Hy =2Hy+1=1,
Hy = 2H, +1=3,
Hy =2H, +1=1,
Hy=2H;+1=15

i tak dalej. Latwo domyslamy sie wzoru ogdlnego:
H,=2"-1

dla n = 0,1,2,... Mozemy teraz sprawdzi¢ przez indukcje, ze ten odgadniety wzor
ogolny jest poprawny.

3. R6éwnania rekurencyjne liniowe pierwszego rzedu o stalych wspoélczynni-
kach

Niech beda dane liczby rzeczywiste a, b i ¢. Przypu$émy nastepnie, ze ciag (a,) zostal
okreslony za pomoca réwnania rekurencyjnego

ap=a, ap+1=>b-a,+c dlan>0.

Ciag (H,) okreSlony wyzej otrzymamy przyjmujac a = 0, b = 2 i ¢ = 1. Przyjmijmy
ponadto, ze b # 1 (w przeciwnym razie mieliby$my do czynienia z ciagiem arytmetycz-
nym). Obliczmy kilka poczatkowych wyrazéw ciagu (ay):

ap = a,
a1 =bag+c=ab+c,
agzba1+c:a62+bc+c,

as = basy + ¢ = ab® + b%c + be + ¢,

as = bas + ¢ = ab* + b3c + b*c + be + ¢,

as = bay + ¢ = ab® + bic + b3c + b e+ be + ¢
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i tak dalej. Znow domyslamy si¢ wzoru ogdlnego:

n

an=ab” +c(1+b+b*+.. .+ ) =ab" +c-

b—1
dlan =0,1,2,... Sprawdzimy przez indukcje, ze ten wzér jest poprawny.
Dla n = 0 mamy
B 4. L1
ag=a c- = a.
0 b—1
Przypusémy nastepnie, ze nasz wzor jest spetniony dla pewnego n i obliczmy a,,41:
n o__ bn+1 —b
Gpnt1 =bay, +c=0- (ab”+c- o ) +c:abn+1—|—c-b_71+c:
bl —b+b—1 prtl —1
= gb" 1! : Y .
a +c A a +c 1

co konczy dowod indukeyjny.
Wzér ogélny tego ciagu mozna wyznaczy¢ tez w inny sposéb, wprowadzajac ciag po-
mocniczy (by,) zdefiniowany wzorem
bn = Qn4+1 — QGn
dlan=0,1,2,... Wowczas
b1 = apy2 — Gpt1 = (bapy1 +¢) — (ban, +¢) =b- (ape1 — ap) =b - by,
skad dostajemy
by, =bg - 0"
dlan=20,1,2,... Zatem
Apt1 = Qp +bg - 0"
dlan=20,1,2,... Wypiszmy n poczatkowych réwnosci:
aq :a0+b0'b0,
as :a1+b0'b17
az = az + by - b,
Ap—1 = Ap—2 + bO ' bn_27
Ay = Qp_1 + bo : bn_l.

Po dodaniu stronami tych nieréwnosci i skroceniu wystepujacych po obu stronach wy-
razow ai, as, ..., a,_1, otrzymamy

b —1
an:a0+bO'(bo—i—b1+bz+...—i—b”_1):a0+b0. T =
n_ 1 n_1 n_q
:a+(ab+c_a>-bb_1 :a_f—a(b_l).bb_l +Cbb_1 —
" —1 b —1
= e . — ab” . )
a+a(b )+c — ab™ + ¢ —
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4. Ré6wnania rekurencyjne liniowe pierwszego rzedu o zmiennych wspétczyn-
nikach

Rozwigzemy najpierw zadanie o tzw. sortowaniu przez taczenie. Mamy 2" monet, kazda
innej wagi. Dysponujemy waga szalkowa bez odwaznikéw. Naszym zadaniem bedzie
ulozenie wszystkich monet w kolejno$ci od najciezszej do najlzejszej. Bedziemy to ro-
bili w nastepujacy sposéb. Najpierw podzielimy monety na dwie czeéci po 27! monet.
Nastepnie kazda z tych czesci uporzadkujemy od najciezszej do najlzejszej. Potem po-
réwnamy najciezsze monety z obu czesci i ciezsza z nich odtozymy jako najciezsza ze
wszystkich. Potem poréwnamy najciezsze monety obu czesci (jedna z tych czesci jest
teraz mniejsza, ubyla z niej jedna moneta). Ciezsza monete odkladamy na bok jako
druga z kolei. I tak dalej. Trzeba jeszcze wyjasni¢, w jaki sposob porzadkujemy obie
czesci. Otéz zrobimy to w taki sam sposob. Kazda z tych czeéci podzielimy znéw na
dwie czesci, uporzadkujemy je i polaczymy ze soba. Kazda z tych mniejszych czesci
znow porzadkujemy tak samo: dzielimy na dwie czesci i potem taczymy ze soba. I tak
dalej. Wreszcie dojdziemy do czesci liczacych tylko dwie monety i wtedy wystarczy
jedno wazenie, by taka mala czes¢ uporzadkowac. Ile potrzeba wazen, by za pomoca tej
metody uporzadkowaé¢ wszystkie monety?

Oznaczmy przez P, maksymalna liczbe wazen potrzebnych do uporzadkowania 2" mo-
net w sposéb opisany w zadaniu. Oczywiscie Py = 0. Jedli bowiem mamy 2°, czyli 1
monete, to nie musimy nic wazy¢. Przypusémy teraz, ze umiemy juz uporzadkowaé 2"
monet za pomoca P, wazen. Sprébujmy zatem uporzadkowaé 277! monet. Najpierw
dzielimy je na dwie czesci, po 2" monet kazda. Nastepnie porzadkujemy kazda z tych
czesci. Do uporzadkowania kazdej czesci potrzebujemy P, wazen. Wreszcie musimy po-
taczy¢ obie czesci. Zauwazamy wiec, ze kazde wazenie pozwala nam odtozy¢ na bok, jako
kolejna, tylko jedng monete. Do uporzadkowania wszystkich 27! monet bedziemy wiec
potrzebowali co najwyzej 2”1 —1 wazeni. (Czasami to taczenie moze zakoficzy¢ sie weze-
sniej, gdy przy odktadaniu monet na bok jedng z czeSci wyczerpiemy duzo wczesniej niz
druga; na pewno jednak nie bedziemy potrzebowali wiekszej liczby wazen.) Laczna mak-
symalna liczba wazef potrzebnych do uporzadkowania wszystkich 2”71 monet wynosi
wiec 2 - P, +2nt1 — 1.

Ciag liczb (P,) jest zatem okre$lony wzorami: rekurencyjnymi
Py=0, P,.1=2-P,+2""'—1 dlan>0.
Znéw obliczmy kilka poczatkowych wyrazéw ciagu (P,):

Py =0,
Pl=2-0+2'-1=1,
Py=2-14+22—-1=5,
P3=2-5+4+23-1=17,
Py =2-17+2% -1 = 49,
Py =2-49+ 2% — 1 =129,
Ps=2-129+2% -1 =321
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i tak dalej. Tu domyslenie sie wzoru ogdlnego jest trudniejsze. Mozna jednak zauwazyc¢,

ze
Pp—1=-1=(-1)-2°

P—-1=0=0-2,
P,—1=4=1-22
P;—1=16=2-23
Py—1=48=3.2%
P;—1=128 =4-2°,
Ps—1=320=5-2°
i tak dalej. Widzimy juz wzoér ogdlny
P,=(n-1)-2"+1
dla n = 0,1,2,... Sprawdzenie poprawnosci tego wzoru przez indukcje jest prostym

¢wiczeniem.

5. Metoda czynnika sumacyjnego

Réwnanie rekurencyjne otrzymane w ostatnim paragrafie mozna rozwigzaé¢ w sposob
nastepujacy. Rozwazmy ciag (Q,,) okreslony wzorem
P,
Qn = 2—: dla n > 0.
Wowczas oczywiscie Qg = 0. Podzielmy teraz obie strony réwnania
Py =2-P,+2"1 1

przez 2"*1. Otrzymamy

P,y P, 1
2n+1 = 2_n+1_ 2n+1’
czyli
1
Qn1=Qn+1— on+1
dlan =0,1,2,... Wypiszmy teraz otrzymane zaleznosci dla poczatkowych wartosci n:
1
1=Qo+1- o1
1
Q2=Q1+1- 52
1
Q3 =Q2+1- 53
1
Q4 = QB +1-— ?7
1
Qn—l = Qn—Q +1- 271—_17
1
Qn:Qn—1+1_2_n-
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Dodajemy teraz te rownosci stronami i po skréceniu jednakowych sktadnikéw wystepu-
jacych po obu stronach, otrzymujemy

Mnozymy obie strony przez 2", otrzymujac
Po=n-2"—(1+4+2+4+.. 42" H=n-2" - (2" -1)=(n—1)-2" + 1.
Powstaje pytanie, w jaki sposéb dobieramy na poczatku ciag (Q,,) i liczbe, przez ktéra
dzielimy obie strony rownania rekurencyjnego. Popatrzmy zatem na ten problem nieco
ogdlniej. Przypusémy, ze mamy dane trzy ciagi (a,), (bn) i (¢,) oraz, ze ciag (t,) jest

okreslony wzorami rekurancyjnymi
to=1%, anptn+1 =0bpt, +c, dlan>0.
Wybieramy nastepnie ciag (s,) (tzw. czynnik sumacyjny) o tej wlasnosci, ze
QnSp = bn—l—lsn—l—l

dlan =0,1,2,... Nastepnie mnozymy obie strony réwnania

ptnt1 = bptn + Cn

przez sp:
ansntn+1 = bnsntn + CnSn;
czyli
bn+13n+1tn+1 = bnSntn + Cnsn
dlan =0,1,2,... OkreSlamy teraz ciag (u,) wzorem
Up = bnsntn
dlan=20,1,2,...1 wypisujemy n poczatkowych rownan:

U1 = Ug + CoSo,
Uy = U1 + €151,

U3 = Ug + C282,

Up = Up—1 + Cr—1Sn—1.

Dodajemy stronami otrzymane rownosci i po skréceniu dostajemy

n—1
Up = Ug + E Ck Sk,
k=0
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czyli

n—1
1
tn = b . (boSot + Z Ck5k>

k=0

dlan=20,1,2,...

W naszym przykladzie mieliémy a, = 1, b, = 2 oraz ¢, = 2"T! — 1. Dobieraliémy
czynnik sumacyjny s, tak, by a,S, = bptr1Sn+1, czyli s, = 25,41. W tym momencie
wybor

jest juz naturalny.

6. Ro6wnania rekurencyjne liniowe pierwszego rzedu o zmiennych wspétczyn-
nikach — c. d.

W ostatnim przykladzie mieliémy do czynienia z ciggiem zdefiniowanym za pomoca
réwnania rekurencyjnego liniowego postaci

to =1, aptpn+1 =0but,+c, dlan>0,

w ktérym ciagi (ay,) i (by) byly stale i tylko wyrazy ciagu (c,) zalezaly od n. Znamy
jednak dobrze ciag zdefiniowany rekurencyjnie, w ktorym wspotczynnik b, zalezy od n.
Jest to silnia:

0l=1, (n+1)!=Mnm+1)-n dlan>0.

W tym paragrafie przyjrzymy sie zastosowaniu metody czynnika sumacyjnego do zna-
lezienia wzoru ogolnego dla ciggu zdefiniowanego podobnymi wzorami. Przypusémy, ze
ciag (an) jest zdefiniowany wzorami

ap=1, apy1=Mm+1)-a,+1 dlan>1.

Definiujemy ciag (b,,) wzorem

a
b, = —
n!
dlan =0,1,2,... Nastepnie dzielimy obie strony rownania

apy1=Mm+1)-a,+1

przez (n + 1)!. Otrzymujemy
Apt1 G 1

CE T
dlan=20,1,2,..., czyli

1
b =b —
dlan =0,1,2,... Podobnie jak w poprzednich paragrafach otrzymujemy stad
b 1 1 1 1 1 1
n = 0+ﬁ+i+...+m—a+ﬁ+i+...+m,
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czyli
o 1 1 1
dlan =0,1,2,... Dla duzych n mamy zatem a,, ~ n!-e.

7. Suma odwrotnosci wspétczynnikéw dwumianowych

Metode czynnika sumacyjnego mozemy zastosowaé takze do obliczenia nastepujacych
dwoch sum. Oznaczmy:

n
—k
T, =S L —n. S, —T, czyli Tn:gb’n.
k=0 (k)
Nastepnie:
n n n
1 1 1 k
Sn:1+ T:1+ n (n—1 :1+_ n—1\
k=1 (k) k=1 E(k—l) n k=1 (k—l)
1 —k+1
=1+ - — =1+ '(Sn—1+Tn—1>:
n (n 1)
k=0 \ k
1 1 1 n—1
:1+_'Sn—1+_'Tn—1:1+_'Sn—1+—'sn—1:
n n n 2n
n+1
= : Sn—l +1
2n
dlan=1,2,3,... Mamy zatem réwnanie rekurencyjne postaci S,, = a,S,—1 + 1, gdzie
an = ”2—J;L1 Takie réwnania umiemy rozwigzywac¢ za pomoca czynnika sumacyjnego.

Dobieramy czynnik s, tak, by byty spelnione réwnosci s,a, = s,—1 dla wszystkich
n > 1. Przyjmujemy

Sn—1
Gn

so=1 oraz s, = dla n > 1.

Wtedy otrzymujemy:
SnSn = SnanSn—l + Sn

czyli

SnSn = Sn—lsn—l + sn
dlan = 1,2,3,.... Przyjmujac nastepnie U, = s,S,, otrzymujemy réwnanie rekuren-
cyjne

Uy=1, U,=U,_1+s, dlan>1.
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To réwnanie rekurencyjne oczywiscie ma rozwiazanie w postaci sumy:

Un:UO+ZSk
k=1

dlan =0,1,2,... Nietrudno zauwazy¢, ze czynniki sumacyjne s,, sa rowne

B S0 B 1 _ﬁ 2k 2"
Sn_alaQ-...-an_alag'...~an_k_1k+1_n+1

dlan =1,2,3,... Ponadto so = 1. Stad otrzymujemy

N 7
U:l =
" +kz_:1k+1 — k+1
dlan =0,1,2,... Ostatecznie:
g _ 1 2”: 2 n41 2”: 2k pl 2kl g1 ok
. _ . SRy Loy
e I T e B T e R T et
oraz
1
n(n+1) o 2k
Tn= 5z 2%
k=1
dlan=0,1,2,...

8. Co trzeci wspolczynnik dwumianowy

W tym paragrafie obliczymy sume

" /3n 3n

=2 () =2 (%)

k=0 3|k

dlan =0,1,2,... W drugiej sumie wskaznik k przebiega wszystkie liczby podzielne przez
3, dla ktoérych dodawany sktadnik jest niezerowy. Przypominamy tu, ze kazdy wiersz
trojkata Pascala traktujemy jako skladajacy sie z nieskoficzenie wielu wspotczynnikéw
dwumianowych, wérod ktérych jest tylko skonczenie wiele réznych od zera. Tej umowy
bedziemy sie trzymac¢ we wszystkich rozwazanych dalej sumach. Przystapimy teraz do

ulozenia rownania rekurencyjnego dla ciagu (.S,,).

Przyjrzymy sie doktadniej strukturze trojkata Pascala. Mamy obliczy¢ sume co trzeciego
wyrazu w co trzecim wierszu tego trojkata. Pamietamy, ze kazdy wyraz tréjkata Pascala
jest suma dwéch wyrazow stojacych bezposrednio nad nim, z jego lewej i prawej strony.
Te wyrazy z kolei sg sumami wyrazow stojacych wyzej itd. Sprobujemy wyrazi¢ sume
co trzeciego wyrazu wiersza o numerze 3n + 3 za pomoca analogicznej sumy wyrazow
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wiersza o numerze 3n. Popatrzmy w tym celu na przyktadowy fragment trojkata Pascala
(wiersze od n =9 do n = 12):

a O 0O & O 0O & O 0O &
e o o o ¢ 0 0 © 0 © Q0
©c o 0 o ¢ © <o © ©0 O 0 0

o 0O 0O & 0O 0O & ©0 O & O 0O o

Na powyzszym rysunku nie wpisaliSmy liczb. ZaznaczyliSmy tylko miejsca, na ktérych
sie znajduja dwoma znakami: # i . Okazuje sie bowiem, ze dla uzyskania rownania
rekurencyjnego zupelnie nie jest istotne, jakie liczby dodajemy, ale wazne jest to, na
jakich miejscach sie one znajduja. I tak symbolem # sa oznaczone te miejsca w trojkacie
Pascala, gdzie znajduja sie liczby, ktore bedziemy sumowaé¢. Symbolem O oznaczone
sg wszystkie pozostate miejsca w tym tréojkacie. Teraz popatrzmy, jak liczby stojace
na miejscach # najnizszego wiersza powstaja z liczb stojacych w wierszu potozonym
najwyzej na naszym rysunku:

a0l oo © 4 0 0 &
o ool v v v 0 9 O ©

o ol1onoep 0 © © 0 0 0 0O 0

o 0O 0O & 0O O & ©0 O & O 0O &

Symbole # i © sg teraz w ramkach. Pojedyncza ramka oznacza, ze dana liczba byta
uzyta jeden raz do obliczenia odpowiedniej liczby dolnego wiersza. Takimi sa na przyktad
liczby drugiego wiersza od dotu. Jednak w trzecim wierszu od dotu pojawia sie juz liczba,
ktoéra zostata uzyta dwa razy: po jednym razie do obliczenia kazdej z obramowanych
liczb drugiego wiersza od dotu. W najwyzszym wierszu naszego rysunku niektore liczby
maja nawet trzy ramki: te, ktore byly potrzebne do obliczenia liczby w podwdjnej ramce
nizszego rzedu. Tak samo bedzie dla kazdej interesujacej nas liczby najnizszego rzedu.
Mozemy to zapisa¢ w postaci wzoru:

3n+ 3 B 3n 43 3n 43 3n n 3n
3k - \3k—3 3k —2 3k—1 3k

Nietrudno teraz dostrzec zalezno$¢ rekurencyjna (przyjmujemy, ze sumowanie rozciaga
sie na wszystkie niezerowe wyrazy danej sumy):

s (1) B (1) ) s

3|k 3tk 3|k

Wyktady z kombinatoryki



Roéwnania rekurencyjne 11

dlan=20,1,2,...

Wzér ten mozemy otrzymaé tez za pomoca bezposrednich obliczen:
<3n—|—3> _ <3n+2) N <3n—|—2) _
3k 3k —1 3k
_ (3n+1) N (3n+1) N (3n+1) N (3n+1)
3k —2 3k —1 3k —1
3n+1 3n—+1 3n+1
:<3k—2)+2 (3/<;—1) ( )
3n 3n +1 3n 3n
:<3k—3)+(3k—2) <3k—2)+ (3k—1)+(3k—1)+<3k):
() =2 (o) + 0 (0™0) (o)
3k —3 3k —2 3k —

Stad wynika, ze (pamietamy, ze sumowanie rozciaga sie na wszystkie niezerowe wyrazy
danej sumy):

Sn+1 = g (BnBZ 3) B g <3k3ﬁ 3) +3'; (3/14;3ﬁ 2) +3'; <3/7<;3ﬁ 1) +§ (22)

Teraz nalezy zauwazyc¢, ze
3n 3n
2 (Sk:—B) =2 (Bk)
k k
3n

W obu sumach wystepuja bowiem te same sktadniki niezerowe ( . ) wiersza o numerze
3n: te mianowicie, dla ktorych liczba k jest podzielna przez 3. Mamy zatem

3n+3
k

dlan=20,1,2,...
Nietrudno zauwazy¢, ze So = 1. Pozostaje nam wyprowadzenie wzoru ogdlnego na S,
ze wzoréw rekurencyjnych

So=1, Spp1=3-22"-65,=3.-8"—-5, dlan>0.
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Mozemy to osiagnac¢ bardzo prosto wyrazajac S,t2 za pomoca S:

Spio=23-8"Tt_§, ,=3.8""1_3.8"+ 3,
czyli

Sny2 =S, +21-8".
Teraz juz tatwo zauwazy¢, ze dla liczby nieparzystej n mamy

Sp =81 +21- (8 +8% ... 482

i ze wzoru na sume ciggu geometrycznego otrzymujemy

8" — 8" —8 8" -2
Sp=2421- 57— =2 =
i 3

Dla n parzystych skorzystamy ze wzoru rekurencyjnego:

S,=3-8"t_g ,=3.8""1_ 2

3

Laczac razem otrzymane wzory dla n parzystych i n nieparzystych dostajemy wzor

Sn:i@?;) _ 8 2=

3
k=0

Roéwnanie rekurencyjne

S()zl, Sn+1:3'8n—5n dlanZO

Wyklad 4

gnt—2 9.8t _grly2 842

mozna rozwiazaé tez za pomoca czynnika sumacyjnego. Zdefiniujmy ciag (7,,) wzorem:

T, = (-1)"-S,

dlan=20,1,2,...1 pomnézmy obie strony rownania

Sn+1 :3871_5”
przez (—1)"*1. Otrzymamy

(_1)n+1 'Sn—l—l —3. (_1>n+1 . 8™ + (_1>n Sm
czyli

Tpir =T — 3 (~1)"-8" =T, — 3 (—8)
Stad juz latwo stwierdzimy, ze (pamietajac, ze Ty = 1):
T,=To—3-(-8)°"—=3-(-8)'—...-3-(-8)"!
=To—3 - (1+(—8)°+(-8)>*+...

(—8)" -1 (—8)" -1
— Ty —3.~ L T~ —
0 —8—1 + 3

Wyktady z kombinatoryki



Roéwnania rekurencyjne 13

Poniewaz T, = (—1)" - S,,, wiec

dlan=20,1,2,...
Dowéd kombinatoryczny. Réwnanie rekurencyjne
So=1, S,11=3-8"-5, dlan>0
mozna tez otrzymac za pomoca rozumowania kombinatorycznego. Mamy bowiem
Sy = ]{A C[3n]: 3| |A\H

dlan =0,1,2,... Mozemy teraz zastanowi¢ sie, jak wygladaja podzbiory zbioru [3n + 3|
o liczbie elementéw podzielnej przez 3. Te podzbiory mozemy pogrupowaé w cztery
zbiory:
1) A C [3n], gdzie 3 | |4],
2) A=BU{3n+1,3n+2,3n+ 3}, gdzie B C [3n]i3||B|,
3) A=BU{3n+ 1} lub A = BU{3n+ 2} lub A = BU {3n + 3}, gdzie B C [3n]
i|B|=2 (mod 3),
4) A=BU{3n+1,3n+2}lub A= BU{3n+1,3n+3} lub A = BU{3n+2,3n+3},
gdzie B C [3n]i|B|=1 (mod 3).
W pierwszej i drugiej grupie mamy po S, zbioréw, w trzeciej i czwartej mamy lacznie
3. (23" — S,) zbioréw. Stad otrzymujemy réwnanie

Spi1 =28, +3-23"—-35,=3.8"—5,,.

Rozwiazanie algebraiczne. Zadanie obliczenia sumy S,, mozna rozwiaza¢ metodami
algebry. W tym celu wezmy zespolony pierwiastek trzeciego stopnia z jednosci:

3 =1.

Wtedy e jest pierwiastkiem réwnania 2 — 1 = 0, czyli (z — 1)(z? + 2 + 1) = 0. Stad
wynika, ze nierzeczywisty pierwiastek tego réwnania spelnia rownanie

e +e+1=0.
Obliczymy teraz dwoma sposobami sume
(149" + (1 4+ ') 4 (1 + %)™,
Najpierw skorzystamy ze wzoru dwumianowego Newtona:
(14+2" + (1) 4+ (1 +£2)%" =

3n 3n 3n 3n o 3n
0-k 1-k 2k _
(F)er e () (V) -

k=0 k=0 k=0

3n 3n
( k)(so + ¥ 4 £2F).

o
o
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Popatrzmy teraz, jak wygladaja sumy
14 b &2

dla réznych k. Oczywiscie dla liczb k podzielnych przez 3 dodajemy do siebie trzy
jedynki. Zatem suma jest rowna 3. Niech teraz k = 3l + 1. Wtedy

1+ef ek =143 c4e.2=14c+2=0.

Podobnie dla k = 3] + 2 stwierdzimy, ze ta suma réowna jest 0. Zatem, kontynuujac
przerwane obliczenia, dostajemy

i (3:)(50+5k 42ty = En:?,(g?;) _ 3';”:—0 @Z)

k=0 k=0

Nastepnie obliczymy te samg sume bez odwolywania sie¢ do wzoru Newtona. Mamy
wtedy:

T+ +(1+eh) + (14" =
(1+13 <1+€>3n+(1+€2>3n_

)P+ (—e)n =

)

— 23n (
— 23n ( 1>3n 6n ( 1)3n 3n

+(=

& =
_ 23n 1" —1)" 3\n _
= (e + (1) ()" =
= 29 4 (~1)" 4 (-1)" =
=23 L 2. (1)
W tym dowodzie korzystaliSmy z oczywistych réwnosci:

(-1)*" = (-1)", 1+e=—€? 1+&*=—c

Poréwnujac wyniki obu obliczen, otrzymamy:

" /3n
3. — n . _ n
(3k) 8" +2-(—1)",
k=0

czyli ostatecznie

Z”: @Z) _ 8" +2?; (="

k=0

9. Nieporzadki

W tym paragrafie rozwigzemy znane nam juz zadanie o liczbie nieporzadkéw. Mamy
zadanie:

Wyktady z kombinatoryki
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e Piszemy n listéw i adresujemy n kopert. Na ile sposobéw mozemy wtozy¢ te listy
do kopert tak, by zaden list nie trafit do wtasciwej koperty?

Ponumerujmy listy i koperty liczbami od 1 do n; zaktadamy przy tym, ze list o numerze
k powinien trafi¢c do koperty o numerze k. Popatrzmy teraz na ciag numeréw listow
wtozonych do kopert: a; jest numerem listu wlozonego do koperty z numerem 1, as
jest numerem listu w kopercie z numerem 2 i tak dalej. Ogolnie aj jest numerem listu
wlozonego do koperty o numerze k. Oczywiscie ciag liczb (a1, as, . .., ay) jest permutacja
zbioru liczb od 1 do n. Bedziemy uzywaé¢ znanego oznaczenia permutacji: permutacje
(a1,a9,...,an_1,a,) 0znaczamy symbolem

1 2 ... n—1 n

ay az ... Qap—1 (07
wskazujac w ten sposdb w gérnym wierszu numery kopert i pod nimi w dolnym wierszu
numery listéw, ktoére trafity do kolejnych kopert.
Przypomnijmy, ze liczba k jest punktem stalym permutacji (ay,...,a,), jesli ax = k,
tzn. jesli liczba aj stoi na swoim, tzn. k-tym miejscu. Interesuje nas liczba nieporzad-
kéw, czyli tych permutacji, ktére nie majg punktéw statych, tzn. permutacji (aq, .. ., ax)
takich, ze zadna liczba aj nie stoi na swoim miejscu:

D, = H(al,...,an): Vk (ak ;ék)}’

Przyjrzyjmy sie, w jaki sposob mozemy pogrupowac¢ nieporzadki. Popatrzmy na n-ta
koperte. Mogt do niej trafi¢ jeden z n —1 listéw: kazdy z wyjatkiem n-tego. Niech zatem
bedzie to list o numerze k. Mamy teraz dwa przypadki.

Przypadek 1. List o numerze n trafit do koperty z numerem k. Inaczej méwiac, listy
z numerami n i k ,zamienily sie” kopertami. Mamy wiec sytuacje:

1 2 3 ... k ... n—=1 n
ai; ay a3 ... N ... G@p-1 k

Oczywiscie wtedy pozostale listy (a jest ich n — 2) musza tez by¢ ,wymieszane”, czyli
ich numery muszg tworzy¢ nieporzadek zbioru pozostatych liczb:

(1 2 3 ... k=1 k+1 ... n—l)
ay az asg ... Qgp—1 Ak4+1 ¢ o | '

Tak wtozy¢ te n — 2 listy do kopert mozna na D,,_5 sposobéw. Inaczej moéwiac, istnieja
D,,_5 nieporzadki n liczb, w ktorych na n tym miejscu stoi dana liczba k i na k-tym
miejscu stoi liczba n. Uwzgledniajac liczbe mozliwych k (jest ich n — 1) widzimy, ze
w tym przypadku mamy tacznie (n — 1)D,,_s sposobéw wlozenia listéw do kopert.
Popatrzmy na przyktad. Przypusémy, ze listy o numerach 5 i 2 zamienily sie miejscami.
Istnieja 2 nieporzadki zbioru liczb {1, 3,4}:

1 3 4 1 3 4
3 4 1 4 3 1)°
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Z nich powstaja 2 nieporzadki liczb od 1 do 5, w ktérych 2 i 5 zamienity sie miejscami:

134\ (12345
3 4 1 354 1 2)
134 _ (12345
4 31 451 3 2

Przypadek 2. List o numerze n trafit do koperty z numerem [, przy czym k # [. Mamy

wiec sytuacje:
1 2 3 ... 1 ... n—1 n
a; ay az ... N ... apn—1 k)’

Wtedy na chwile przektadamy listy: list o numerze n wkladamy do wladciwej (tzn.
n-tej) koperty, a list o numerze k wkltadamy do koperty z numerem [ (czyli zamieniamy
miejscami k-ty i n-ty list):

1 2 3 ... 1 ... n—1 n
ai a2 a3 ... k ... ap_1 n/)°

Po tej zamianie mamy jeden list (o numerze n) we wladciwej kopercie i pozostate n — 1
listow doktadnie wymieszanych, tzn. ich numery tworza nieporzadek n —1 liczb od 1 do

n—1:

12 3 ... 1 ... n—1

ay az ag ... k ... Ap—1 '
Odwrotnie, jesli mamy nieporzadek liczb od 1 do n—1, to wktadamy list z numerem n do
n-tej koperty, a nastepnie zamieniamy listy z numerami k£ i n, otrzymujac nieporzadek
n numerow listow. Mamy D,,_1 nieporzadkéw liczb od 1 do n — 1 i z kazdego takiego
nieporzadku dostajemy jeden nieporzadek n liczb, w ktérym na miejscu n-tym stoi
liczba k. Uwzgledniajac liczbe mozliwych k, dostajemy w tym przypadku (n — 1)D,,_4
sposobow wlozenia listow.

Popatrzmy na przyktad. Istnieje 9 nieporzadkdéw liczb od 1 do 4:

) (i)
) (i7e) G
) Gt

7 kazdego z tych dziewieciu nieporzadkow otrzymamy jeden nieporzadek liczb od 1 do

N W =W =W
WNN NN W
— W W s W
W N =N =N
N W DN W — W
—
~_

VR
W =
N =N =N
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5, w ktérym na miejscu pigtym stoi liczba 2:

1234_}12345H12345
2 1 4 3 21 4 3 5 5 1 4 3 2)°
1 2 3 4 1 2 3 4 5 1 2 3 4 5
— —
2 3 41 2 3 4 15 5 3 4 1 2)°
1234_}12345H12345
2 41 3 2 41 3 5 5 4 1 3 2)°
1 2 3 4 1 2 3 4 5 1 2 3 4 5
— —
3 1 4 2 31 4 25 3 1 4 5 2)°
1234_}12345H12345
3 4 1 2 34 1 2 5 3 4 1 5 2)°
1 2 3 4 1 2 3 4 5 1 2 3 4 5
— —
3 4 2 1 3 4 2 15 3 4 5 1 2)7
1234_}12345H12345
4 1 2 3 4 1 2 3 5 4 1 5 3 2)°
1 2 3 4 1 2 3 4 5 1 2 3 4 5
— —
4 3 1 2 4 3 1 2 5 4 3 1 5 2)°
1234_}12345H12345
4 3 2 1 4 3 2 1 5 4 3 5 1 2)°

Lacznie mamy w obu przypadkach (n — 1) - (D,—2 + D,,—1) sposob6éw wlozenia listow.
Poniewaz Dy = 0 oraz Dy = 1, wiec otrzymujemy réwnanie rekurencyjne:

D1 = 0, D2 = 1, Dn = (n — 1) . (Dn_g + Dn—l) dla n > 2.

Zwroémy uwage na to, ze otrzymaliSmy réwnanie rekurencyjne drugiego rzedu: do
obliczenia kolejnego wyrazu ciggu musimy zna¢ dwa poprzednie wyrazy. Zajmiemy sie
teraz poszukiwaniem wzoru ogdlnego na liczbe nieporzadkéw.

Definiujemy nowy ciag:
E,=D,—nD, 4

dla n > 2. Wtedy mamy:
En = Dn - nDn_l = _(Dn—l - (n - 1>Dn—2) = _En—l-
Ciag (E,) jest wiec ciagiem geometrycznym o ilorazie —1, ktérego poczatkowym wyra-
zem jest Ey. Mamy zatem
E,=Ey-(—-1)""2,

Poniewaz Ey = Dy — 2D = 1, wiec ostatecznie otrzymujemy

Wyktady z kombinatoryki
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czyli
Dn = ’I’LDn_l + (—1)”

Otrzymane nowe rownanie rekurencyjne ciagu (D,,) umiemy juz rozwiaza¢ metoda czyn-
nika sumacyjnego. Podzielmy obie strony ostatniego rownania przez n!:

Dn nDn_l (—1)”
YR R

Y

czyli
D, D, _ -1
Dn _ )
n!  (n—1)! n!
Definiujemy ciag (G, ) wzorem
D,
G,=—
n!
dlan=1,2,3,... Wtedy
_1)»
Gn=Gn_1+ ( ) )
n)

skad tatwo wynika, ze

_ (-1D%  (=1)*  (-1)* (=1)"
G, =G+ o1 + i + 1 4+ ...+ .

Poniewaz G; = 0, wiec ostatni wzér mozemy zapisa¢ w postaci

C
T

G,=1+

Stad otrzymujemy ostatecznie

(=" (=1*  (=1)° (=" — (=1)*
Dn:n!<1—|— T + o + 3l + ...+ o )zn!-];) o

dlan =1,2,3,...Dladuzych n mamy znane juz przyblizenie D,, ~ n!-e~! ~ 0,367879n.

10. Sortowanie szybkie
Analizujac Sredni czas dzialania algorytmu tzw. sortowania szybkiego (ang. quicksort)
dochodzimy do nastepujacego réwnania rekurencyjnego:

9 n—1

Co=0, Ch=n—-14+=-Y Cy dlan>1.
n
k=0

Zauwazmy, ze kazdy wyraz C,, (dla n > 1) ciagu okreslonego tym réwnaniem zalezy od

wszystkich wyrazéw poprzednich. Pierwszym krokiem na drodze do znalezienia wzoru
ogoblnego bedzie zmniejszenie rzedu rekurencji. Pomnézmy obie strony réwnania

n—1
2
Ch=n—-1+=.Y"C
n—1+--> G

k=0
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przez n. Otrzymamy réwnanie

n—1

nC, =n(n — 1)+220k.
k=0

Podstawmy w tym réwnaniu n + 1 w miejsce n:

n

(n+1)Chi1=n(n+1)+2 Z Ch.
k=0

Nastepnie odejmijmy stronami otrzymane réwnania:
(n+1)Chy1 —nC, =n(n+1) —n(n—1)+2C,,

czyli
(n+1)Chy1 = (n+2)C, + 2n.

Otrzymalismy rownanie rekurencyjne liniowe pierwszego rzedu, ktére mozemy rozwiazaé
metoda czynnika sumacyjnego. Podzielmy teraz obie strony otrzymanego rownania przez
(n+1)(n+2)

Cn_|_1 . Cn 2n

n+ 2 _n+1+(n+1)(n+2)

i wprowadZzmy ciag pomocniczy (D)) okreslony wzorem

dlan=20,1,2,... Mamy wowczas

2n 4 2
Dpi1 =D, =D, -
i N CEE ) R R

dlan=20,1,2,... Stad dostajemy

n—1 4 n—1 9
RS SR it
— k+ 2 Pt kE+1
Poniewaz Cy = 0, wiec Dy = 0. Przyjmijmy nastepnie oznaczenie

"1
Hy =0, Hn:;E dla n > 0.

Liczby H, nazywamy liczbami harmonicznymi. Wowczas

Z%HZLL‘Z%:‘L(HWA—U
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oraz

i
o
3

>
I
=
>
I
—

Stad wynika, ze

2
Dy, =4(Hp41 — 1) —2H, = 2Hp 1 +2(Hpyq — Hy) —4=2H, 11 + g
n

1

Poniewaz Hp11 = Hp + 17,

wiec

4n

4
D,=2H,+—— —4=2H, — ——.
n+1 n+1

Stad ostatecznie otrzymujemy
Cn=(Mn+1)D, =2(n+1)H, —4n
dlan=20,1,2,...

11. Ciag Fibonacciego

Ciag liczb Fibonacciego pojawil sie po raz pierwszy w ksiazce Leonarda z Pizy (zwanego
Fibonaccim) Liber abaci przy okazji zadania o rozmnazaniu krélikow. Zobaczymy teraz
inne zadanie kombinatoryczne prowadzace do tego samego ciggu.

Zadanie. Zaba skacze z kamienia na kamien. Kamienie leza jeden za drugim i sa ponu-
merowane liczbami naturalnymi od zera; zaba startuje z kamienia zerowego. W jednym
skoku potrafi ona przeskoczyé¢ z jednego kamienia na nastepny lub o dwa kamienie da-
lej. Zaba moze wykonywaé po sobie skoki réznych dlugosci. Na przyklad, na czwarty
kamien moze dostac sie skaczac cztery razy na odleglos¢ jednego kamienia lub skaczac
dwa razy, za kazdym razem na odlegto$¢ dwdch kamieni, lub tez skaczac raz na odlegtosé
dwoch kamieni i dwa razy na odlegtos¢ jednego kamienia. Te ostatnia mozliwo$¢é moze
zrealizowaé na trzy sposoby, skok podwojny moze by¢ pierwszym, drugim lub trzecim
skokiem. Oto mozliwe drogi zaby na czwarty kamien:

W\/—\A
a a a a a
0 1 2 3 4
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Lacznie ma wiec pie¢ réznych sposobow dostania sie na czwarty kamien. A ile istnieje
sposobow dostania sie na n-ty kamien?

Oznaczmy przez F), liczbe drog zaby na n-ty kamien. Oczywiscie F; = 1. Na kamien
z numerem 1 zaba moze dostac si¢ tylko w jeden sposéb — ma wykonac jeden pojedynczy

skok:
7 A
A a
0 1

Nastepnie F5 = 2. Na kamien z numerem 2 zaba moze dosta¢ sie dwoma sposobami —
wykona¢ dwa skoki pojedyncze lub jeden podwdjny:

/—v—\
a a a
0 1 2

7 T\

a a a
0 1 2

Zobaczmy teraz, na ile sposobow zaba moze sie dosta¢ na kamien o numerze n + 2.
Ma ona F), réznych drég na kamien o numerze n i F,, 1 drég na kamien o numerze
n+ 1. Poniewaz ostatni skok zaby jest skokiem podwojnym z kamienia o numerze n lub
pojedynczym z kamienia o numerze n + 1, wiec lacznie istnieje F),, + Fj, 11 drog zaby
na kamien n + 2. A wiec Fj, 1o = F,+1 + F),. Zatem na trzeci kamien zaba moze dostac
sie na 1 4+ 2 = 3 sposoby, na czwarty na 2 + 3 = 5 sposobéw i tak dalej. Zauwazmy, ze
jesli przyjmiemy Fy = 1 (co jest catkiem naturalne: istnieje jeden sposéb dostania sie
na kamien o numerze 0, mianowicie nie robié nic), to okaze sie, ze Fy = Fy + F. Zatem
ciag (Fy,) jest okre$lony wzorami

F(): 1, F1 :1, Fn+2:Fn+1+Fn dlanZO

Otrzymane réwnanie rekurencyjne jest réwnaniem drugiego rzedu; widzieliSmy juz ta-
kie réwnania przy okazji nieporzadkéw. Jest to tzw. réwnanie liniowe (kolejny wyraz
jest kombinacja liniowa poprzednich) jednorodne (nie ma ,wyrazu wolnego”) o statych
wspdélezynnikach (w powyzszym wzorze sa one rowne 1). Istnieje dos$é prosta metoda
znajdowania wzoru ogdlnego dla ciagéw okreslonych réwnaniami liniowymi jednorod-
nymi o statych wspoélczynnikach. W nastepnym paragrafie pokazemy te metode dla
ciagow okreslonych takimi rownaniami drugiego rzedu.

12. Réwnania rekurencyjne liniowe jednorodne drugiego rzedu o stalych
wspolczynnikach

Moéwimy, ze ciag (t,) liczb zespolonych spelnia réwnanie rekurencyjne liniowe, jedno-
rodne o stalych wspotczynnikach, jesli istnieja liczby ag, ax—1, - . ., a1, ag takie, ze ap # 0,
ag # 0 oraz dla wszystkich liczb naturalnych n zachodzi réwnosc¢

ak tnyk +arp—1 - tnyk—1+...+a1 - th41 +ao-t, =0. (4.1)

Mowimy tez, ze to rownanie rekurencyjne jest réwnaniem rzedu k.
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Jedli ciag liczb zespolonych (t,,) spelnia réwnanie rekurencyjne rzedu k, to kazdy wyraz
tego ciagu, poczawszy od ak, jest jednoznacznie okreslony za pomoca k poprzednich
wyrazoéw. Na przyktad, dla ciggu okreslonego réwnaniem (4.1) mamy

a1 a ao
k k k

Jesli bedziemy znali pierwsze k wyrazéw tego ciagu, to za pomoca réwnosci (4.2) be-
dziemy mogli wyznaczy¢ wszystkie nastepne wyrazy tego ciagu. Zauwazmy roéwniez, ze
z warunku ap # 0 wynika, iz mozemy ograniczy¢ sie do rozpatrywania réwnan reku-
rencyjnych postaci (4.1), w ktérych ar = 1. Wystarczy bowiem obie strony naszego
réwnania rekurencyjnego podzieli¢ przez ai, by otrzymac rownanie rownowazne.
Zauwazamy nastepnie, ze jesli dwa ciagi liczb zespolonych (t,) i (u,) spelniaja réwnanie
rekurencyjne (4.1), to ciag (v, ) okreslony wzorem

v, =c¢c-t, +d-uy,
(dlan=0,1,2,...) tez speklnia to réwnanie. Mianowicie

ApVUptk + Q-1 Untk—1+t ...+ a1 VUpg1 + Q0 Uy =
=c-(aptpsk +agp—1 tnsk—1+ ...+ a1 tpr1 +ao-ty)+
+d-(apUpir + Qp—1  Unik—1 + ..+ a1 - Upy1 + Qg - Up) =
=c-04+d-0=0.

Stad wynika, ze ciagi liczb zespolonych spelniajace réwnanie rekurencyjne (4.1) tworza
podprzestrzen liniowg przestrzeni wszystkich ciagdéw o wyrazach zespolonych. Poniewaz
wyrazy to,t1,...,tk—1 Wyznaczaja jednoznacznie caly ciag, wiec ta podprzestrzen ma
wymiar k. Stad wynika, ze jesli znajdziemy k liniowo niezaleznych rozwigzan réwnania
(4.1), to kazde rozwiazanie réwnania bedzie pewna kombinacja liniowa tych k rozwiazan.
W przypadku k = 2 chcemy zatem znalez¢ dwa liniowo niezalezne rozwiazania.

Nietrudno zauwazy¢, ze réwnania rekurencyjne jednorodne rzedu 1 definiuja ciagi geo-
metryczne:
lnt1 = ¢q - tn.

Préobujemy znalezé ciagi geometryczne spetniajace rownanie rzedu 2. Przypu$émy wiec,
ze mamy dany ciag liczb zespolonych (¢,,) spelniajacy réwnanie

tn+2 +a- tn—|—1 + b- tn = 0. (43)

Szukamy takiego ilorazu ¢, réznego od zera, by ciag okreslony wzorem t,, = ¢" spelniat
réwnanie (4.3). Ten iloraz ¢ musialby zatem spelnia¢ réwnanie:

qn+2 4 aqn—l—l 4 bqn — O,

czyli
¢ +ag+b=0. (4.4)
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A zatem, jesli liczba ¢ jest ilorazem ciaggu geometrycznego spetniajacego réwnanie re-
kurencyjne (4.3), to jest ona pierwiastkiem réwnania kwadratowego (4.4). Nietrudno
zauwazy¢, ze 1 na odwrot, jesli liczba q jest pierwiastkiem réwnania kwadratowego (4.4),
to ciag geometryczny okreslony wzorem t, = ¢" spelnia réwnanie rekurencyjne (4.3).
Rownanie

?+ax+b=0 (4.5)

jest zwykle nazywane réwnaniem charakterystycznym rownania rekurencyjnego
(4.3). Mamy teraz dwa przypadki w zaleznosci od liczby rozwiazan réwnania charakte-
rystycznego.

Przypadek 1. Réwnanie charakterystyczne (4.5) ma dwa rozne pierwiastki (rzeczywiste
lub zespolone) ¢ i g2. Wtedy mamy dwa ciagi geometryczne speliajace rownanie (4.3).
Rozwiazanie ogdlne réwnania rekurencyjnego (4.3) ma zatem postaé

tn:C'Q?"f_d'qg

dlan =0,1,2,... Wspétczynniki c i d wyznaczamy z uktadu réwnan otrzymanego przez
wstawienie n = 0 i n = 1 do rozwiazania ogdlnego. Przyjmujac n = 0, otrzymujemy
réwnanie

c+d= to.

Przyjmujac n = 1, otrzymujemy réwnanie

qic+ qad = ty.
Uktad réwnan
{ c+d= to
@ic+ged =1t
zawsze ma rozwigzanie, gdyz
1 1
=q — 0.
’ o @ @—qF

Zatem dwa poczatkowe wyrazy ciagu (t,) pozwalaja wyznaczy¢ jednoznacznie liczby ¢
i d, a wiec okreslaja jednoznacznie caly ciag (t,).

Popatrzmy na kilka przyktadow. Rozwiazmy najpierw réwnanie rekurencyjne
to = 3, tl = 7, tn+2 — 5tn+1 + 6tn =0 dlan Z 0.

Réwnanie charakterystyczne 22 — 52 + 6 = 0 ma dwa pierwiastki rzeczywiste z; = 2
oraz xro = 3. Stad wynika, ze ciag (¢,) jest okreslony wzorem ogdlnym

t,=c-2"+d-3"

dlan =0,1,2,... Wspdlczynniki c i d wyznaczamy z uktadu réwnan powstalego przez
podstawienie n =0in = 1:
{ c+d=3
2c+3d =7
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Rozwiazujac ten uktad rownan, otrzymujemy ¢ =2 i d = 1. Zatem
t, = 2"t 43"

dlan=0,1,2,...

Mozemy teraz wyznaczy¢ wzoér oginy dla ciagu liczb Fibonacciego. Roéwnanie rekuren-
cyjne ciaggu F),, ma postac

F():l, Flzl, Fn+2—Fn+1—Fn:O dlanzO

Jego réwnanie charakterystyczne

2 —r—1=

ma dwa pierwiastki

1++5 1—
o= oraz [ =
2 2

Zatem rozwiazanie ogdlne rozwazanego réwnania rekurencyjnego ma postac

IS

F,=c-a"+d-pg"
dla pewnych wspélczynnikéw c i d. Wspdtezynniki te wyznaczamy z uktadu réwnan

{ c+d=1
ac+ fBd =1

Ten uktad rownan ma nastepujace rozwiazanie:

Stad otrzymujemy

an+1—ﬁn+1 1 <1+\/5>n+1<1\/5>n+1

FTL:—:—'
2 2

V5 V5

Otrzymany wzor ogdlny jest nazywany wzorem Bineta.

Rozwiazmy jeszcze jedno rownanie rekurencyjne
to = 1, tl = 4, tn+2 — 2tn+1 + Qtn =0 dlan > 0.
Réwnanie charakterystyczne 2 — 22 + 2 = 0 ma dwa pierwiastki zespolone

r1 =141 oraz x5 =1-—1.
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Stad wynika, ze ciag (t,) jest okreslony wzorem og6lnym
th=c-(1+1)"+d-(1—-1)"

dlan =0,1,2,... Wspdlczynniki c i d wyznaczamy z uktadu réwnan powstalego przez
podstawienie n =0in = 1:

c+d=2
(I+i)e+(1—-1)d=2

Rozwiazujac ten uktad rownan, otrzymujemy

1-—3i d 1+ 31
e T = .
C 9 oraz 9

Zatem 1 3i 1+ 3
—3i i
b= —5—" (1+1)"+ :

dlan=0,1,2,...
Jest oczywiste, ze ciag (t,) ma wyrazy rzeczywiste (nawet catkowite). Otrzymany wzor

odwotuje sie jednak do liczb urojonych. Okazuje sie, ze dos¢ tatwo mozemy z powyzszych
wzoréw zespolonych otrzymaé postaé rzeczywisty rozwigzania. Mamy bowiem

1—|—i:\/§-<cos%+i-sin%>,
1—i=v2- (cos —i-sin 7).
Ze wzoru de Moivre’a otrzymujemy
1—3i . 1431 :
tn = 5 (141" + (1= =
1 — 3i n . 1+ 3i n o
= 5 1(\/5) -<cos%+1~sm%)+ ;1(\/5) -(cos%—ysmnél—W):
27’L
:(‘/2_) -((1—31)(cos%—i—i-sin%)—l—(l—k?)i)(cos%—i-sin%)):
:(\/5)71-(008%4—35111%).

Pokazemy teraz, ze te postac rzeczywista mozemy uzyska¢ takze nieco inna metoda.

Rozpatrujemy zatem przypadek, gdy rownanie charakterystyczne (4.5) ma wspdlczyn-
niki rzeczywiste, ale nie ma pierwiastkdéw rzeczywistych (czyli ma dwa sprzezone pier-
wiastki zespolone). Oznacza to, ze w réwnaniu (4.5) mamy a? < 4b. Stad wynika, ze
b > 0. Niech wiec b = 2. Wtedy

a\?2 a?
— ) =— < 1.
(27“) 4b <
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Zatem a
o < 1.
Stad wynika, ze istnieje liczba ¢ taka, ze
a
g, = —cose.

Roéwnanie rekurencyjne (4.3) przyjmuje teraz postaé
thyo —2rcosy - tpi1 + r’t,, = 0. (4.6)
Mozna teraz sprawdzié, ze ciag (t,) okreslony wzorem
tn, =1"(c-cosny +d-sinny)

(dlan = 0,1,2,...) jest rozwiazaniem ogdélnym réwnania (4.6). W dowodzie korzysta
sie z nastepujacych tozsamosci trygonometrycznych:

2 cos acos B = cos(a + () + cos(a — )

oraz
2cosasin f = sin(a + ) +sin(8 — ).

Szczegbdly tego dowodu pozostawiamy jako ¢wiczenie.

Przypadek 2. Réwnanie charakterystyczne (4.5) ma jeden pierwiastek podwdjny q.
Mamy wtedy tylko jeden ciag geometryczny (¢") spelniajacy réwnanie rekurencyjne
(4.3). Potrzebne jest drugie rozwiazanie. Sprawdzimy, ze takim drugim rozwiazaniem
jest ciag liczb postaci n - ¢". Mianowicie rownanie charakterystyczne naszego rownania
rekurencyjnego ma postac

2> +ar+b=0.

Takie réwnanie ma jeden pierwiastek podwéjny, gdy a? = 4b i ten pierwiastek jest réwny

Poniewaz ¢ jest tym pierwiastkiem podwdjnym, wiec
2qg+a=0.
Teraz sprawdzamy, ze ciag (ng™) spelnia réwnanie rekurencyjne (4.3):
tngs + atniq + bty =0,

czyli
(n+2)¢""? +a(n+ 1)g" ™ + bng" = 0.

Wyktady z kombinatoryki



Roéwnania rekurencyjne 27

Przeksztalcamy to réwnanie w sposob réwnowazny:

4(n+2)¢"? 4 da(n + 1)¢" ! + 4bng™ = 0,
4(n 4+ 2)¢" " + da(n 4+ 1)¢" ™ + a’ng" = 0,
q" - (4(n+2)¢* + 4a(n + 1)g + a®n) = 0,
q" - (n(4¢® + daq + a*) + 4¢(2¢ + a)) = 0,

q" - (n(2q +a)? + 4q(2¢ + a)) =0,
q" - (2q+a)- (n(2g+a) +4q) = 0.

Ostatnie rownanie jest spelnione, gdyz
2¢+a=0.
Teraz mamy juz dwa niezalezne rozwiazania réwnania rekurencyjnego (4.3):
t, =q" oraz t,=nq",
a wiec mamy rozwiazanie ogoblne:
th,=c-q" +d-nqg",

czyli
t, = (c+dn)-q¢"

dlan=0,1,2,... Wspétczynniki ¢ i d wyznaczamy — podobnie, jak w przypadku 1 — z
uktadu réwnan otrzymanego przez podstawienie n =0 in = 1 do wzoru ogdlnego:

C:t()
{(c+d)q :tl

Znéw dowolne wartosci tg i t1 wyznaczaja jednoznacznie wspolczynniki ¢ i d, a wiec
tym samym rozwiazanie réwnania rekurencyjnego.

Popatrzmy na jeden przyktad. Rozwiazmy réwnanie rekurencyjne
to = 1, tl = 6, tn+2 — 4tn+1 + 4tn =0 dlan Z 0.

Réwnanie charakterystyczne 22 —4x 44 = 0 ma jeden podwdjny pierwiastek rzeczywisty
x = 2. Stad wynika, ze ciag (¢, ) jest okreslony wzorem ogdlnym

th,=c-2"+d-n-2" =(c+dn)-2"

dlan =0,1,2,... Wspdlczynniki c i d wyznaczamy z uktadu réwnan powstalego przez
podstawienie n =0in = 1:

{@m)éi

Wyktady z kombinatoryki



28 Wyklad 4

Rozwiazujac ten uktad rownan, otrzymujemy ¢ =11 d = 2. Zatem

t, =(2n+1)-2"
dlan=20,1,2,...
13. Réwnania rekurencyjne liniowe jednorodne wyzszych rzedéw o stalych
wspolczynnikach
Rozpatrzone wyzej dwa przypadki daja w sumie pelna analize réwnania rekurencyj-
nego (4.3)czyli réwnania liniowego jednorodnego o stalych wspélezynnikach, rzedu 2.

Przypadek ogdélny réwnan jednorodnych wyzszych rzedéw rozpatruje sie podobnie. Dla
réwnania (4.1) w analogiczny sposéb definiujemy jego réwnanie charakterystyczne:

arz® +ap_12" '+ ...+ a1z + a9 = 0. (4.7)

Nastepnie znajdujemy jego wszystkie pierwiastki (uwzgledniajac pierwiastki zespolone
i wielokrotne)
r1,72y...,Tk.

Przypu$émy najpierw, ze wszystkie pierwiastki sa rézne (tzn. wszystkie maja krotnosé
1). Wtedy rozwiazanie ogdlne ma postaé

tn =177 +cory + ...+ cpTy. (4.8)

Przypusémy nastepnie, ze niektore pierwiastki réwnania (4.7) pokrywaja sie (czyli mamy
do czynienia z pierwiastkiem wielokrotnym). Dla ustalenia uwagi, niech na przyklad
ry =19 =...=1; =71, tzn. r jest pierwiastkiem krotnosci [. Wtedy zamiast sumy

ari +...+arf’
w rozwiazaniu (4.8) bedziemy mieli sume
r™(cy 4+ can +ezn® + ..+ an!™1).

W taki sam sposéb postepujemy dla kazdego pierwiastka wielokrotnego, rzeczywistego
lub zespolonego. Szczegdlowe sformulowanie tego twierdzenia i jego dowod odlozymy
do nastepnego wyktadu.

14. Rownania rekurencyjne liniowe niejednorodne drugiego rzedu o stalych
wspolczynnikach

Zajmiemy sie teraz réwnaniami niejednorodnymi. Przypusémy wiec, ze mamy réwnanie
niejednorodne rzedu k:

ak tntk +ag—1 tnyk—1+ ...+ a1 thy1 +ag-tp = f(n) (49)
Zajmiemy si¢ najpierw réwnaniami, w ktorych funkcja f ma szczegdlna postacé:

f(n) =" -w(n),
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gdzie c jest liczba zespolona, a w(n) jest wielomianem stopnia d zmiennej n. Wtedy ciag
(t,,) spelnia pewne rownanie rekurencyjne jednorodne rzedu k+d+1, ktérego wielomian
charakterystyczny ma postac

(akxk +ap_ 12"+t ar+ ap)(r — c)‘“’l = 0.

Takie réwnania juz potrafimy rozwiaza¢. Musimy tylko zwréci¢ uwage na to, ze do
rozwigzania tego rownania potrzebujemy k + d + 1 wartosci poczatkowych. Mamy za$
podane tylko k wartosci poczatkowych (bo réwnanie (4.9) jest rzedu k). Pozostate d+ 1
warto$ci musimy sami wyznaczy¢ z réwnania (4.9). Pozostaje wiec tylko uzasadnié,
ze rOwnanie (2) rzeczywiscie sprowadza sie w taki sposéb do réwnania jednorodnego.
Nie przeprowadzimy tu dowodu w calej ogdlnosci, ograniczymy sie tylko do jednego
przypadku, gdy réwnanie (4.9) jest rzedu 2 i wielomian w(n) jest stopnia 1. Mamy
zatem réwnanie

tnio + atpy1 + bty = " (pn + q). (4.10)

Podstawiamy w nim za n kolejnon +11in + 2:
tnts + atpyo + bty = c”+1(p(n +1)+q). (4.11)

tnta + atpys + bty o = c”+2(p(n +2)+q). (4.12)

Nastepnie mnozymy réwnanie (4.10) przez c?, réwnanie (4.11) przez (—2c) i dodajemy

otrzymane réwnania do réwnania (4.12). Nietrudno sprawdzié¢, ze po prawej stronie
otrzymamy zero i cate r6wnanie bedzie miato postac

tnia + (@ — 20)tny3 + (b —2ac+ c*)tpyo + (ac® — 2bc)t, 41 + bc?t,, = 0. (4.13)
Rownanie charakterystyczne tego réwnania rekurencyjnego ma postac
x* + (a — 2¢)2® + (b — 2ac + *)a? + (ac® — 2bc)z + be? = 0. (4.14)
Teraz wystarczy zuwazy¢, ze lewa strona rownania (4.14) rozklada sie na czynniki
2t 4 (a = 2¢)2 + (b — 2ac + )2 + (ac® — 2bc)x + bc® = (22 + ax + b)(z — ¢)*

Zatem rzeczywiscie ciag (t,) spelnia réwnanie rekurencyjne jednorodne, ktérego row-
nanie charakterystyczne ma zadang postac.

W podobny sposéb mozna rozwiaza¢ nieco bardziej skomplikowane réwnania niejedno-
rodne. Jedli funkcja f w rownaniu (4.9) ma postaé

f(n) =cf -wi(n) +c5 - wa(n) + ...,

gdzie wy(n), w2(n),. .. sa wielomianami stopni odpowiednio dy, ds, . . ., to ciag (t,) spel-
nia rOwnanie rekurencyjne jednorodne, ktorego réwnaniem charakterystycznym jest

(ape® +ap_ 12"+ Farw Fag)(z — )T (@ — cp) L
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Dowéd tego stwierdzenia pominiemy.

15. Uktady réwnan rekurencyjnych

Rozwiazywanie uktadéw réwnan rekurencyjnych omoéwimy na jednym przyktadzie. Roz-

wiazemy uktad réwnan
to =2

ug = 3
tn+1 = 6tn + 4un

Upt+1 = tp + 3unp

Sprowadzimy ten uklad rownan do jednego rownania liniowego drugiego rzedu. Najpierw
w roéwnaniu
tn—|—1 = 6tn + 4'LLn

podstawimy n + 1 w miejsce n. Otrzymamy
tngo = 6tns1 + Qingq = Otpy1 4+ 4+ (bn + 3un) = 6tpgq + 4ty + 12uy,.
Teraz podstawiamy 4u,, = t,4+1 — 6t,:
tpto = 6tpy1 + 4ty + 3 (the1 — 6t,) = 6ty41 + 4t + 3ty — 188, = Yty — 142,
Otrzymalismy réwnanie rekurencyjne
tpto — 9,1 + 14t, = 0.
Jego réwnaniem charakterystycznym jest:
z? —9x + 14 =0,

czyli
(r—=2)(x—T7)=0.

Stad wynika, ze ciag (t,) jest okreslony wzorem og6lnym
t,=c- 7" +d-2"
dlan =0,1,2,... Wspétczynniki c i d obliczamy z uktadu réwnan

{ C+d:t0:2
7C+2d:t1:24

Otrzymujemy c =4 id = —2. A wigc
tn=4-7T"—2.2" =4.7" —2ont!
dlan=0,1,2,... Wz6r ogdlny ciagu (u,,) otrzymujemy z réwnania t,,+1 = 6t,, + 4u,:

Ay =typ1 —6t, =4- 7" 902 _oq. g pontl — 4.7 g4 90t
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czyli
Up = T 4 2"

dlan=20,1,2,...
Ten uktad rownan, dzigki wyjatkowemu doborowi wspotczynnikéw, mozna tez rozwia-
za¢ prosciej, nie odwotujac si¢ do rozwiazywania rownan liniowych drugiego rzedu. Za-

uwazmy bowiem, ze
{ t() +ug = 5

tn—|—1 + Upy1 = 7 (tn + ’LLn>,
skad dostajemy ¢, +u, =5-7" dlan =20,1,2,... Nastepnie

tnt1 = 4(ty + un) + 2t, = 2t, +20- 7".
Teraz zauwazamy, ze
tpgo — Ttpge1 = 21 +20- 7" — 148, —20- 7" =2 (t, 1 — Tt,).
Stad wynika, ze

bngt — Tty = (t — Tto) - 2" = (24 — 14) - 2" =10 - 2",

Zatem
tpy1 = 2t, +20-7" =Tt, +10- 2",
czyli
5t, =20-7" —10-2™.
Ostatecznie

tp =4 7" — 2"

dlan =0,1,2,... Wzér ogdlny ciagu (u,) otrzymujemy teraz z réwnosci t,, +u, = 5-7™:
Up =5-T" —t, =5-T"—4- 7" 42" =77 4 2 H]
dlan=0,1,2,...

16. Liczby Catalana

Przypomnijmy z wyktadu 1, ze liczbg Catalana C),, nazywamy liczbe funkcji niemaleja-
cych f:[n] — [n] spelniajacych warunek

fky<k dlak=1,2,...,n.

Warunek ten nazwiemy w skrécie warunkiem Catalana (spelnionym w zbiorze [n]).
Przyjmujemy ponadto, ze Cy = 1. PoznaliSmy wzoér ogdlny:

C - 1 (Qn)
n+1 n
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W tym paragrafie poznamy réwnanie rekurencyjne, za pomoca ktorego mozna zdefi-
niowac¢ ciag liczb Catalana. Gléwny pomyst wyjasnimy najpierw na wykresie. Niech
f : [n] — [n] bedzie funkcja niemalejaca spelniajaca warunek Catalana. Oto wykres
takiej funkcji f (na rysunku przyjeto n = 15).

A
Y
n
+ ®
+ e o
k 9 o o
+ )
+ o o o
+ e o o
1+ & @
/ 1 1 1 1 1 1 1 1 1 1 1 1 1 -
T T T T T T T T T T T T T -
1 k noz

Warunek Catalana oznacza, ze punkty tworzace ten wykres nie moga leze¢ ponad prosta
o réwnaniu y = z. Niech k bedzie najwieksza liczba = taka, ze f(x) = x (na rysunku
mamy k = 10). Taka liczba istnieje, bo z warunku Catalana wynika, ze f(1) = 1. Prosta
pionowa o réwnaniu x = k dzieli ten wykres na dwie cze$ci: na lewo od niej mamy
wykres funkcji niemalejacej f | [k — 1] : [k — 1] — [k — 1] spelniajacej warunek Catalana
(w zbiorze [k — 1)):

A

Y
k -0
+ °
T o o o
T e o o
1+ & @
Il Il Il Il Il Il Il Il Il »
T T T T T T T T T L
1 k T

Oczywiscie istnieje Ck_1 takich funkcji. Zastanéwmy sie teraz, co sie dzieje na prawo
od prostej x = k. Po pierwsze zauwazamy, ze f(k+1) = k. Z warunku Catalana wynika
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bowiem, ze f(k+1) < k+ 1. Z drugiej strony liczba k byla najwieksza liczba z taka, ze
f(x) = x. Zatem f(k+ 1) < k + 1. Poniewaz funkcja f jest niemalejaca oraz f(k) =k,
wiec f(k+1) > k. Lacznie to daje f(k+1) = k. Poniewaz dla x > k mamy f(z) < x, wiec
punkty wykresu funkcji f lezace na prawo od prostej x = k nie moga leze¢ nad prosta
o réwnaniu y = x— 1. Odpowiednio przesuwajac osie uktadu wspétrzednych, otrzymamy
wykres pewnej funkcji niemalejacej g : [n — k] — [n — k] spelniajacej warunek Catalana
(w zbiorze [n — k|):

v

I
1
T
—
N, V‘\
SR
N, N,
=T @ .
SR
[ J

1+ o
1

Istnieje C,_x takich funkcji. Zatem kazdy wykres funkcji niemalejacej f : [n] — [n]
spelniajacej warunek Catalana w zbiorze [n| wyznacza jednoznacznie pare funkcji nie-
malejacych spelniajacych warunek Catalana: jedna okreslona w zbiorze [k — 1] i druga
okreslona w zbiorze [n— k]. Odwrotnie, kazda taka para funkcji wyznacza jednoznacznie
funkcje f. Musimy bowiem przyja¢ f(k) = k i umiesci¢ odpowiednio wysoko wykres
drugiej funkcji (wiemy przy tym, jak wysoko: pierwsza wartos$¢ jest bowiem rowna k).
Poniewaz k moze by¢ dowolng z liczb od 1 do n, wiec otrzymujemy réwnanie rekuren-
cyjne

n n—1
Co=3 Ci1-Co =) Ci-Cnoj
k=1 k=0
dlan=1,2,3,...

Podamy teraz $cista definicje obu funkcji wyznaczonych przez funkcje f. Pierwsza funk-
cja jest oczywiscie f | [k — 1]. Druga funkcje g : [n — k] — [n — k] definiujemy wzorem

g(x)=f(z+k)—k+1 dlaze[n—Ek
Oczywiscie funkcja g jest niemalejaca. Ponadto

gx)<z+k—k+1=x+1,
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czyli g(x) < z. To wynika z okre§lenia liczby k: dla > 1 mamy bowiem f(z+k) < z+k.
Funkcja g spelnia wiec rzeczywiscie warunek Catalana w zbiorze [n — k|. Wyznaczenie
wzoru definiujacego funkcje f, gdy znane sa funkcje f | [k — 1] i g pozostawiamy jako
¢wiczenie.

Podsumowujac, liczby Catalana moga by¢ zdefiniowane nastepujacymi wzorami reku-

rencyjnymi:
n—1

Co=1, Cp=>» CpChjy dlan>1
k=0
Korzystajac z powyzszego rownania rekurencyjnego obliczymy kilka poczatkowych liczb
Catalana:
Co =1,
C,=C3=1,
Cy = CyC1 + C1Cy =2CCh = 2,
C3=CoCo +C1C1 +C5Cy=2+1+2=05,
Cy=CoCs5+C10y+C3C, +C3Cy =5+2+2+5=14,
Cs =CoCy +C1C5+ C3C, +C3Cy +C4C1 =14+ 5+ 445+ 14 = 42.

Pokazemy jeszcze jeden przyklad zadania prowadzacego do liczb Catalana. Niech e be-
dzie dziatlaniem nietgcznym w pewnym zbiorze A. Wtedy wynik n-krotnego wykonania
tego dziatania na elementach ai,as,...,a,41 zalezy od rozmieszczenia nawiasow. Na
przyktad dla n = 3 mamy 5 sposobéw rozmieszczenia nawiasow, gdy wykonujemy dzia-
lanie e na elementach a,b,c,d € A:

ae(be(ced)), ae((bec)ed), (aeb)e(ced), (ae(bec))ed, ((aeb)ec)ed.
Dla n = 4 mamy 14 sposobéw rozmieszczenia nawiasoéw:
ae(be(ce(dec))) (aeb)e(ce(dec)) (ae(bec))e(dec)
ae(be((ced)ee)) (aeb)e((ced)eec) ((aob)ec)e(dec)
ao((boc (dee))
ae((be cod ec)
ao((boc )ee)

(be(ced)) )
boco )

d)) ee
boc )

(((aob)oc) d)oe

(as(
(as
((ae b
((ae

Domysélamy sie, ze liczba rozmieszczen nawiaséow jest liczba Catalana. Wykazemy, ze
tak jest.

Niech B,, bedzie liczbg rozmieszczen nawiaséw przy n wykonywanych dziataniach. Przyj-
mujemy, ze By = 1. Mamy teraz n > 1 i n + 1 elementéw aq,as,...,a,+1 zbioru A.
Ostatnie dziatanie, ktére mamy wykonaé dzieli te n + 1 elementéw na dwie grupy:

(a1...aK41) ® (Agy2 .. Apy1).

W pierwszej grupie musimy wykonaé¢ k dzialan, w drugiej n — k — 1 dziatan. Oczywiscie
moze by¢ k = 0, gdy lewa grupa sktada sie tylko z jednego elementu:

a; @ (CLQ .. .an+1).
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W prawej grupie musimy wykona¢ wtedy n — 1 dziatan. Z drugiej strony lewa grupa
moze sktadac sie z co najwyzej n elementow; w prawej bedzie wtedy tylko jeden element:

(a1...an) ®ant.

W lewej grupie mamy wtedy do wykonania n —1 dziatan, w prawej ani jednego. Podzial

(a1 . ak—|—1> ® (ak+2 N an+1)

moze by¢ dokonany na BB, — k — 1 sposobéw: mozemy rozmiesci¢ nawiasy w lewej
grupie na By sposobdéw i na B,, — k — 1 sposobow w prawej. Stad dostajemy réwnanie

n—1
By = BoBu—1+BiBu_2+...+ Bu1Bo = Y BiBu_j-1
k=0

dlan =1,2,3,... Otrzymalidmy zatem to samo réwnanie co w przypadku liczb Cata-
lana. Stad wynika, ze B, = C,, dlan =0,1,2,...

Znamy wiele zadan prowadzacych do liczb Catalana. Oto jeszcze dwa z nich. Istnieje
14 drzew majacych 4 wierzchotki takich, ze kazdy wierzchotek ma co najwyzej 2 lezace
bezposrednio nizej (mozna od niego i8¢ w lewo, w prawo, w obie strony lub w zadna):

SR
EROTepe
K& S

Ogodlnie: istnieje C,, drzew majacych n wierzchotkow o powyzszej wlasnosci.

Liczby od 1 do 8 mozna na 14 sposobéw ustawi¢ w tablicy o 4 kolumnach i dwoch
wierszach tak, by w kazdej kolumnie i w kazdym wierszu liczby byly ustawione malejaco
(liczac od géry i od lewej strony:

(8 7 6 5] [8 7 6 4] [8 7 6 3] [8 7 6 2] {8754}

4 3 2 1] |53 2 1| |54 2 1] [543 1] |6 3 2 1
'8 7 5 3 8 7 5 2| [8 7 4 3] [8 7 4 2 8 6 5 4
6 4 2 1 6 4 3 1| |6 5 2 1] [6 5 3 1 7 3 2 1

0]
D
at
w
oo
D
ot
[\
0]
D
=~
w
0]
D
=~
[\
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Ogodlnie: istnieje C,, tablic o n kolumnach i 2 wierszach, w ktorych liczby od 1 do 2n
sa ustawione zgodnie z powyzszymi regutami (tzn. w obu wierszach liczby tworza ciagi
malejace, a w kazdej kolumnie liczba wigksza stoi nad mniejsza).

Wykazanie, ze w obu powyzszych zadaniach poszukiwana liczba (drzew i tablic) jest
liczba Catalana, jest nietrudnym ¢wiczeniem.

17. Zadanie olimpijskie

Na zawodach II stopnia XLIII Olimpiady Matematycznej zawodnicy mieli do rozwiaza-
nia nastepujace zadanie:

e Ciagi (x,,) i (yn) sa okreslone nastepujaco: g = yo = 1,

T, + 2 Cyr 2

Tptl = dlan=20,1,2,...

Udowodnij, ze dla kazdej liczby catkowitej n > 0 zachodzi réwnos¢é y,, = xon_.

Jedna z metod rozwigzania tego zadania polega na znalezieniu wzoréw ogélnych obu
ciagow i poréwnaniu tych wzoréw dla odpowiednich indekséw. Wyznaczenie wzoru ogdl-
nego ciagu (z,) mozna sprowadzi¢ do réwnania rekurencyjnego liniowego. Zdefiniujmy
bowiem dwa ciagi (a,) i (b,) wzorami: a9 = by = 1,

Gpt1 = Gp +2b,, bpi1=a,+b, dlan=0,1,2,...
Wéwcezas tatwo dowodzimy przez indukcje, ze

:cn:Z—n dlan=20,1,2,...

n

Podobnie jak w paragrafie 15 sprowadzamy uktad réwnan rekurencyjnych do rownania
drugiego rzedu
Ap42 — 2ap41 — ay = 0.

Réwnanie charakterystyczne 2 — 22 — 1 = 0 ma dwa pierwiastki
1 =14+V2, z3=1-+2.
Stad tatwo otrzymujemy rozwigzanie ogolne

. = V)" (- V2
" 2

oraz

(L4 VD)™ - (1= V)

by =
2v/2

1 ostatecznie otrzymujemy

Y S ) Kl Rl Ve) it

Tp = — =

T @V (L VR
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Uzyskanie wzoru ogélnego dla ciagu (y,,) jest bardziej skomplikowane. Ciag ten jest bo-
wiem zdefiniowany za pomoca réwnania nieliniowego i nie wida¢ zadnej ogdlnej metody
rozwigzywania takich réwnan rekurencyjnych. Postuzymy sie nastepujacym pomystem.
Najpierw obliczamy

y +1—\/§:y3+2_\/§:y§—2\/§yn+2: (Y — V2)?
n 2yn 2yn 2yn

i podobnie

yn+1+\/§:M,

2y,
Stad wynika, ze

Zdefiniujmy ciag (¢,) wzorem

yn—l-l_\/i (yn_\/§>2 _ (yn\/i>2

:yn_\/i
Yn + V2

Cn

Wobwcezas
2
cn"r 1= Cn )

skad wynika, ze

Teraz juz tatwo dostajemy

_ s lten 5 (V2P (- VYT
= = v v

Poréwnujac otrzymane wzory ogblne dostajemy y, = 2 .

Zadanie mozna tez tatwo rozwigza¢ bezposrednio przez indukcje. Najpierw dowodzimy
przez indukcje réwnos$¢ pomocnicza:

T2 +2
Ton+1 =
2z,
dla n = 0,1,2,... Sprawdzenie warunku poczatkowego (dla n = 0) jest oczywiste.

Przyjmijmy wiec, ze dla pewnego n mamy réwnosé

2 +2
Ton+1 =
22,
i dowodzimy, ze
_ :c% 11 +2
Lan43 = ﬁ
n+
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Przeksztalcamy najpierw lewa strone:

Tont1+2
_ Topp2t+2 ol T2 ~ (Tonp1 +2) + 2(x2np1 + 1)
T2n+3 = 1~ Z2np1t2 - 92 1
Ton+2 + T T 1 (Tant1 +2) + (T2ng1 + 1)
mfn—|—2

N 3$2n+1+4 N 3- 2% m +4 N 3($$n+2)+8$m .
2Tont1 +3  9.Zmt2 L3 2(x2 +2) 4+ 6z,

2%,

_ 3x2, + 82, 46
222 + 63y, + 4

Nastepnie przeksztalcamy prawa strone:

2
m+2
Top1 +2 _ (im+1) +2 _ (@ 2?2z +1)* _
2T 11 2. Zmt2 2(T + 2) (T + 1)
2k 4wy, + 44202 + 4z, +2 322, + 8z, +6
N 2(22, + 3z, +2) 222, 4 61y, + 4

W ten spos6b nasza rownosé pomocnicza zostata udowodniona. Teraz dowodzimy przez
indukcje, ze y, = Ton_1. Znéw sprawdzenie warunku poczatkowego (dla n = 0) jest
oczywiste. W kroku indukcyjnym mamy:

2
y yat2 _ (wna) 2 N
1= — f— n__ — n+l_1,
n+ % g1 2(2n—1)+1 2 1

co konczy dowdd.

18. Zadanie z zawod6éw matematycznych

Na XXI Austriacko-Polskich Zawodach Matematycznych zawodnicy rozwigzywali na-
stepujace zadanie:

e Rozwazamy n punktow Py, P, ..., P, polozonych w tej kolejnosci na jednej linii
prostej. Malujemy kazdy z tych punktoéw na jeden z nastepujacych koloréw: biaty,
czerwony, zielony, niebieski, fioletowy. Kolorowanie nazwiemy dopuszczalnym, je-
sli dla dowolnych dwdéch kolejnych punktéw P, Piyq (i = 1,2,...,mn — 1) oba sa
tego samego koloru lub co najmniej jeden z nich jest biaty. Ile jest dopuszczalnych
kolorowan?

Najpierw ustalmy terminologie. Powiemy, ze punkt jest kolorowy, jesli zostal poma-
lowany na kolor rézny od biatego; w przeciwnym razie nazywamy ten punkt bialym.
Definiujemy dwa ciagi (b,,) i (k,,) w nastepujacy sposéb: b, jest liczba dopuszczalnych
kolorowan n punktow takich, ze punkt P, jest bialy, k, zas jest liczba dopuszczalnych
kolorowan takich, ze punkt P, jest kolorowy. Wéwczas oczywiscie
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Nastepnie b,+1 = b, + k,,, bo jesli punkt P,4; jest bialy, to kolorowanie poprzednich
n punktéw jest dowolnym dopuszczalnym kolorowaniem zakonczonym punktem bialym
lub dowolnym kolorowym. Natomiast k,,+1 = 4b,,+k,,, bo jesli punkt P, jest kolorowy,
to kolorowanie poprzednich n punktow jest kolorowaniem dopuszczalnym zakonczonym
punktem bialym (i wtedy mamy 4 mozliwosci wyboru koloru dla P, ;1) lub kolorowym
tego samego koloru co P, 1.

Uktad réwnan rekurencyjnych
by = L, k1 = 4, bn+1 = b, + krm kn—l—l = 4b, + knp

rozwiazujemy tak jak w paragrafie 15, otrzymujac ostatecznie liczbe kolorowan dopusz-
czalnych réwna
3n+1 + (_1)n+1

bn+kn:bn+1: 9

To zadanie mozna rozwigza¢ bez uktadania réwnan rekurencyjnych. Nazwijmy blokiem
ciag punktow tego samego koloru. Kolorowanie dopuszczalne dzieli punkty P, ..., P,
na k blokéw (gdzie k = 1,2,...,n), wérod ktorych co drugi jest bialy, pozostale zas
kolorowe. Chcemy policzy¢ wszystkie sposoby takiego podzialu na bloki. Zauwazmy
najpierw, ze istnieje (” 1) sposobow podziatu n punktéow na k blokéw, bez uwzglednia-
nia koloréw. Musimy bowiem w wolne miejsca miedzy punktami wstawi¢ k — 1 kresek
oddzielajacych bloki od siebie. Teraz bedziemy rozpatrywaé¢ dwa przypadki:

1. Przypu$émy najpierw, ze liczba n jest parzysta: n = 2m. Ten przypadek dzielimy

na dwa podprzypadki:

la. Liczba blokéw jest parzysta (k = 2l, gdzie | = 1,2,...,m). Mamy wtedy [
blokéw biatych i | blokéw kolorowych. Mozemy dla nich wybraé kolory na 4!
sposobdéw. Uwzgledniajac to, czy pierwszy blok jest biaty, czy kolorowy, mamy
w tym przypadku 2 - 4! sposobéw wyboru koloréw blokéw kolorowych.

1b. Liczba blokéw jest nieparzysta (k = 21—1, gdzie [ = 1,2, ..., m). Jedli pierwszy
blok jest bialy, to mamy 4'~! mozliwoéci wyboru koloréw dla blokéw koloro-
wych; jesli za$ pierwszy blok jest kolorowy, to mamy 4' mozliwosci wyboru
koloréw. Lacznie mamy w tym przypadku 7 5. 4! mozliwosci wyboru koloréw.

Lacznie liczba kolorowan dopuszczalnych wynosi w tym przypadku

S (5h) e ()

Zauwazmy teraz, ze

2'4l — 9—-1 .22l — 9+(_1)2l_1 '22l—1
4 2
oraz
?.41 — E.QQZ — M.QQZ—Q
4 8 2 ’
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Stad wynika, ze w przypadku 1 mamy nastepujaca liczbe kolorowan dopuszczalnych:

om —1\ 94+ (-1 o, &K /2m—-1\ 9+ (—-1)*2 ., ,
= P S ) R S ) =
2(21—1) 2 +Z 20— 2 2

1
. (1 + 2)2m—1 + 5 . (1 _ 2>2m—1 —

2. Przypusémy nastepnie, ze liczba n jest nieparzysta: n = 2m + 1. Ten przypadek

znow dzielimy na dwa podprzypadki:

2a. Liczba blokéw jest parzysta (k = 2I, gdzie | = 1,2,...,m). Mamy wtedy [
blokéw biatych i | blokéw kolorowych. Mozemy dla nich wybraé kolory na 4!
sposobow. Uwzgledniajac to, czy pierwszy blok jest biaty, czy kolorowy, mamy
w tym przypadku 2 - 4! sposobéw wyboru koloréw blokéw kolorowych.

2b. Liczba blokéw jest nieparzysta (kK = 21 — 1, gdzie [ = 1,2,...,m + 1). Jesli
pierwszy blok jest bialy, to mamy 4~! mozliwoéci wyboru koloréw dla blo-
kéw kolorowych; jesli zas pierwszy blok jest kolorowy, to mamy 4 mozliwosci
wyboru koloréw. Lacznie mamy w tym przypadku 5. 4" mozliwosci wyboru
koloréw.

Lacznie liczba kolorowan dopuszczalnych wynosi w tym przypadku

m 2m m+1
Zqt

S (") 2 X ()

Podobnie jak w przypadku 1 pokazujemy, ze ta liczba jest réwna

3ntl 41
SR

W obu przypadkach mamy zatem 3 - (3"*! 4 (—1)"*!) kolorowan dopuszczalnych.
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FUNKCJE TWORZACE

1. Okreslenie funkcji tworzacych za pomoca szeregéw potegowych

Przypusémy, ze dany jest ciag (a,) liczb zespolonych. Funkcja tworzaca dla ciagu
(an) nazywamy funkcje A(z) okreslona za pomoca wzoru

A(z) = i anz".
n=0

Przyjmujemy przy tym, ze szereg potegowy po prawej stronie powyzszej réwnosci ma
dodatni promien zbieznosci r i wtedy funkcja A(z) jest okreslona wewnatrz kola o Srodku
w zerze i promieniu r. Nie bedziemy teraz zajmowac sie ciagami, dla ktérych rozwazany
szereg potegowy ma zerowy promien zbieznosci (np. ciagami takimi jak a,, = n™). Z teo-
rii funkcji analitycznych wiadomo, ze dla danej funkcji analitycznej A(z) wspotezynniki
definiujacego ja szeregu potegowego sa wyznaczone jednoznacznie.

Wykorzystanie funkcji tworzacych do znajdowania wzoréw ogdlnych polega na wykona-
niu nastepujacych krokow:

zdefiniowanie funkcji tworzacej dla danego ciggu okreslonego rekurencyjnie,
wykorzystanie rownan rekurencyjnych do utworzenia réwnania na funkcje tworzaca,
rozwiazanie réwnania i znalezienie wzoru funkcji tworzacej,

rozwiniecie znalezionej funkcji tworzacej w szereg potegowy i poréwnanie wspol-
czynnikow.

Przedledzimy teraz te metode na dwoch przyktadach: liczb Fibonacciego i liczb Catalana.

2. Liczby Fibonacciego
Przypomnijmy definicje liczb Fibonacciego:

F() = F1 = 1, Fn = Fn—l + Fn_g dla n Z 2.

Pokazemy teraz, w jaki sposéb mozna otrzymac¢ wzor ogdlny na liczby Fibonacciego,
korzystajac z tzw. funkcji tworzacych.

Definiujemy funkcje tworzaca dla ciagu liczb Fibonacciego wzorem
o
F(x) = Z F,z".
n=0

Mamy teraz

F(w)ZZFnzn :F0+F1Z+2Fnzn:1+Z+Z(Fn_1+Fn—2>2n:
n=0

o0 o0 oo (e e
=1+z+ Z F,_1z2" + ZFn_gz” =1+z+ ZFnz”+1 + ZFnz”+2 =
n=2 n=2 n=1 n=0

:1+z+z-ZFnzn+22~ZFnz”:1+z+z-(F(z)—1)+22~F(z):

n=1 n=0

=142+ 2F(2) — 2+ 2°F(2) = 1+ 2F(2) + 2°F(2).
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Otrzymalismy rownanie
F(2) =1+ 2F(2) + 2°F(2),

z ktorego dostajemy wzér na F'(z):
F(z)-(1—2z—2%) =1,

czyli
1

F(Z):il—z—zf

Teraz otrzymana funkcje tworzacg rozwijamy w szereg potegowy. W tym celu rozkta-

damy utamek
1

1—2—22

na utamki proste. Najpierw znajdujemy liczby zespolone a i ( takie, ze
l—z2—22=(1—-a2)(1—-02)=1—(a+B)z+ (af)2*

W tym celu rozwiazujemy uktad réwnan

a+8=1
aff = -1
Otrzymujemy
1+5 1-v5
a= oraz [ = .
2 2
Nastepnie szukamy liczb zespolonych c i d takich, ze
1 c d

1—z—z2_1—az+1—ﬁz'

Po wymnozeniu otrzymujemy

1 (I =pB2)+dl—az) c+d—(ad+ fe)z

1—2z—22 (1-az)(1-p2) 1—2z—22
Otrzymujemy nastepny uktad réwnan:

{ c+d=1
Bec+ad =0

Rozwiazujac ten uktad rownan, otrzymujemy:
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Mamy zatem
« 1 15} 1

e Vi T
Korzystamy teraz ze znanego rozwiniecia w szereg potegowy. Mianowicie dla dowolnej
liczby zespolonej v mamy
1 . n. n
1—vyz Z A

n=0

F(z) =

Stad dostajemy rozwiniecie funkcji F'(z) w szereg potegowy

& n_n ﬁ - n . n & n—i—l_ﬁn—i—l n
F(z):%-zoaz —ﬁ-zoﬁz :ZOQT.Z'

Korzystajac z jednoznacznosci rozwiniecia funkcji analitycznej w szereg potegowy, do-
stajemy

Fn:—:—~
2 2

an"'l—ﬁn"'l 1 1+\/5 n+1 1_\/5 n+1
V5 V5 -

Otrzymany wzoér jest nazywany wzorem Bineta.

3. Liczby Catalana

Przypomnijmy, ze liczby Catalana C), spetniaja nastepujace réwnanie rekurencyjne:

n—1
Co=1, Cpn=) CiCp1=CoCorq+CiCro+...+Cr1Co dlan>1.
k=0

W szczegdlnosci dla poczatkowych wartosci n mamy:
Cy =1,
C,=C2=1,
Co =CoC + C1Cy =2,
Cs = CyCs + C1Cy + C5Cy = 5,
Cy = CyCs + C10y + CoC1 + C5Cy = 14.

Definiujemy funkcje tworzaca C(z) dla liczb Catalana wzorem
C(z) = Z Cpz".
n=0

Mamy teraz

(C(2))? = C2 + (CoCy + C1Co)z + (CoCs + C1Cy + CoCo)2% + ... =
:Cl+022+0322+...
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Doktadniej:

n

() =3

o)
CkCn_kz” = E Cn+12n.
n=0 k=0 n=0

Zatem
z - (C(z))2 = ZCn+1z"+1 = Z Cpnz" =C(z) —Cy=C(z) — 1.
n=0 n=1

OtrzymaliSmy wiec réwnanie kwadratowe z niewiadoma C(z):
z- (C(z))2 —C(z)+1=0.

Rozwiazujac to réwnanie otrzymujemy

Musimy wiedzieé, jaki znak nalezy wzia¢ w liczniku. Wiemy jednak, ze C'(0) = Cp = 1.

Mamy natomiast
. 1++1—4x
lim ——— =
z—0+ 2x

1+V1— 4z 4

lim ——— =

e 22 #0022 (1 + /1 — 4z)

Stad wynika, ze nalezy wzia¢ znak minus:

400

oraz

= 1.

Teraz musimy rozwinaé¢ funkcje C'(z) w szereg potegowy. Skorzystamy ze wzoru New-
tona. W tym celu dla dowolnej liczby rzeczywistej o i dowolnej liczby naturalnej n > 1

definiujemy () (@ — 1)(a—2) ( 1)
o ala—Da—2) (o —mt

n n!

(o)

Wéwcezas mamy nastepujacy wzér Newtona

(14 2)* = i (z) o,

n=0

Przyjmujemy ponadto
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przy czym szereg potegowy po prawej stronie ma dodatni promien zbieznosci (réwny
1). Ze wzoru Newtona wynika, ze

ng‘;@) —4z)" i <%)4n n

skad dostajemy

1—V1—4dz=— i (—1)" (i)él”z”.

n=1

Ostatecznie

=25 o (Bt -1 5 a2 Yo

n=0
Obliczymy teraz wystepujace w powyzszym wzorze wspotczynniki dwumianowe:

(%) /2 (12— (1/2-2) .. (1/2-n+1)

n n!
1-(1-2)-(1-4)-...-(1-2n+2)
n 2™ . B
_ )t e-1)-(4-1)-.. - (20-3)
2" . n!
o (=npt1-3-5-...-(2n—3)
N 2n . n! N
(- t1-3-5-...-(2n—3)-2-4-6-...-(2n—2)
B 2n.n!-2-4-6-...-(2n —2) B

(=Dt @2n-2)
S 2n.pl.2n-l(n— 1)1
(=Dt (2n - 2)!
S 221l (p— 1)1

(L) e (),

Podstawiamy obliczona wartosé¢ wspélczynnika dwumianowego do wzoru na C(z):

:1 i (D" (2 s e —~ 1 (2 o
2 4 ‘(n+1)-4 \(n n+1 \(n

n=0
1 2
C, = <”)
n+1 n

Stad

Stad ostatecznie dostajemy
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4. Wyktadnicze funkcje tworzace i liczby Bella

Niech (a,) bedzie nieskonczonym ciagiem liczb zespolonych. Wyktadnicza funkcja
tworzaca dla ciagu (a,) nazywamy funkcje A(z) okreslona za pomoca wzoru

Ay, n
Az) = ZFZ :
n=0

W tym paragrafie wyprowadzimy wzér na wyktadnicza funkcje tworzaca dla liczb Bella.

Przypomnijmy teraz wzér rekurencyjny dla liczb Bella:

By =1, Bn+1:Z(Z>Bk dla n > 0.

k=0

Niech B(z) bedzie wykladnicza funkcja tworzaca dla liczb Bella:

Mamy wowczas

=13 e mre ) e
2= n!z (n+1)!
n=1

Ro6zniczkujemy otrzymany szereg wyraz po wyrazie:

’ > Bn+1 n > n+1 e 2"
B'(z) = (n+1)2" = =
9=y v =3 B =55 ()

_oo n izn_oo Bk k Zn—k B

Otrzymalismy rownanie

czyli
(InB(z)) =¢?
Stad
B(Z) — e® +C
dla pewnej statej C. Porownujac wartosci dla z = 0, otrzymujemy C' = —1. Ostatecznie
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5. PierScien szeregow formalnych

Bedziemy zajmowac sie zbiorem wszystkich nieskonczonych ciggéw o wyrazach zespo-
lonych P = CY. Elementy zbioru P bedziemy oznacza¢ malymi literami greckimi i na-
zywaé formalnymi szeregami potegowymi lub w skrocie szeregami formalnymi.
Naszym zamystem jest, by szereg o odpowiadat prawdziwemu szeregowi potegowemu:

[e e}
a = (ap,a1,as,...,a,...) odpowiada szeregowi g anx™.

n=0

Pojecie szeregu formalnego zwiazane jest z tym, ze nie zwracamy uwagi na zbiez-
nos¢ szeregu. Wszelkie dzialania na szeregach bedziemy traktowac czysto formalnie, nie
zastanawiajac sie nad tym, czy rozwazane sumy odpowiadaja jakimkolwiek liczbom ze-
spolonym. Okaze sig, ze takie dziatania beda mialy dobrze okreslony sens algebraiczny
oraz szereg formalny « rzeczywiscie okaze sie nieskonczona suma elementow postaci
an,x".

Zdefiniujemy trzy wazne podzbiory P. Niech
a = (ap,a1,a2,...,0n,...) €P.

Woéwecezas:

a€Pr & VneN(a, €R),

a€elPy & ag=0,

aclP, & aqp=1.
Zbior P jest wiec zbiorem wszystkich szeregdéw formalnych o wyrazach zespolonych, Pr
jest jego podzbiorem skladajacym sie z szeregéw formalnych o wyrazach rzeczywistych,

Py i P; podzbiorami sktadajacymi sie z szeregéw formalnych, ktorych wyraz wolny jest
odpowiednio réwny 0 lub 1.

Wprowadzimy teraz dziatania na szeregach formalnych w taki sposéb, by nadaty one
zbiorowi P strukture pierscienia przemiennego bez dzielnikéw zera (czyli tzw. dziedziny
calkowitodci). Zaczniemy od dodawania szeregéw formalnych. Niech

a = (ag,a1,as,...,an,...) oraz [ = (bg,b1,b2,...,by,...).
Suma « + (3 szeregéw formalnych nazwiemy szereg
oz+ﬁ:(a0+b0,a1+b1,a2+b2,...,an+bn,...).

Inaczej méwiac, szeregi formalne dodajemy ,,po wspotrzednych”. Nietrudno zauwazy¢,
ze dziatanie dodawania szeregéw formalnych jest przemienne i taczne:

atf=0+a oraz a+(B+7)=(a+p0)+y
dla dowolnych a, 3,~ € P. Przyjmijmy nastepnie

¢=1(0,0,0,...,0,...)
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oraz
—a = (—ag,—a1,—a2,...,—0p,...).

Woéwezas tatwo sprawdzic¢, ze
a+(=C(+a=a oraz a+(—a)=(—a)+a=C(.

Szereg ( jest wiec zerem, a szereg —a jest szeregiem przeciwnym do szeregu «. Zbiér
P jest zatem grupa abelowa ze wzgledu na dziatanie dodawania. Zdefiniujemy teraz
mnozenie szeregéw formalnych. Tak jak poprzednio, niech

a = (ag,a1,as,...,an,...) oraz [ = (bg,b1,b2,...,by,...).
Iloczynem « - (3 szeregéow formalnych nazwiemy szereg
v =(Co,C1,Coy .oy Cny...)
okreslony wzorami
Co = aobo, C1 :a0b1 +a1b0, Co :a0b2+a1b1 +agbo,...,

czyli ogdlnie za pomocg tzw. wzoru Cauchy’ego

n
Cn = Zakbn—k = aoby, +ai1by,_1 +asb,_2+ ... +an_1b1 + a,bo
k=0

dlan=20,1,2,... Wykazemy, ze zbiér P z dzialaniami dodawania i mnozenia jest pier-
Scieniem przemiennym. Przemiennos¢ mnozenia jest oczywista i wynika z przemiennos$ci
mnozen we wzorze Cauchy’ego. Pokazemy teraz, ze mnozenie szeregéw formalnych jest
taczne.

Niech dane beda trzy szeregi formalne «, (i ~:

a=(ag,a1,a2,...,0n,...),
ﬁ:(b(hbl,b%"'vbn?"')v
v =1(Co,C1,C2y. .y Cpy...).

Chcemy udowodnié, ze
(a-8)-y=a-(8-7)

W tym celu definiujemy nastepujace szeregi formalne:

d=a-f=(dy,dy,da,...,dy,...),
e=0-7=1(€0,€1,62,.-y€n,...),

o=p0-7v="(fo, fr,fas- s fns-- ),
n=ca-p=(ho,hi,hay ..., hn,...),
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gdzie zgodnie ze wzorem Cauchy’ego mamy

n n n
dn = § akbn—ka €n = § dkcn—ka fn = § bkcn—ka hn = akfn—k
k=0 k=0 k=0

k=0
dla n = 0,1,2,... Naszym celem jest udowodnienie, ze ¢ = 0, czyli, ze e, = h, dla
n=20,1,2,... W tym celu skorzystamy z rownosci pomocniczej:
n k n n n n—lI n n—=k
DD PRI= DD PRI= DD PRt = D D Pt
k=0 1=0 1=0 k=l 1=0 k=0 k=0 1=0

Dowéd tej tozsamosci pozostawimy jako ¢wiczenie. Mamy teraz:

n n k n k n n—k
en = Z dpCn—k = Z (Z azbk—z> “Cp—k = Z Zalbk—lcn—k = Z Z agbiCn—k—1
k=0 k=0 \1=0 k=0 =0 k=0 1=0
dlan =20,1,2,... Z drugiej strony mamy
n n n—k n n—=k
S ST o (z b> S S bt — e

k=0 k=0 =0 k=0 1=0

dlan =0,1,2,... W ten sposéb dowdd tacznosci mnozenia jest zakonczony.

Definiujemy teraz szereg formalny ¢ wzorem
L= (io,il,ig,...,in,...) = (1,0,0,...,0,...),

czyli
io=1 oraz 1, =0

dlan=1,2,3,... Nietrudno zauwazy¢ teraz, ze

dla dowolnego szeregu formalnego «. Szereg ¢ jest zatem jedynka w zbiorze P. Dowo-
dzimy teraz rozdzielnosci mnozenia wzgledem dodawania. Niech

a=(ag,a1,a,...,0n,...),
B = (bo, b1,b2,...,bp,...),
v =(co,C1,C2y vy Cny...).

Wowcezas réwnosé
a-(fty)=a-B+a-y

wynika z réwnosci

n n n
Z ar(bn—r + cn_i) = Z apbp_i + Z akCn—k
k=0 k=0 k=0
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dlan=20,1,2,...

Zbior P jest zatem pierScieniem przemiennym z jedynka. Pozostaje wykazaé, ze jest
dziedzing catkowitosci. Niech wiec av # ( oraz ( # (, gdzie

a = (ag,a1,as,...,an,...) oraz [ = (bg,b1,b2,...,bn,...).
Chcemy pokazaé, ze a- 3 # (. Niech v = « - 3, gdzie
v =(co,C1,Coy ey Cny...).
Poniewaz o # (, wiec istnieje liczba n taka, ze a,, # 0. Niech ny bedzie najmniejsza

taka liczba n:
Gn, 70 oraz apg=a; =...=ap,—1 = 0.

Podobnie istnieje liczba mq taka, ze

by, #0 oraz byg=by =... =byp,—1 =0.
Mamy teraz
no+mo no—1 no+mo
Cn0—|—m0 — E ak‘bn0+m0—k‘ — E ak‘bn0+m0—]€ + a/’n,obm() + E ak‘bn0+m0—]€'
k=0 k=0 k=no+1
Dla k=0,1,...,n9 — 1 mamy a, = 0, a wiec
T‘LQ—l
E akbn0+m0—k — 0'
k=0
Nastepnie
n0+m0 mo mo—l
E akbn0+m0—]€ = E an0+kbm0—k‘ = E an0+m0—kbk-
k=ng+1 k=1 k=0
Poniewaz dla £k =0,1,...,mg — 1 mamy bx = 0, wiec
no-+mo mo—1
E akbn0+m0—k — E an0+m0—kbk — 0'
k=no+1 k=0
Zatem

Cn0+m0 = ano : bmo # 07

co dowodzi, ze v # (. Pierscien P nie ma zatem dzielnikéw zera, a wiec jest dziedzing
catkowitosci. Zerem tego pierscienia jest szereg formalny (, a jedynka szereg formalny
. Pokazemy teraz, ze ciato liczb zespolonych C moze by¢ traktowane jako podciato
pierscienia P.
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Funkcje tworzace 11

6. Wlozenie Cw P

Definiujemy przeksztatcenie h : C — P wzorem
h(z) = (2,0,0,...,0,...).
Inaczej moéwiac, h(z) jest szeregiem a, zdefiniowanym wzorami
a, = (ag,a1,a2,...,0n,...),

gdzie
ap=z2 oraz a,=~0

dlan = 1,2,3,.... W szczegdlnoéci ¢ = h(0) oraz ¢ = h(1l). Przeksztalcenie h jest
oczywiscie réznowartosciowe. Nietrudno pokazaé, ze jest ono homomorfizmem C w P.
Utozsamiajac liczbe zespolona z z szeregiem formalnym h(z) mozemy przyjaé, ze cialo
liczb zespolonych jest podciatem pierécienia P. Od tej pory zamiast szeregu formalnego
o, bedziemy pisa¢ po prostu z. W szczegdlnosci zamiast ( bedziemy pisaé¢ 0, a zamiast
t bedziemy pisac 1.

Odnotujmy jeszcze jedna wlasnos¢ omawianego wlozenia, z ktorej bedziemy czesto ko-
rzystac. Niech

a=(ag,a1,a,...,0n,...).

Woéwezas dla dowolnej liczby zespolonej z mamy
z-a = (zag,za1,2a9,...,20y,,...).
Wzér ten wynika natychmiast ze wzoru Cauchy’ego.

7. Rodziny sumowalne

Przypusémy, ze mamy dany ciag ag, a1, g, ..., Qy, . . . szeregow formalnych:
0) (0) (0
= (aé ),ag ),aé ),...,ag’),...),

(1) 0

ar = (ay’,aq ,agl),...,ag),...),

Qo = (ag)Q)?agQ)?aéQ)? . ~7a$12)7 - ')7

Ay = (aém), agm), agm), ca™ ),
dlam =0,1,2,... Méwimy, ze ten ciag tworzy rodzine sumowalna, jesli dla kazdego

n istnieje tylko skonczenie wiele liczb m takich, ze a%m) # 0. Wowczas dla kazdego n
definiujemy a,, wzorem
oo
Qp = Z al™,
m=0
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Suma po prawej stronie ma sens, bo tylko dla skonczenie wielu indeksow m sumowany
sktadnik jest rézny od zera. Definiujemy teraz

oo
E Q= (G0, 01,02, ..., 0Qn, . ..).
m=0

Inaczej:
Z Oy = (Z a(()m), Z agm), Z agm), e Z aglm), . ) .
m=0 m=0 m=0 m=0 m=0

Zauwazmy, ze suma rodziny sumowalnej nie zalezy od kolejnosci sumowania. To znaczy,
ze jesli mamy dane dwa ciagi szeregdéw formalnych réznigce sie tylko kolejnoscia wyrazow
(tzn. jeden jest permutacja drugiego), to sumy obu ciagéw beda réwne.

8. Szeregi potegowe

Definiujemy szereg formalny ¢ wzorem
¢=1(0,1,0,0,0,...,0,...),
czyli
EI <x07$17$27"'7xn7"')7
gdzie
r0=0, ,z1=1, x,=0 dlan>2.
Nietrudno zauwazyc¢, ze
£ =1(0,0,1,0,0,0,...,0,...),
¢ =1(0,0,0,1,0,0,...,0,...),
¢*=1(0,0,0,0,1,0,...,0,...)

i tak dalej. Ogdlnie

fm = (l’o,ZEl,ZEQ, s Ly .- .),
gdzie
S 1 gdy n = m,
"0 gdy n #m
dlan=0,1,2,...im=1,2,3,.... Przyjmujemy réwniez £° = 1. Przypuéémy teraz, ze

dany jest szereg formalny «:
a=(ap,a1,a,...,0n,...).
Przyjmijmy nastepnie

o = ag - &Y = (ag,0,0,0,0,...,0,...),
ar =ay - & =(0,a1,0,0,0,...,0,...),
ap = as - &2 =(0,0,a5,0,0,...,0,...)
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i tak dalej. Ogolnie
Om = U - Em = (aé)m)7 agm)v agm)v SRR agzm)v . ')7

gdzie

gm) _ Jan gdyn=m,
0 gdy n #m

dlan,m=0,1,2,...

Nietrudno zauwazy¢, ze rodzina «g, a1, s, . .. jest sumowalna oraz

o0 [e e}
o= E O E am - &M,

Szereg formalny o moze wiec by¢ traktowany jako suma szeregu potegowego, w ktérym
wspotczynnikami przy kolejnych potegach & sa wyrazy szeregu formalnego .

W odréznieniu od szeregdéw potegowych zmiennej zespolonej, nie wolno nam podstawiaé
w miejsce & liczb zespolonych. Otrzymalibyémy bowiem sume nieskonczenie wielu sze-
regdéw formalnych (niekoniecznie sumowalna) lub nieskonczenie wielu liczb zespolonych
(przy czym szereg nie musialby byé¢ zbiezny). Jedynym wyjatkiem jest podstawienie
zera. Formalizuje sie to podstawienie za pomoca homomorfizmu Z : P — C okreslonego
wzorem

Z(a) = ag, gdzie a = (ag,a1,as,...,an,...).
Sprawdzenie, ze przeksztalcenie Z rzeczywiscie jest homomorfizmem, pozostawiamy jako

éwiczenie.

9. Elementy odwracalne pierscienia P

Udowodnimy teraz nastepujace twierdzenie:

Twierdzenie 5.1. Szereg formalny « jest odwracalny w pierscieniu P wtedy i tylko
wtedy, gdy ag = Z(a) # 0 (czyli wtedy i tylko wtedy, gdy a & Py).

Dowéd. Przypu$émy najpierw, ze szereg formalny « jest odwracalny. Niech (3 bedzie
takim szeregiem formalnym, ze o - § = 1. Wtedy

Z(a)- Z(B) = Z(a- B) = Z(1) = 1,
skad wynika, ze Z(a) # 0.
Przypusémy teraz, ze na odwrét, Z(«) # 0. Niech
a=(ag,a1,a2,...,0n,...).
Definiujemy szereg formalny (5 = (bg, b1, b2, ..., by, ...) W nastepujacy sposéb:
by = (ag) ™",
by = (—axbo) - (ag) ",

by = (—agby — a1by) - (ag) ™,

bn

(—anbo — ap—1b1 — ... —arb,—1) - (ag) ™",
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Nietrudno teraz zauwazy¢, ze agbg = 1 oraz
a()bn + albn_l + agbn_g + ...+ anbo == 0,

co dowodzi, ze - 3 = 1.

Szereg 3 oznaczamy symbolem o~ ! i nazywamy szeregiem odwrotnym do «. Ponie-

waz dla dowolnych szeregdéw formalnych « i § zachodzi réwnosé
(@ B) (a7t =1,

wiec mamy rownosé

() =ato g

Popatrzmy teraz na przyktady szeregéw formalnych odwracalnych. Niech szereg o bedzie
dany wzorem
a=1-a=(1,-a,0,0,0,...,0,...),

gdzie a € C. Niech nastepnie

Poniewaz Z(«a) = Z(8) =1 # 0, wiec szeregi v i 3 sa odwracalne. Niech szereg
v =(Co,C1,Coy ey Crny...)
bedzie ich iloczynem: v = « - 8. Mamy wéwczas
co=ay-bp=1-1=1

oraz

n
Cp = Zakbn—k = agby + a1bp_1 =1-a"+(—a)-a" ' =a"—a" =0
k=0

dlan=1,2,3,... A wiec a- B =1, czyli
(l—af)-Zanfnz 1.
n=0

Inaczej méwiac

l4+al+a?+a3E+.  +ad¢"+... = Za”f” =(1-a&)™ . (5.1)
n=0
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Udowodnimy nastepnie, ze dla dowolnego d > 1 zachodzi rownosé

(1—aé) %= i <d;ﬁ; 1) anen. (5.2)

n=0
Tej réwnosci bedziemy dowodzi¢ przez indukcje wzgledem d. Dla d = 1 mamy pokazac,
ze

(1—a&)™ ' = Z (8) a"&" = Za”f”.
n=0 n=0

To jest doktadnie réwnos¢ udowodniona wyzej.
W kroku indukcyjnym mamy wykazaé, ze

A e
czyli

-0 -ag =3 (T arer

7 zatozenia indukcyjnego wiemy, ze

— - d+ -1 nen
(1—&5) dz;( dﬁl )a E

Musimy zatem udowodni¢, ze

<§: (d;ﬁzl)“%") (1—a§)™ = i (d;n)angn,

n=0 n=0
czyli
n=0 n=0

Przeksztalcamy prawa strone:

(g <d;n)an§n> (1= af) = i d—;—?’L)an{n _ni;o (d—;—n)an_;-lgn-l-l _
d;n)anfn_i (d+z_1)a”§”:

o

n=1

d+n\ , .. ~=(d+n—1\ , .
J aE—Z( J )aﬁz

n=0
d+n d+n—-1 nen
(537) (7)) -

o
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co konczy dowdd indukeyjny.

10. Réwnania rekurencyjne liniowe jednorodne o stalych wspoétczynnikach —
przyklad

W tym paragrafie pokazemy na przyktadzie, w jaki sposéb za pomoca funkcji tworzacych
mozemy otrzymac¢ wzoér ogdlny ciggu okreslonego réwnaniem rekurencyjnym liniowym
jednorodnym o statych wspoétczynnikach. Wybrany przyktad bedzie pokazywal wszyst-
kie istotne fragmenty dowodu ogdlnego, ktéry pokazemy w nastepnym paragrafie.

Mamy dany ciag (a,) zdefiniowany réwnaniem rekurencyjnym szdstego rzedu:
Gnt6 — DApts5 — 15ap44 + 85ap43 + 10ay4+2 — 372a,41 + 360a,, =0 (5.3)

dlan =0,1,2,... Poszukujemy rozwiazania ogdlnego. Przyjrzyjmy sie najpierw rowna-
niu charakterystycznemu naszego réwnania rekurencyjnego:

2% — 52° — 152% + 8523 + 102? — 372z + 360 = 0
lub inaczej
(x—2)% (x+3)% (x—5)=0.

Roéwnanie charakterystyczne ma 3 pierwiastki: pierwiastek potréjny x = 2, pierwiastek
podwéjny x = —3 i pierwiastek pojedynczy x = 5. Pokazemy, ze rozwigzanie ogolne
réwnania rekurencyjnego (5.3) ma nastepujaca postac:

an = (uo +urn +ugn?) - 2" + (vo +v1n) - (=3)" +wp - 5" dlan >0, (5.4)

gdzie ug, u, uz, vo, v1, wg € C. Wprowadzmy wygodne oznaczenie: Cy[z] oznacza zbiér
wielomianéw zmiennej zespolonej = stopnia mniejszego od d (a wiec stopnia co najwyzej
d — 1). Podobnie C4[¢] oznacza zbiér wielomianéw stopnia mniejszego od d zmiennej &
(jako podzbidr pierscienia wszystkich szeregdéw formalnych P):

Calé] ={a = (ap,a1,...,an,...) €P: Yn>d(a, =0)}.
Wtedy rozwiazanie ogdlne réwnania (5.3) mozna przedstawi¢ w postaci
anp =u(n)-2" +ov(n)- (=3)" +w(n)-5" dlan >0,
gdzie u(x) € Cslz], v(z) € Cqlz] 1 w(x) € Cy[z]. Zwracamy uwage na zwiazek mie-
dzy krotnosciami pierwiastkow rownania charakterystycznego a stopniami wielomianow
u(x), v(z) i w(x).
Bedziemy w dalszym ciggu traktowaé pierécien P szeregéw formalnych jak przestrzen

liniowa nad cialem C. Zdefiniujemy cztery podprzestrzenie przestrzeni P. Oto pierwsza
z nich:

Vi={a=(an) €EP: api6—5an+5—15an14+85a,+3+10ay12—372a,+1+360a, = 0}.
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W poprzednim wyktadzie sprawdziliSmy, ze ciagi spelniajace réwnanie rekurencyjne
liniowe jednorodne o statych wspétczynnikach rzeczywiscie tworza podprzestrzen liniowa
przestrzeni wszystkich ciagéw o wyrazach zespolonych, a wiec przestrzeni P. Poniewaz
pierwsze 6 wyrazéw ciagu a mozna dobiera¢ dowolnie, a wszystkie nastepne sa przez
nie wyznaczone jednoznacznie, wiec

V; = CS,

czyli

Przed zdefiniowaniem drugiej podprzestrzeni wybierzmy dwa szeregi formalne:

6 = (1,-5,—15,85,10, —372, 360,0,0,0,...,0,...) =
=1 —5¢ — 1562 4 85¢3 4 106 — 37267 + 36068 =
= (1-28) - (1+3¢)%- (1 - 5¢)

oraz
v =061 = (1-56—15624-85¢3+106* —372€54-3606°%) 71 = (1-26) 73 (1+3¢)2(1—-5¢) L.
Teraz definiujemy

Vo={aecP: IneCsl{](a=7m-7)}={acP: ad € Cs[¢]}.

Sprawdzenie, ze V5 jest podprzestrzenia P pozostawimy jako ¢wiczenie. Poniewaz ele-
menty Vo sa wyznaczone jednoznacznie przez elementy Cg[¢], wiec latwo pokazujemy,
ze

V2 ngi’

czyli
dim V5 = 6.

Mamy dwie przestrzenie liniowe tego samego wymiaru. Pokazemy, ze Vo C V;. Przypu-
S¢émy zatem, ze mamy dany szereg formalny

a = (ap,a1,a2,...,0n,...) € Va.
Zatem m = ad € Cgl¢]. Niech zatem
7 = (Po, P1, P2, P3, P4, P5,0,0,0,...,0,...),
(tzn. p, = 0 dla n > 6). Mamy zatem réwno$cé

(a0, a1, as, - an,...) - (1,—5,—15,85,10, ~372, 360,0,0,0, ...,0,...) =
= (p07p17p27p37p47p57070707 .. '707 .. )
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Stad wynika, ze
l-ag—5-a5—15-a4+85-a3+10-a2, — 372 a1 + 360 -ag = pg =0,
l-a;—5-a6—15-a5+85-a4+10-a3 —372-a2+360-a; =p; =0

i ogoblnie

1 -ani6—95 - an4s —15-apta +85-any3+10-apny2 —372-apy1 +360-a, = prye =0

dla n > 0. A wiec a € V;. Pokazaliémy zatem, ze

Vo C Vi oraz dimV; = dim V5,

czyli Vi = Vs,

Definiujemy trzecia podprzestrzen P:
Vi={aecP: Elw,p,a(azw-(1—25)_3+p-(1+3§)_2+0-(1—5{)_1)},
przy czym 7 € Cs[], p € Cy[€] oraz o € Cq[¢]. Nietrudno pokazaé, ze
V3 2 C3¢] x Ca€] x Ci¢] = C°,

a wiec V3 jest tez podprzestrzenia przestrzeni P oraz dim V3 = 6. Pokazemy, ze V3 C V5.
Przypusémy zatem, ze
a = (ag,a1,a2,...,0n,...) € V3.

Zatem
a=7-(1-234p - (1+3)240-(1-5)""

dla pewnych

T = (po+ p1€ +p2£?) € C3[¢], p=(ro+r&) € Co¢], o0 =s0€ Ci[€].

Chcemy pokazaé, ze ad € Cg[¢]. Mamy

a-d=(r-(1-2)+p- (1432 +0-(1-5)7") - (1-26)°(1+36)*(1 - 5¢) =
= (14 36)*(1 = 5¢) + p(1 — 26)°(1 = 5¢) + (1 — 26)°(1 + 3¢)* =
= (1 +&—216% — 456%) + p(1 — 11€ + 4262 — 68€3 4 4061+
+ o(1 — 1562 4 10€3 4 606+ — 72¢°) =
= (po + 1€ + p2£?) - (1 + € — 2162 — 45¢°)+
+ (ro +716) - (1 — 11 + 4262 — 68¢° + 40¢*)+
+ 50 - (1 — 1562 +10€3 + 60£* — 72¢°) =
= (po + 710 + 80) + (po + p1 — 1rg +71)E+
+ (=21po + p1 + po + 42r¢ — 111 — 1550)E%+
+ (—45pg — 21py + pa — 68rg + 4211 + 10s9)E3+
+ (—45p; — 21ps + 407y — 6811 + 6050)E* + (—45py + 40r; — 7250)&° € Cg[€].
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Zatem o € Vs. PokazaliSmy wiec, ze a € V5 1 tym samym pokazaliSmy, ze V3 C V5.
Poniewaz dim V5 = dim V3 = 6, wiec Vo = V3.
Definiujemy czwarta podprzestrzen liniows przestrzeni P:
Vi= {a = (an) € P: Jug, uy, us,vo,v1,wy € C
vn € N (a, = (ug + uin + usn?) - 2" + (vo + vin) - (—3)" +wo - 5") }.

Dowdd, ze V4 rzeczywiscie jest podprzestrzenia liniowg P zostawiamy jako ¢wiczenie.
Poniewaz kazdy szereg o € V) jest wyznaczony jednoznacznie przez liczby zespolone vy,
w1, Us, Vg, V1, Wo, wiee Vi =2 C°, czyli dim Vy = 6. Pokazemy, ze V3 C V4. Niech zatem
a = (ag,a1,a2,...,an,...) € V3. Istnieja m € C3[¢], p € C[¢] i 0 € C4[¢] takie, ze

a=m-(1-2)"+p-(1+3) 2 +0-(1-5)"

Korzystamy teraz z réwnosci (5.1) i (5.2):

(1—25)—322(";2) ~2”§”:%~Z(n+1)(n+2)-2”£",

n=0 n=0

1+302=Y (” * 1) (e =Y (1) (-a)en,

n=0 1 =0
(1-50)71 =Y 5.
n=0

Niech nastepnie m = pg + p1& + p2&2, p = rg + 1€ oraz o = s9. Woéwezas

T (12070 = o (po+pi&+p26?) ) (e 1)(n+2) - 27" =
n=0
LS ) et o Zp1n+1><n+2>-2”sn+1+

n=0

T szm D +2) - 2n¢m2 =

= % : Zpo(n +1)(n+2)-2"" + % : me(rH— 1)-2n~teng

n=0 n=1

1 (0. @]
t5 ZPQ”(” —1)-2"7%" =

= Zpo n+1)(n+2)- 2”{’”%—1 Zmn n+1)-2""+
n=0 =
£ =S panln—1) 2" =

8 n=0

OO|H

Z (4po(n + 1)(n+2) + 2pin(n + 1) + pon(n — 1)) - 2"E™.
n=0
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Poniewaz

(4po(n+ 1)(n+2) + 2pin(n + 1) + pan(n — 1)) =

ool =

. (4p0(2 +3n+n?) + 2p1(n +n?) + pa(—n + n2)) =

| — ool —

= — - (8po + (12po + 2p1 — p2)n + (4po + 2p1 + po)n?) =

2
0o+ uin + usn s

gdzie
12po + 2p1 — p2 dpo + 2p1 + po

Up = pPo, U1 = 3 NS 3 )

wiec

oo
(1—-2¢&)" Z (ug 4 urn + ugn?) - 2"E™,

n=0

Podobnie

p-(143)72=(rg+m&) Y _ (n+1)-(=3)"¢" =
n=0

= Z ro(n+1)-(=3)"¢" + Z ri(n+1)- (=3)nent! =
n=0 n=0

= Zro(n + 1) . (_3)”5” + Z’rln . (_3>n—1€n —
n=0 n=1

=Dl 1) (9" - 2D (-

Z 3ro(n+1) —rn) - (=3)"¢" =

wl»—l

[l
Mg wl»—l

Z 3rg + (3rg — r1)n) - (=3)"¢" =

(vo + vin) - (=3)"¢€",
0

3
I

gdzie
37’0 — T

Vo =To, V1= 3

Wreszcie

o-(1-56)" =s- 25”5" > wo - 5N,
n=0
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gdzie wy = Sg.

Lacznie otrzymujemy

00
0=t =
n=0

=7 (1-28) 7 +p- (1430 +0-(1-5¢) 7" =

>~ (w0 +win+uzn?) - 2" + (v9 + vim) - (=3)" +wg - 5")¢",
n=0

skad wynika, ze dla kazdego n € N:
an = (uo + urn +usn?) - 2" + (vo +vin) - (=3)" +wp - 5".

Zatem o € V. PokazaliSmy wiec, ze V3 C V4. Poniewaz dim V3 = dimV, = 6, wiec
Vi = V.

Wszystkie cztery zdefiniowane podprzestrzenie liniowe przestrzeni P sa rowne. W szcze-
gblnoéci Vi = Vy, co dowodzi, ze ciagi (a,) spelniajace réwnanie rekurencyjne (5.3), a
wiec nalezace do V) naleza réwniez do V,. To za$ znaczy, ze ciagi te sa okreslone wzorem
og6lnym (5.4):

an = (ug 4+ urn + ugn?) - 2" + (vo + v1n) - (—=3)" + wp - 5"

dla pewnych liczb zespolonych ug, w1, us, vg, v1, wg. To konczy dowdd.

11. Roéwnania rekurencyjne liniowe jednorodne o stalych wspétczynnikach —
twierdzenie ogdlne

W tym paragrafie udowodnimy twierdzenie o postaci rozwigzan réwnan rekurencyjnych
liniowych jednorodnych o stalych wspotczynnikach.

Twierdzenie 5.2. Mamy dane réwnanie rekurencyjne liniowe jednorodne rzedu d
Untd + C1Ontd—1 + C20ntd—2 + -« + Ci—10ny1 + Caan =0 (5.5)

o stalych wspélezynnikach ¢q,ca,...,cq € C (przyjmujemy, ze ¢4 # 0; w przeciwnym
razie réwnanie mialoby rzad nizszy niz d). Przypu$émy, ze rownanie charakterystyczne

2%+ clzd_1 + CQZd_2 +...+cg_12+cqg=0
ma m pierwiastkow zespolonych rq, ..., 7, odpowiednio krotnosci dy, . . ., d,,,; oczywiscie
di+...+dy=d.
Wéwezas istnieja wielomiany

q1 € Cdl[X],...,qm c Cdm[X]
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takie, ze
n

an =q(n)-r+...+qgnn)-r,,
dlan=0,1,2,...

Dowéd. Dowdd zaczniemy od przeksztatcenia réwnania charakterystycznego. Oczywi-
Scie ré6wnanie charakterystyczne mozemy zapisa¢ w postaci

(z—r)® (2 =ro)® . - (2 —71p)% =0.

Poniewaz c¢; # 0, wiec pierwiastki réwnania charakterystycznego sa rézne od zera.

podstawmy zatem % w miejsce z i pomnézmy obie strony réwnania przez 2%, otrzymujac
kolejno
- —nr | = =19 ol =T =0,
z z z
(1- rlz)dl (1= rgz)d2 e rmz)dm =0.
Otrzymane réwnanie jest oczywiscie réwnowazne réwnaniu
1 1 1
;—f-cl'zd—_l-f—.-.-f—cd—l';'f‘cdzoa
czyli
l14+c1z+ 0222 +...4+ cd_lzd_l + cdzd =0.
Inaczej méwiac, zachodzi réwnos$é wielomiandéw
L4zt . Feg12 Fegzd =1 —r2)M - (1 —rp2)®2 .0 (1 = 1y 2) %,

Teraz, postepujac tak jak w przyktadzie, definiujemy cztery podprzestrzenie liniowe
przestrzeni P. Oto pierwsza z nich:

Vi={a=(an) €EP: apntq+c1antd—1 + c2apn+d—2 + ...+ C4—1an+1 + cqa, = 0}.

Sprawdzenie, ze V7 jest rzeczywiscie podprzestrzenig P zostawiamy jako ¢wiczenie. Po-
niewaz pierwsze d wyrazow ciaggu a mozemy wybraé¢ dowolnie, a pozostate sa wyznaczone
jednoznacznie przez réwnanie (5.5), wiec Vi = C%, czyli dim Vi = d.

Nastepnie definiujemy szereg formalny J wzorem
0= (1,c1,¢2,...,¢4,0,0,0,...,0,...).
Inaczej méwiac, ciag wspoétezynnikow cq, co, . . ., cq rOZSZErZAMY, Przyjmujac
Co=1, ¢, =0 dlan=d+1,d+2,d+3,...
7 rozwazan przeprowadzonych na poczatku dowodu wynika, ze

0=14+ci1&+ 0252 4+ 4+ cd_lgd_l + cdfd =(1- m&“)dl (1- TQS)dZ R rmg)dm.
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Nastepnie definiujemy
Y=t =1 =r &) N (1 —rf) % (1 =1 6) 7,
Teraz mozemy zdefiniowa¢ druga podprzestrzen:
Vo={aeP: IreClf](a=nm-7)}={aecP: a-dcCyl¢]}

~Y

Znéw latwo sprawdzamy, ze Vi jest podprzestrzenia P oraz Va = Cy4lé] = C¢, cayli
dim V5 = d. Pokazujemy nastepnie, ze Vo C V.

Niech zatem « € V5. Wowezas m = a - § € Cy[¢]. Niech
= (po,P1,---+,Pd;0,0,0,...,0,...).
Wowczas
(ag,a1,...,an,...)  (co,c1,...,¢4,0,0,0,...,0,...) = (po,p1,---,Pd,0,0,0,...,0),
czyli

d
E CrQp—f = 0
k=0

dla n > d. Podstawiajac n + d w miejsce n, otrzymujemy

d
E Ckptd—k = 0
k=0

dlan =0,1,2,... Inaczej mowiac
CoGntd + C1antd—1 + C20nt+d—2 + ... + Cd—1an41 + Caan = 0,

czyli
Upid + ClOp1d—1 + C20prqg—2 + ...+ Cq_1an41 + Cqan =0

dlan=20,1,2,... Zatem o € V;. Stad wynika, ze Vo = V.

Teraz definiujemy trzecia podprzestrzen:
Va={acP: Iry,....mm (=71 - (1 =& + .. +mpm- (1 —rné) 9},
gdzie 1 € Cy, [€], ..., mm € Cq,, [€]. WOWczas nietrudno zauwazyé, ze
Va2 Cq,[€] X ... xCq []=Ch x...xCyq [(]=CH x...xCI =

Zatem dim V3 = d. Tak jak w przykladzie w poprzednim paragrafie, pokazujemy, ze
Vs C Vs
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Niech zatem a € V3. Mamy pokazaé, ze a -6 € Cyl¢], czyli, ze - § jest wielomianem
stopnia nizszego niz d. Zauwazmy w tym celu, ze

a-0= Zwk-(l — &) T §,
k=1

czyli
a-0=m-(L—r&)2 ... (1 —ry,é)d+
tm s (L=m€)" - (L=r3)® - (1= rp€) ™t
+ ...+
4 (=D (=1 )1 (L= )+ (1= )9+
+...+
+m - (1— m&“)dl R rm_lf)dm—l.

Pokazemy, ze kazdy sktadnik sumy po prawej stronie jest wielomianem stopnia nizszego
niz d. Bez straty ogdlnosci mozna ograniczy¢ sie do piewszego sktadnika (kazdy sktad-
nik moze by¢ wybrany jako pierwszy po odpowiednim przenumerowaniu pierwiastkow
réwnania charakterystycznego). Mamy zatem wielomian

w1 (1= 1e8)% - (1 = 7)o,
Jego stopien jest rowny
degm +do+...+d,, =degm +d—d; <di +d—dy =d,
bo stopien wielomianu 7 jest mniejszy od dy. Stad wynika, ze deg(a - d) < d, czyli
a-d € Cyl¢]. A wiec a € V;. Tak jak poprzednio, dostajemy stad réwnosé Vo = Vs.
Wreszcie definiujemy czwarta podprzestrzen:
Vi={a=(an)€P: 3¢ € Cy,[X] ... Igm € Cy, [X]Vn(an = q(n)rT+ . +qgm(n)r)}
i tak jak poprzednio zauwazamy, ze
Vi Cy[X]X...xCq [X]=CH x...xCm =C

Zatem dim V3 = d i znéw tak jak w poprzednim paragrafie, pokazujemy, ze V3 C Vj.

Niech wiec a € V3. Wéwezas
a=p1+ ...+ Bm,

gdzie
Br=m - (1—r&)~%, gdzie m € Cq €],
ﬁk =Tk - (1 - rkE)_dk7 gdZie T € (Cdk [E]v

ﬁm = Tm * (1 - rmg)_dm7 gdZie Tm € (Cdm [é]
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Niech 1 < k£ < m i niech
Tk = po + pr&+p28” + .+ pa 16,
czyli
Tk =po+P1€+ P28’ + . A Pa 18T+ pa £+ el
gdzie p, = 0 dla n > dj. Korzystamy nastepnie ze wzoru (5.2):

(EUREDY (n ;kdiz 1) g €

n=0

Mamy wowczas
B = mp, - (1= )~ =

_ = /n+d;—1 "
= (po +pr&+ o+ pa 1€ 1)2( ’ )'T .
n=0

di — 1
S n (AT e
n=0 \ j—=0 k

Wprowadzimy teraz nowe oznaczenie. Przypomnijmy, ze symbolem (x),, oznaczaliSmy
wielomian

(@) =2z(x—1)(z—-2)-...-(x—n+1)
dlan =1,2,3,... Oznaczmy réwniez (x)g = 1. Zdefiniujmy wielomian (fb) wzorem:
T\ _ (Z)n
n n!
dlan =0,1,2,... Poniewaz wielomian (x),, ma stopien n, wiec (;’“;) jest tez wielomianem

stopnia n. Stad wynika, ze

(X—j+dk—1

1 ) — %-(X—j%—dk—l)(){—thdk—%-...-(X—j+dk—(dk—1))

di, — 1)
jest wielomianem stopnia dj — 1 zmiennej X . Definiujemy teraz wielomian g (X) wzo-
rem: .
X —j+dp—1
X) = ; .
w0 =2 (M)
7=0

Oczywiscie wielomian g (X) ma stopien co najwyzej rowny dj — 1. Niech ponadto

B = (bo, b1, ba, ..., by, ).

Wyktady z kombinatoryki



2 Wyktad 5

Wéwcezas
oo
B = q(n)-rig”,
n=0
czyli
b = qx(n) -1y
dlan=0,1,2,...Z réwnosci a = 31 + ...+ B, wynika teraz, ze

n

anp, =q(n)-r+...+qgn(n) - rg

dla n > 0. To dowodzi, ze o € Vj.

Zatem Vi = Vo, = V3 = V. Stad wynika, ze kazdy ciag o = (a,) € P spelniajacy
réwnanie rekurencyjne(5.5) nalezy do przestrzeni V. Istnieja zatem wielomiany

q1 € Cy, [X],...,qm € Cq,, [X]

o tej wlasnosci, ze ciag a = (a,) jest okreslony wzorem ogdlnym

n

an =q1(n) -7+ ...+ gm(n) -7y
dlan=20,1,2,... To konczy dowdd twierdzenia 5.2.

12. Pierwiastki kwadratowe

Przypusémy, ze dany jest szereg formalny
a=(1,a1,as,...,ap,...) € Py.
Wyznaczymy teraz szereg formalny
B = (bo,b1,bay...,bn,...)
taki, ze 3 = a?. Mamy kolejno

bp=1-1=1,

by =1-a1 +a1-1=2a,
bgz1-a2+a1-a1+a1-1=2a2+a%,
bs=1-a3+ay-as+as-ay +az-1=2a3+ 2ajas,

b4:1-a4+a1-a3+a2-a2+a3~a1+a4~1:2a4+2a1a3+a3
i ogoblnie

n—1
b, = 2a,, + a1a,—-1 + a2@p_9+ ...+ an_101 = 2a, + g kO
k=1
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Powyzsze wzory pozwalaja rozwiazaé¢ zadanie odwrotne. Niech bedzie dany szereg for-
malny 3 € P;. Istnieje woéwczas dokladnie jeden szereg formalny o € IP; taki, ze o = 3.
Wykazemy najpierw jednoznacznosé.

Przypu$émy bowiem, ze mamy dane dwa szeregi formalne «, v € Py takie, ze

a? = 72 = 0.
Wowezas a? —2 = 0, czyli (o —7)(a+7v) = 0. Zatem a = v lub a = —y. Ale ,y € Py,
czyli Z(a) = Z(y) = 1. Gdyby a = —7, to mieliby$my Z(«a) = —Z(vy) = —1, co jest
sprzeczne z zalozeniem. Zatem o = .

Szereg formalny o taki, ze o? = 3 definiujemy przez indukcje:

a():l,
by
a1=57
by — a?
ag = 22 17

an: =

by — (a1Gn—1 + a20n—2 + ...+ ap—1a1) b_n
2 2

N —

n—1
. E ApQp—k-
k=0

Z poprzednio wyprowadzonych wzoréw wynika, ze rzeczywiscie o? = 3.
Jesli B € Py, to szereg a € Py taki, ze a? = 3 nazywamy pierwiastkiem kwadrato-
wym szeregu (3 i oznaczamy symbolem +/3 lub 32.

Pokazemy teraz jeden przyktad pierwiastka kwadratowego. Ten przyktad bedzie wyko-
rzystany w dalszej czesci tego wyktadu. Niech

oo

B=(1-4)7" =) 4" = (1,4,4%,...,47,..).

n=0
Oczywiscie 8 € P;. Obliczymy kolejne wyrazy szeregu
a = (ag,a1,a2,...,an,...) € Py

takiego, ze a® = 3. Mamy kolejno:

ag =1,

alz%:l

a2:bQ;a%:4Q;22:6,

agzbg—Samz :43—22-2-6:207
a4:b4—2a;a3—a§ :44—2-22-20—62 _ 0.
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Otrzymane liczby wygladaja znajomo, jesli przypomnimy sobie poczatkowe wiersze troj-
kata Pascala:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5) 10 10 5) 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 o6 70 56 28 8 1

Narzuca sie hipoteza:

czyli

(1-16 =% (2:)5”.

n=0

W nastepnych paragrafach udowodnimy te hipoteze.

,Tozsamos¢é 4™”

W tym paragrafie pokazemy trzy dowody nastepujacej tozsamosci kombinatoryczne;j:
" (2k\ (2n — 2k

= 4", .
2 (1) (=) 6
k=0
Dowéd I. Definiujemy funkcje S, (z) (k=0,1,2,...) wzorem:

" 2k (2n — 2k
Sn(z) = k
=2 ()G

dla z € R. Rézniczkujac obie strony otrzymujemy:

)

dla xz € R. Zmieniajac kolejno$é sumowania (czyli podstawiajac k := n — k), otrzymu-

jemy
"L (2kN (2n —2k\
sn<x>:2(k)(n_k)x 3

k=0
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skad dostajemy

n
2k\ (2n — 2k
n.g -1y _ .n
e SaleT) = a Z(k)( n—k
k=0
Nastepnie rézniczkujemy obie strony réwnosci

Sp(x) =™ - Sp(xh).
Otrzymujemy

S;L('r> = (mn)l ) Sn(m_l) +a™- (Sn(x_l))/ = nmn_lsn(x_

=na" "t S (7)) — 2" 2. S (7).
Podstawiajac teraz x = 1, otrzymujemy
Sp(1) = - Sn(1) = Sy (
czyli

7 drugiej strony

n+1

2k\ (2n +2 — 2k

Snr1(@) = <k>< n+1—k
0

k=
skad otrzymujemy

n+1 n+1
42— 2\ 4,

=3k Ch )=

- o + 2\ (20— 2K\ ,

Zk+1<k+1)(n—k>x =

k=0

-~ 2%k +2 [2k+1\ [2n — 2k
= E+1)-=—=.
kzzo( U 55T < k )(n—k

o 2k +1\ /2n — 2
_ (2k+2)-(k+ )(n k)xk:
— k+1 n—=k

I
ol
3 ||M:
(]

02(2/%: +1)- (2:) (QZ - Iik) o =

=

I
=~

)wk—n

1),

()

ok +1 (2K [2n— 2K\ ,
2% +2) - : -
(k+2)- 57 (k)(n—k)m

1)+$n'S/

2n+2—2
n+1-—k

) -

2k\ /2n — 2k " on — 2k
=4z k- 2Pl 49, §

-0
=4z - S (x)+2- S, ().

k

= 2k\ (2n —2k\ 4 "L (2K (20— 2k\
e () (k)( )
k=0 =0

r)

o -

k=
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Teraz podstawiamy x = 1:

() =48, (1) +2-S,(1) = 4- 2
Poniewaz takze 41
n

ne1(1) = 5 Sp+1(1),
wiec

1

s Susa(1) = (20 +2) - Sy (1),
czyli
Sni1(1) =4-8,(1).

Poniewaz

So(1) = kzo::o (2:) <00—_2kk)1k .

wiec przez indukcje S, (1) = 4™. Zatem

2 () (1) s e

k=0

co konczy dowod.

Dowéd II. Przypomnijmy tozsamosé Cauchy’ego:

é@) (2)= (")

(1) +2-Sn(1) = (2n+2) - Sn(1).

Przypomnijmy oznaczenia, ktérych niedawno uzywali$émy: symbolem (x),, oznaczaliSmy

wielomian

(@) =xz(z—1)(z—-2)-...-(x—n+1)

dlan =1,2,3,... Przyjmujemy réowniez (z)g = 1. WprowadziliSmy takze oznaczenie:

(1)~

dlan =0,1,2,... Niech teraz

oraz
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Wielomiany W (x) i V(x) przyjmuja te same wartosci dla nieskoniczenie wielu argumen-
tow: W(m) = V(n) dla n € N. Zatem sa identyczne; w szczegélnosci W (z) = V(x) dla
dowolnej liczby rzeczywistej x. Wezmy teraz dowolng liczbe r € R i rozwazmy wielo-
miany zmiennej y:

oraz

)= ("1")

Wielomiany U(y) i T'(y) przyjmuja te same wartosci dla nieskonczenie wielu argumen-
tow: U(n) = T'(n) dlan € N. Zatem sa identyczne, czyli dla dowolnej liczby rzeczywistej
s zachodzi réwnosé U(s) = T'(s). To znaczy, ze dla dowolnych 7, s € R mamy:

2006 -(0)

Uwaga. Mozna udowodnié¢ (co pozostawiamy jako ¢wiczenie), ze jesli dwa wielomiany
W(z,y) i V(z,y) dwoéch zmiennych x i y przyjmuja te same wartosci dla wszystkich
r,s € R (tzn. W(r,s) = V(r,s)), to sa identyczne: W (z,y) = V(z,y).

Podstawmy teraz r = s = —%. Otrzymujemy
k 1 1
> (7)) - ()
NS \E—] k
Obliczymy teraz wspolczynniki dwumianowe wystepujace po obu stronach powyzszej
réwnosci.

Pokazemy najpierw, ze dla dowolnego n = 0,1, 2,... mamy
-1
=(=1)".
(5)) =

(-1) (—1)p  (=1)-(=1-1)-(=1=2)-...- (=1 —n+1)

n n! n!
_ (=) (=2)-(=3) (—n) _ (=1)"-n! _ (—1)"
o n! o n! o
Pokazemy teraz, ze dla dowolnego n =0,1,2,... mamy

(-5 ()
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Znéw dla n = 0 réwnosé jest oczywista. Niech zatem n > 1. Mamy wowczas

@)= IS HC EHC B BT Exh)

n n! n!
(1) DD ) D) (5 (=2
n! 2" . n!
C(-D"1-3-5-...-(2n—1)
N 27 . n! N
C(-D"1-3-5-...-(2n—1) 2:4-6-...-(2n) _ (=1)"-(2n)!
B 2m .l '2.4.6-...-(2n) 27-pl-27.nl
_ (=)™ (2n)! _ (=)™ ‘ (2n)! _ (=)™ ' (271)
4n .l n! 4n plon! 4n nj)

Podstawmy teraz obliczone warto$ci do réwnosci

S(6)-(0)

R e
LS (0) (1) -
R0 -
(D)

co konczy dowdd.
Dowéd III. Przeprowadzimy dowdéd kombinatoryczny.

Udowodnimy najpierw nastepujacy lemat.

Lemat 5.3. Istnieje (2:) ciagéw f dlugosci 2n o wyrazach ze zbioru {0, 1}, majacych
nastepujaca wlasnosé: dla kazdej liczby k € [2n]

{ie[k]: f(i) =0 #[{i e [k]: f(i) =1}
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Dowdd. Popatrzmy najpierw na ilustracje graficzna naszego lematu. Ciagi zerojedyn-
kowe (tzn. o wyrazach ze zbioru {0, 1}) kodujemy za pomoca drég na papierze w kratke.
Wyrazowi 0 odpowiada odcinek poziomy, wyrazowi 1 odpowiada odcinek pionowy; wy-
rauszamy z ustalonego punktu A i poruszamy si¢ wytacznie w prawo i do gory.

Ban
Dan—1
Bapn—2
Bn+1
B,
g B4
By
B
D I/I o T 1
AT C * Do
Zauwazmy, ze droga dhugosci 2n zakonczy si¢ w jednym z punktéw By, Bi, ..., Bay; sa

to punkty lezace na odcinku taczacym punkty By i Bs, oddalone od punktu A o 2n
kratek. Warunek sformutowany w lemacie oznacza, ze poprowadzona droga nigdzie (poza
punktem wyjscia A) nie dotknie przekatnej: linii taczacej punkt A z punktem B,,. Takie
drogi bedziemy nazywa¢ drogami omijajacymi przekatna. Przyktad drogi omijajacej
przekatng widzimy na nastepnym rysunku:

BQn
_"an—l
By o
Bn—i—l
B,
4 Bn—l
Bn—2
Bs

D B
ATO *Bo

Drogi omijajace przekatna dziela sie na dwa zbiory: drogi zaczynajace sie od kroku
w prawo (czyli do punktu C') i drogi zaczynajace sie od kroku w gére (do punktu D).
Oczywiscie drogi omijajace przekatna i przechodzace przez punkt C' musza zakonczy¢
sie w jednym z punktow By, ..., B,_1. Drogi omijajace przekatna i przechodzace przez
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punkt D zakonczg sie w jednym z punktéw B,i1,...,Bs,. Na nastepnym rysunku
widzimy jedna z takich drog przechodzacych przez punkt D.
Ban
DBan—1
Bap—2
Bn—|—2
Bn—i—l
B,
g B4
B,
B
D T 1
A C *Bo

Ze wzgledu na symetrie liczba drég omijajacych przekatna i przechodzacych przez punkt
C jest réwna liczbie drog omijajacych przekatna i przechodzacych przez punkt D. Po-
liczymy te pierwsze drogi. Pomyst polega na tym, by od liczby wszystkich drég odjac
liczbe drog, ktére nie omijaja przekatne;j.

Wprowadzmy wygodne oznaczenie. Jedli X i Y sa dwoma punktami kratowymi, to sym-
bolem d(X,Y') bedziemy oznaczaé liczbe drég z X do Y zgodnych z zasadami poruszania
sie po kratkach (tzn. tylko w prawo i do géry). Wiemy juz, ze drogi omijajace przekatna,
i przechodzace przez punkt C' koncza sie w jednym z punktéw By, ..., B,_1. Liczba
wszystkich drog z A przez C do jednego z tych n punktéw jest zatem réwna

n—1
> d(C, By).
k=0

Odejmijmy od tej liczby liczbe drég ,zlych”: prowadzacych z A przez C' do jednego
z tych n punktéw, ale nie omijajacych przekatnej. Oto przyktad takiej drogi:

BQn
_"an—l
By o
Bn—i—l
B,
4 Bn—l
Bn—2
By
D B
|
A O *Bo
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Droga ,zta” w co najmniej jednym punkcie dotyka przekatnej. Fragment tej drogi od
punktu C do pierwszego punktu na przekatnej odbijamy symetrycznie wzglegem prze-
katnej. Otrzymujemy droge z punktu D do jednego z punktéw By, ..., B,—1 (zauwazmy,
ze jedyna droga z C' do By nie dotyka przekatnej; dlatego pomijamy punkt By jako jeden
z punktéw koncowych drég ,ztych”):

Bop—1
By o

—

e T
A" O *

Odwrotnie, kazda droga z punktu D do jednego z punktéw By, ..., B,_1 musi przeciaé¢
przekatna, a wiec powstaje z dokladnie jednej drogi ,zlej” przez odbicie symetryczne.
Stad wynika, ze liczba drég ,ztych” jest rowna

n—1

> d(D, By).

k=1
Zauwazmy nastepnie, ze dla kazdego £k =1,2,...,n — 1 mamy réwnosc
d(D, By) = d(C, Bg—1).

Mianowicie kazda droge z D do By przesuwamy o jedna kratke w prawo i jedna w
doét, otrzymujac w ten sposéb droge z C' do By_1; to przeksztalcenie drog jest oczy-
wiscie wzajemnie jednoznaczne. Stad wynika, ze liczba drég ,ztych” z C' do punktéw
B, ..., B,_1 jest rowna

n—1 n—1 n—2
> d(D,By) = d(C,By_1) =Y _d(C,By).
k=1 k=1 k=0

Liczba drég z A przez C omijajacych przekatna jest zatem réwna

n—1 n—2
> d(C,By) = > _d(C, By) = d(C, Bn_1).
k=0 k=0

Wyktady z kombinatoryki



36 Wyklad 5

Zauwazamy nastepnie, ze
d(C,Bp—1) =d(A,E).

Mianowicie kazda droge z C' do B,,_; przesuwamy o jedna kratke w lewo.

B2n
'an—1
By, 2
Bn+1
B,
F Bn—l
By
B
D I/I / T 1
AT C *Bo

Otrzymujemy wniosek: liczba drég z A przez C omijajacych przekatng jest réwna
d(A, E). Przez symetrie, liczba drég z A przez D omijajacych przekatna jest réwna
d(A, F). A wiec liczba wszystkich drég wychodzacych z A i omijajacych przekatna jest

réwna )
d(A, E) + d(A, F) = d(A, B,) = ( :) ,

co konczy dowodd lematu.

Mozemy teraz przystapi¢ do dowodu tozsamosci (5.6):

" 2k [2n — 2k "

Z(k)<n_k)_4. (5.6)
k=0

Niech A bedzie zbiorem wszystkich zerojedynkowych ciagéw f dtugosci 2n:

A=22 ={f = (f1, far- s fon) = f1s far-eos fon € [2]}.

Definiujemy nastepnie zbiory Ay dla k =0,1,...,n:
Av={f € Armax{j € [n]: [f7H0)N[2]]| = [f~' (1) N [2]]| = j} = k}.

Inaczej méwiac, ciag (f1, fo, ..., far) jest najdluzszym odcinkiem poczatkowym ciagu
f, w ktoérym jest tyle samo zer co jedynek. Wtedy

n

4" =22 = A =) |Ax.

k=0
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Wystarczy teraz zauwazy¢, ze jesli f € A, to ciag f mozna podzieli¢ jednoznacznie
na dwa ciagi: ciag f|[2k], w ktérym jest po k zer i jedynek (jest (Qkk) takich ciagéw) i

ciag f|[{2k +1,...,2n}, kodowany za pomoca drogi omijajacej przekatna (jest (QZ:ik)

takich drég). Zatem
2n — 2k
ALl =
Al ( n—k )’

& "2k (2n — 2k .
S ia=3 () (o) =

k=0

skad wynika, ze

co konczy dowod.

13. Przyklad pierwiastka kwadratowego

Rozwazmy szereg formalny « zdefiniowany wzorem

o= tmaanascane = (1) (O () (7)),
= ()

dlan =0,1,2,... Oczywiscie a € P;. Obliczmy teraz 3 = a?. Niech zatem

czyli

B = (bo,b1,b2y ..., bp,...).
Woéwcezas ze wzoru Cauchy’ego i z ,,tozsamosci 4”7 wynika, ze
n n
2k\ (2n — 2k "

dlan=0,1,2,... Zatem
B=01-497",

czyli
o = (1 -4~

Poniewaz a € P1, wiec zgodnie z przyjeta konwencja mozemy napisac, ze

a=/(1-4)~ = (1-457 "2

Niech teraz szereg v bedzie zdefiniowany wzorem v = 1 — 4£. Oczywiscie v - 8 = 1 oraz
v € P;. Niech zatem § € P; bedzie szeregiem takim, ze 62 = 7 (czyli § = /1 — 4£).
Mamy wéwczas

=gy y=y=4,
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skad wynika, ze - v = 4. Stad otrzymujemy
d=1-4) - a=a—-4-¢-a.

Niech
§ = (do,dy1,da,...,dp,...).

Wowczas
do=ay oraz d,=a,—4a,—1 dlan>1.

6 T i - Gy RN G
=2 () ) =2 () = () -
()= ()= 0) -
2~2<<;gi>) (o)== (5 (o) ()

Stad wynika, ze

14. Liczby Catalana

Przypomnijmy, ze ciag liczb Catalana C,, spelnial nastepujace rownanie rekurencyjne:

n—1
Co=1, Cn=0CyCph1+CiChs+...+Ch_1Cy= Z CrLCh1_p dlan>1.
k=0

Niech v bedzie szeregiem formalnym zdefiniowanym w nastepujacy sposob:

y=> Cnt",
n=0

czyli
v =(Co,C1,Cq,...,Cp,...).

Wowczas ze wzoru Cauchy’ego wynika, ze

’yQ = 002 + (0001 + 010())5 + (COCQ + 0101 + 0200)§2 +..
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Doktadniej, przyjmijmy

Wobwcezas

= CiCnk = Cia
k=0

dlan =0,1,2,... Stad wynika, ze

I+&§-a=7,
czyli

£y =y-1
Pomnézmy obie strony ostatniej rownosci przez &:

(E-1)?=¢7-¢

Przyjmijmy nastepnie 3 = £ - v. Wtedy oczywiscie 3 € Py oraz

B B+€=0.
Rozwiazujemy otrzymane rownanie w pierscieniu P. Mamy najpierw

A=(-1)2—-4-¢£=1—4¢.

Oczywiscie A € P;. Niech zatem § = VA i niech § € P;. Nasze rownanie kwadratowe
ma dwa pierwiastki:

B :(1—5).2—1 oraz s :(1_}_&.2—1
Mamy wéwczas
Z(B1)=2Z(1—8) -2 =(1-2() -2 =(1-1)-271 =0

oraz

Z(B)=2Z(1+6)- 27t =1 +2Z6)-27'=1+1)-27 =1.

Poniewaz 3 € Py, wiec § = 1. Zatem
B=(1-08)-2"1=(1—-+1-4¢ 271

Z poprzedniego paragrafu wiemy, ze

Visigmi-2 Y (0 e

n—1
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czyli

Zatem
=1 2m-2\,, | ~1/2n-2\__
B=(1-V1-45-27"=> 5<n_1)£ =) ﬁ<n—1)£ g

Poniewaz 3 = ¢ - v, wiec

o
1/2n—2\ _ _
Ev=¢ —( 1)5’”
e n\n—
7 prawa skracania wynika zatem, ze
oo oo
B 120 =2\, 41 1 2n\ .,
7_ngln<n—l)£ _nzzon—i—l(n)g’

skad ostatecznie dostajemy
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Zliczanie drzew; twierdzenie Cayleya.
Zaczniemy od paru faktéw pomocniczych.

Twierdzenie. Jedli f i g sa wielomianami (ogdlniej: funkcjami rézniczkowalnymi) takimi, ze

Vo €R (f'(z) = g'(2)),
3z € R (f(z) = g(2)),

to

vz €R (f(z) = g(x)).

Przypomnienie. Liczba funkcji
. na
AL .5 —{1,...,n}

jest rowna

I e (7)o w = Sy (7).

k=0
W szczegblnosci, jesdli j < n, to

i (—1)nk (Z) k= 0.

k=0

Tozsamosci Abela.

H
=
(1

<Z>y(y R =BT = @y )
(

3) (Z) KR (n — k)mk1 = 2(n — 1)n2,

B
Il
o

>(y L C A 1) Ll <l

T

3

[\
2
(1

1
+§> ety +n)"T

=~

Il

=]
N

S
—

=
—

Dowody.

n

) (3)vtr+ om0 = @y
k=0

Dowodzimy tej réwnosci przez indukcje wzgledem n. Dla n = 0 (a takze dla n = 1) jest ona oczywista.
W kroku indukcyjnym zakladamy réwnoéé dla n — 1 oraz dowolnych x,y € R i dowodzimy jej dla n.

Dla ustalonego y € R definiujemy dwie funkcje:

10 =3 (3)oto+ 7,

Wowezas



skad dostajemy

bo dla 7 < n mamy

Jednoczesnie



Stad wynika, ze f(z) = g(x) dla x € R, co konczy dowdd réwnosci 1.

n

k=0

7 réwnosci 1 dostajemy

Stad

co konczy dowdd rownosci 2.

(3) n1<n>kk%n/kylk1201])n”?

Zauwazmy najpierw, ze

N L O RS LED
k=0 Y

1
= (r+y+n)"Nzt+yt+n—n)=

xy
x

+y

n

— k)Rl g Z (Z)y(y + B o +n—k)" Y (n - k)

k=0

n—1

k=0

2 <Z> B =B = (@ by )" =y ) =

(e ty+n)" T

x

1 1
(—+—)-u+y+nw*,
r oy

@) (Do sm=n—rr = (2

1 n—1
- )~(x+y+n) .

LAY n<n ; 1)3/(3/ + k)N a4 — k)R =



Zatem z roéwnoéci 2 dostajemy

1 1 1 1
Z( Yot =k (S 2y ) )
— s y Yy X

czyli

n

(£)r 097t -

=
Il

:i'(($+y+n)"71—(y+n)”7l)+§~((SCerJrn)n*l—(:chn)"*l),

Teraz przechodzimy do granicy przy ¢ — 01y — O:

n—1

n—1_ ., n—1 n—1 _ ,,n—1
g (n) EFl(n — k)" %1 = lim (z+n) o + lim (y+n) n =2(n—1)n""2,
1 k z—0 x y—0 Y

co konczy dowdd réownosci 3.
Ro6zne dowody twierdzenia Cayleya.

Dowéd 1. Niech T, bedzie liczbg drzew, ktérych wierzchotki sa ponumerowane liczbami od 1 do n.
Wowczas

Sy

=1

Na dwa sposoby zliczamy pary (e, T), gdzie e jest galezia drzewa T

(1) Drzewo T mozemy wybraé na T, sposobéw; jego krawedZ na n — 1 sposobéw. Mamy zatem (n — 1)T,
par.

(2) Dla dowolnej liczby k = 1,2, ...,n—1 wybieramy k wierzchotkéw; dokladniej dobieramy k—1 wierzchol-
kéw do wierzcholka o numerze 1. Nastepnie te wierzchotki laczymy w jedno drzewo i pozostale wierzchotki
taczymy w drugie drzewo. Wreszcie prowadzimy dowolng krawedz z jednego drzewa do drugiego — to jest
wlasnie krawedz e laczaca oba drzewa w drzewo T'. Dla danego k otrzymujemy w ten sposdb

n—1
(k—l) Tk Tn,kk(nfk)

par (e,T). Mamy zatem

k—1
k=1
Stad dostajemy
T, = S (n1 ke(n — k)Ty Ty =
"o 1) T kR =
k=1
1 =l n
:n71~ (nk)(n k)kaTn k=
k=1
n—1
1 n—2
= . -1 Ty Ty =
n—1 (n )(nkl)kknk
k=1
n—1



Podstawiajac nastepnie n — k w miejsce k (czyli sumujac w druga strone), otrzymujemy

n—1

— n—2 n—2
TnZ(nk)(n_k_1>TankZ(nk)<k_1)Tank.
k=1 k=1
Zatem
n—1 n—29 n—1 n—29 n—1 n—29
2T, = Ty T, — — T T =n- Ty Th—
n Zk(kl)knk+2(n k‘)(kl)knk HZ(kl)knk,
k=1 k=1 k=1
czyli

Zauwazmy nastepnie, ze

(=00 = () = () ~ e ()

Zatem
n v (n-—2 n nilk(nfk) n 1 — n
T, =—- T T = — - - 7 Tl = —— - k(n—k Tp Tk
2 k_1<k—1) Fink Ty ;n(n—1)<k) TR ; (n )<k;) ook

Teraz — przez indukcje — zakladamy, ze T), = k*~2 dla k < n. Woéwczas

n

1 1 n —2 n—k—2
Tn:m Zlk(nk)<k)kk (n—k)yrF2=

n—1
1
= . <n> EFL(n — k)" k=1 = (2 tozsamosci Abela)

2(n—1) Pt k
_ 1 n—2 __
=31 2(n—1)n"~ % =
n—2

co konczy dowdd twierdzenia Cayleya.

Uwaga. Z twierdzenia Cayleya i tozsamo$ci
1 2 n
T=— SN k(n—k T
2(n— 1) D kln )(k) hin=k

k=1

otrzymujemy natychmiast tozsamosé Abela (3).

Dowéd 2. Najpierw wyprowadzimy wazng tozsamosé dotyczaca wykladniczej funkceji tworzacej dla liczb
Cayleya. Definiujemy najpierw

— Tn . ~=nTn ., ~=nTy ,
T(x):ZI(n_l)!z :Zlnn—'z :ZORH—!SC.

5



Wowezas

T(x) ~~ T, ,_, N Ty 1= Do
—_ n _ Tl + n . n
x ;( - 1) ;(n—l)' go n!
Nastepnie
= T o= (DT
/ _ n n—1 n+l n
T(z) = Z (n—1)! e Z n!
n=1 n=0
oraz )
T(z)> = T, o = T P N AP
= (n—1)a"° = n—2 — n
= SR
Zatem
T(x) s=x~(k+1)Tps1 Tn—k41 e
T/ . — k. n n—k _
(=) x ng()kz:% k! * (nfk)!x
- i zn: (k+ DThs1Tnkr1 | n _
= \= kl(n —k)!
- i 1 . (i (k+ 1)Tk+1Tnk+1n!> o
B ] I(n —k)! B
= \= El(n — k)!
1 = n "
= Z - (k+1) <k:> Thp1Th gr12” =
=0 k=0
[e’e) n+1
1 n
= Z = k:( )Tan+2_kxn.
| _
n=0 n k=1 k 1

Podstawiajac n + 2 w miejsce n, otrzymujemy

n+1
n
Thyo = Z k<kz _ 1) Tk Thny2—k-

k=1
Zatem ,
T(z) =1 — T2 T ()
/ _ - n __ n __
Tz)- r 7;0 n!Ton N T;O TR '

Stad wynika, ze

czyli

<1 Tf)) = T'(z)
Zatem

IO YS




dla pewnej statej C'. Stad dostajemy

T(@) _ 1@4e _ oT(@) . € _ . 7@,
X

Podstawiajac x = 0, otrzymujemy d = 1. Zatem ostatecznie

czyli

Przypomnienie z teorii funkcji analitycznych.
Niech funkcja f(z) bedzie funkcja analityczna w otoczeniu 0 i niech v bedzie krzywa zamknieta obiegajaca
0 dokladnie jeden raz. Wowczas

Ponadto, jesli f/(0) # 0, to f(v) tez jest taka krzywa.

Mamy teraz

Tn:%.T(n)(O):l.(”__l)!/T'(Z)dz: <n—1>!/ (T(ZTI(Z) dz =

n 271 Zn 2mwin ) - e—T(Z))

(n—1)! / dw (n—l)!/ e“md
= = —dw
2min. Jrey (w-emw)" 2min  Jp wn

gdzie T' = T'(%).

Rozwazmy funkcje

Wowezas

W szczegdlnodei

-1 ' —1 l wn
g = B [ 8y, R [,
211 r 2" 2 o w"
Zatem . X
To= g )= o=,
n n

co konczy dowdd twierdzenia Cayleya.
Autorem tego dowodu jest G. Polya (1937).
Dowdd 3. Niech dy,...,d, beda takimi liczbami catkowitymi dodatnimi, ze
di+...+dp=2n—-2.
Wtedy liczba drzew o wierzchotkach ponumerowanych liczbami od 1 do n i takich, ze p(i) = d; dla
i=1,...,n, jest robwna

(n—2)!
(di =)o (dp — 1)

7



Dowodzimy tego przez indukcje wzgledem n. Dlan = 1in = 2 jest to oczywiste. Niech wigec n > 2. Istnieje
1 takie, ze d; = 1. Niech np. d,, = 1. Usuwamy z drzewa wierzcholek o numerze n i krawedz laczaca go z
wierzcholkiem o numerze np. j. Otrzymane drzewo ma wierzcholki stopni

d15d27 s 7dj—17dj - 1adj+15 s adn—l-
Takich drzew jest (z zalozenia indukcyjnego)

(n—3)!
(di = D)oo (djmr = D)V (dj = 2)! - (djpr — D)oo (dpey — 1)V

czyli
(d; — 1)(n - 3)!
(dy — D)oo (dper — DU

Zatem liczba wszystkich drzew o podanych stopniach wierzchotkéw jest réwna

n—1

n—1 (dj — 1)(n — 3)! (n—3)! i
j; (dl_l)!'---'(dn—l_l)! (dl_l)!"--'(dn_l—l)! Z(djfl)f

n—3)!

- (d11)!-(...-()(1n11)!'((2”_3)_(”_1)):
(n—2)!

T e -1

_ (n—2)!

(=) (dy = )Y

Teraz skorzystamy z uogélnionego wzoru Newtona. Najpierw definiujemy tzw. wspoélczynniki wielomia-

nowe wzorem
n B n!
ki, km/)  kile. k!

dla liczb nieujemnych n, kq, ..., k,, takich, ze k1 + ...+ k,,, = n. W szczegdlnosci, jesli k 4+ 1 = n, to

<k:nl) N k!n-!l! R (Z!— k) (Z) B <7>

Wzér dwumianowy Newtona mozemy zapisa¢ w postaci

n_ o\ kgl
(a+b)" = E (k Z)a b
k,1>0

k+l=n

Jego uogdlnienie ma postac

(a1 +...+an)" = Z (klnk: )alflu.uaﬁ{"'.

ki,eooskm >0
ki+...+km=n

Teraz liczba wszystkich drzew o wierzchotkach ponumerowanych liczbami od 1 do n jest réwna

(n —2)! B (n—2) n—2 B
Z (di =)o (dp — 1) Z Ealo k! Z <k:1 kn)

g

dy,...,dn2>1 k1,....kn>0 k1,....kn>0
dy+...+d,=2n—2 ki+...+kp=n—2 ki+...+kp=n—2
n—2 _
=(1+...+1)" " =np"?
—_———

n



Dowdd 4. Kazdemu drzewu, ktérego wierzchotki sa ponumerowane liczbami od 1 do n, przyporzadkowu-
jemy tzw. kod Priifera, czyli ciag (a1, ..., an—2) liczb ze zbioru {1,...,n}. Algorytm przyporzadkowania
jest nastepujacy:

Niech n bedzie liczba wierzchotkow drzewa;
niech P bedzie pustym ciagiem liczb;
dopdki n > 2, powtarzaj
v := najmniejszy numer liScia (czyli wierzchotka stopnia 1);
w := numer wierzchotka sasiadujacego z v;
usun z drzewa wierzcholek v i krawedz vw;
dopisz w na koncu ciagu P;
n:=n-—1;
zwrdé kod Priifera P.

Obejrzyjmy teraz ciag rysunkow ilustrujacy powstawanie kodu Priifera dla nastepujacego drzewa o 15
wierzchotkach.

Na poczatku kodem P jest ciag pusty. Najmniejszym numerem lidcia jest 3; ten 1is¢ sasiaduje z wierzchol-
kiem numer 8. Usuwamy z drzewa wierzchotek 3 i krawedz 3 — 8. Na konicu kodu P dopisujemy 8, a wiec
teraz P = (8). Oto nowe drzewo:




Nastepnie usuwamy krawedz 6 — 14 i na konicu kodu dopisujemy 14: P = (8,1, 14). Otrzymujemy drzewo:

Usuwamy krawedz 2 — 11 i dopisujemy 11: P = (8,1, 14,2,11). Otrzymujemy drzewo:

13 4

Usuwamy krawedz 8 — 11 i dopisujemy 11: P = (8,1,14,2,11,11). Otrzymujemy drzewo:

12

13 4

Usuwamy krawedz 9 — 14 i dopisujemy 14: P = (8,1, 14,2,11,11, 14). Otrzymujemy drzewo:

12

13 4



Usuwamy krawedz 1 — 10 i dopisujemy 1: P = (8,1,14,2,11, 11, 14,1). Otrzymujemy drzewo:

12
4
13 1 11
114 :15
Usuwamy krawedz 4 — 12 i dopisujemy 4: P = (8,1,14,2,11,11, 14,1, 4). Otrzymujemy drzewo:
o o ’ < 4
13 1 111 \
14 15
Usuwamy krawedz 1 — 13 i dopisujemy 1: P = (8,1,14,2,11,11,14,1,4,1). Otrzymujemy drzewo:
4
1 |ll \
14 15

Usuwamy krawedz 1 — 11 i dopisujemy 11: P = (8,1,14,2,11,11,14,1,4,1,11). Otrzymujemy drzewo:

4
|11 \
14 15

Usuwamy krawedz 11 — 14 i dopisujemy 11: P = (8,1,14,2,11,11,14,1,4,1,11,11). Otrzymujemy drzewo:

4
11 \\
15

Usuwamy krawedz 4 — 11 i dopisujemy 4: P = (8,1,14,2,11,11,14,1,4,1,11,11,4). Otrzymujemy drzewo:
i
15

Ostatnie drzewo ma tylko dwa wierzchotki, wiec konczymy algorytm. Otrzymany ciag

P=(81,14,2,11,11,14,1,4,1,11,11,4)
jest kodem Priifera naszego drzewa.

Zauwazmy jeszcze, ze jesli drzewo ma tylko dwa wierzcholki, to algorytm od razu zwrdci nam cigg pusty
jako jego kod Priifera. Rzeczywiscie, jest tylko jedno drzewo o dwéch wierzchotkach (wierzcholki o numerach
11 2 polaczone krawedzia) i jego kodem jest ciag pusty.

Powyzszy algorytm pozwala utworzyé¢ jednoznacznie kod Priifera z dowolnego drzewa o wierzchotkach
ponumerowanych liczbami od 1 do n. Okazuje sie, ze na odwrét: z kazdego kodu Priifera mozna jedno-
znacznie utworzy¢ drzewo. Co wiecej, jesli dla danego drzewa utworzymy kod Priifera, a nastepnie z tego
kodu utworzymy drzewo, to otrzymamy nasze wyj$ciowe drzewo. Nietrudny dowdd tego faktu pozostawimy
jako éwiczenie.

11



A oto algorytm tworzenia drzewa o zadanym kodzie Priifera P.

Niech P bedzie ciagiem dlugosci n — 2 liczb ze zbioru {1,...,n};
L:=(1,...,n);
dopdki ciag P jest niepusty, powtarzaj
[ := najmniejsza liczba w ciagu L nie wystepujaca w P;
p := pierwszy wyraz ciagu P;
utwoérz krawedz Ip;
usun [ z ciagu L;
usun p z ciggu P;
utwérz krawedz Ip, gdzie [ i p sa ostatnimi dwiema liczbami w ciagu L.

Nastepujacy ciag rysunkow ilustruje budowanie drzewa o 15 wierzchotkach, ktérego kodem Priifera jest

ciag
(8,1,14,2,11,11,14,1,4,1,11,11,4).

Najpierw tworzymy dwa ciagi:
P=(8,1,14,2,11,11,14,1,4,1,11,11,4) L=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15).

Najmniejsza liczbag w ciggu L, ktéra nie wystepuje w ciagu P jest 3. Pierwsza liczba w ciggu P jest 8.
Tworzymy krawedz 3 — 8:
3
I 8

i usuwamy liczby 8 i 3 odpowiednio z ciagdw P i L. Otrzymujemy ciagi

P=(1,14,2,11,11,14,1,4,1,11,11,4) L =(1,2,4,5,6,7,8,9,10,11,12,13, 14, 15).

Z ciagu L usuwamy teraz liczbe 5, z ciagu P liczbe 1, tworzac krawedz 1 — 5:
3
\ ] 8

P=(14,2,11,11,14,1,4,1,11,11,4) L =(1,2,4,6,7,8,9,10,11,12,13,14, 15).

5

1

Otrzymujemy ciagi

7Z ciagu L usuwamy liczbe 6, z ciagu P liczbe 14, tworzac krawedz 6 — 14:
3
\ ] 8
1
/ 14

6

5

12



Otrzymujemy ciagi

P=(2,11,11,14,1,4,1,11,11,4) L =(1,2,4,7,8,9,10,11,12,13,14,15).

7Z ciagu L usuwamy liczbe 7, z ciagu P liczbe 2, tworzac krawedz 2 — 7:
7

\fl |
K

6

5

Otrzymujemy ciagi

P=(11,11,14,1,4,1,11,11,4) L =(1,2,4,8,9,10,11,12,13,14, 15).

Z ciagu L usuwamy liczbe 2, z ciagu P liczbe 11, tworzac krawedz 2 — 11:

7 3
5\2k ]8
1 11

i

6
Otrzymujemy ciagi

P=(11,14,1,4,1,11,11,4) L =(1,4,8,9,10,11,12,13,14, 15).

Z ciagu L usuwamy liczbe 8, z ciagu P liczbe 11, tworzac krawedz 8 — 11:

7 3

5\2U8
1 11
/14

6

13



Otrzymujemy ciagi

P=(14,1,4,1,11,11,4) L= (1,4,9,10,11,12,13,14,15).

Z ciagu L usuwamy liczbe 9, z ciagu P liczbe 14, tworzac krawedz 9 — 14:

7 3
5\2U8
1 11

A

6 9

Otrzymujemy ciagi
P=(1,4,1,11,11,4) L= (1,4,10,11,12,13,14,15).

7Z ciaggu L usuwamy liczbe 10, z ciagu P liczbe 1, tworzac krawedz 1 — 10:

7 3
>1 11
VA
6 9

Otrzymujemy ciagi
P=(4,1,11,11,4) L=(1,4,11,12,13,14,15).

7 ciagu L usuwamy liczbe 12, z ciagu P liczbe 4, tworzac krawedz 4 — 12:
7 3
>1 11 1
BVAN

6 9

Otrzymujemy ciagi
P=(1,11,11,4) L=(1,4,11,13,14,15).

14



Z ciagu L usuwamy liczbe 13, z ciagu P liczbe 1, tworzac krawedz 1 — 13:

7 3
4
13 1 11
) /1\4
6 9

Otrzymujemy ciagi
P=(11,11,4)  L=(1,4,11,14,15).

7 ciagu L usuwamy liczbe 1, z ciagu P liczbe 11, tworzac krawedz 1 — 11:

7 3
4
13 1 11
) /\
6 9

Otrzymujemy ciagi
P =(11,4) L =(4,11,14,15).

7Z ciaggu L usuwamy liczbe 14, z ciagu P liczbe 11, tworzac krawedz 11 — 14:

7 3
5 2 8/12
4
13 1 11
10 14
6 9

Otrzymujemy ciagi
P=(4) L =(4,11,15).

Z ciagu L usuwamy liczbe 11, z ciagu P liczbe 4, tworzac krawedz 4 — 11:

15



Otrzymujemy ciagi
P=o L = (4,15).

W ciagu L pozostaly dwie liczby: 4 i 15. Dolaczamy do ostatniego drzewa krawedz 4 — 15, otrzymujac
drzewo, od ktérego rozpoczeliSmy nasza procedure:

16



O algebrze w kombinatoryce.

W. Guzicki
(Czwartkowe wyklady popularne z matematyki — 21.04.2005)

W tym wykladzie pokazemy kilka zastosowan algebry do dowodoéw twierdzen kombinatorycznych.

Jak zapewne pamietamy ze szkoly, wielomianem stopnia n nazywamy funkcje postaci

1

f(x) =ana”™ + ap—12"" " 4+ ...+ a1z + ao,

gdzie an,an—1,...,a1,aq sa dowolnymi liczbami rzeczywistymi, przy czym a, # 0. Te liczby nazywamy
wspolczynnikami wielomianu f. Oczywiscie wspétczynniki wielomianu wyznaczaja go jednoznacznie.
Okazuje sie, ze jest tez i na odwrot: jesli dwa wielomiany f i g przyjmuja te same wartosci dla wszystkich
argumentéw, to maja te same wspdlczynniki (wynika to stad, ze wielomian niezerowy ma tylko skoficzona
liczbe pierwiastkéw). Zatem wielomian f jednoznacznie wyznacza swoje wspélezynniki. Inaczej méwiac,
wielomian f stopnia n mozemy utozsami¢ z takim ciggiem dlugosci n + 1 jego wspdlczynnikéw:

(a/na Ap—1y.-.,01, aO);
w ktérym pierwszy wyraz jest rézny od zera: a, # 0. Okazuje sie, ze wygodnie jest przyjmowac, iz ciag

wspoélczynnikéw jest nieskonczony, przy czym wszystkie wspolczynniki o indeksach wiekszych od n sa
zerami. Wygodnie tez jest zapisywaé te wspdlczynniki w odwrotnej kolejnosci.

Od tej pory wielomian zmiennej rzeczywistej  utozsamiamy z ciagiem nieskonczonym

f:(ao,al,ag,...,an,...)

liczb rzeczywistych, w ktérym prawie wszystkie (tzn. wszystkie od pewnego miejsca) wyrazy sa réwne
zeru. Inaczej mowiac z takim ciggiem, dla ktérego istnieje liczba naturalna n o tej wlasnosci, ze

Qpt1 = Apg2 = Gpg3 = ... = 0.

Oczywiscie wielomian zerowy utozsamiamy z ciagiem, w ktorym wszystkie wyrazy sa zerami. Wielomian
stopnia n utozsamiamy z ciagiem takim, ze

an #0 oraz Ym >n (amzo).

Po tym utozsamieniu mozemy latwo opisa¢ dziatania na wielomianach. Suma wielomianéw

f = (ao,al,ag,...) i g = (bo,bl,bg,...)

nazywamy wielomian
h= (Co, C1,C2, .. )

zdefiniowany nastepujaco:
cpn=0a,+0b, dlan=0,1,2,...

Réznica wielomianéw f i g nazwiemy wielomian h zdefiniowany wzorem
cpn=an,—b, dlan=20,1,2,...

Iloczynem wielomianéw f i g nazwiemy natomiast wielomian h zdefiniowany wzorem:

¢n = agby, + a1bp—1+ ... +arb,—1 + anbg = Z agb,—r dlan=0,1,2,...
k=0



Wzér ten czesto nazywamy wzorem Cauchy’ego. Poczatkowe wspélezynniki ¢, przedstawiaja sie naste-

pujaco:
co = apbo,

c1 = apb1 + aibo,

c2 = apba + a1b1 + azbo,

c3 = aobs + a1bs + az2b1 + azbo,

¢4 = agby + a1b3 + asbs + aszby + aqby,

Przyktad. Obliczmy iloczyn
(222 — x4+ 3) - (327 + 22 — 1).

Po wykonaniu mnozenia sposobem ,kazdy wyraz przez kazdy” i dokonaniu redukcji wyrazéw podobnych,
otrzymamy:

(222 =2 +3) - (32° + 20 — 1) = 62" +42® — 222 — 32° — 222 + 0+ 92 + 62 — 3 = 62" + 2° + 522+ Tz — 3.
Wykonajmy teraz mnozenie za pomoca wzoru Cauchy’ego. Nasze wielomiany maja postac:
f=1(3,-1,2,0,0,0,...) oraz g¢g=(-1,2,3,0,0,0,...)

Inaczej méwiac
ag=3,a1 =—-1,a3 =2,a, =0 dlan>2

oraz
bo=—-1,by =2,bo=3,b, =0 dlan > 2.

Obliczamy kolejno wspdlezynniki wielomianu £, bedacego iloczynem wielomianéw f i g:

co = agbp =3 - (—1) = =3,

1 =aohy +arbp=3-2+(-1)-(-1) =T,

ca = agby + a1by +azbg =3-3+(-1)-24+2-(-1) =5,

cs = apbs + a1by + agby +azbp=3-0+(—-1)-34+2-240-(-1) =1,

¢4 = aoby + a1bs + agbs + azby +asbp=3-0+(-1)-0+2-3+0-24+0-(—1) =6.

Mozna latwo zauwazy¢, ze ¢, = 0 dla n > 4. Zatem wielomian h ma postaé
h=(-3,7,5,1,6,0,0,0,...),

czyli
(222 — 2z +3) - (32% + 22 — 1) = 62 + 2® + 52® + T2 — 3.

Przypomnimy teraz znane ze szkoly pojecie wspotezynnika dwumianowego (Z) Niech A bedzie dowolnym
zbiorem n-elementowym. W dalszym ciagu, jesli X jest dowolnym zbiorem skonczonym, to symbolem |X|
bedziemy oznaczaé liczbe elementéw zbioru X. Mamy woéwczas:

(7) =lexcas 1x=m

dla dowolnych liczb naturalnych n i k. Natychmiast z definicji wynika, ze jesli k > n to

(-
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gdyz wtedy zbiér A nie ma podzbioréw k-elementowych. Jesli natomiast 0 < k < n, to ze wzoru znanego
ze szkoty wynika, ze

n\ n!

k)  kl-(n—k)

Wspblczynniki dwumianowe wystepuja w tzw. wzorze dwumianowym Newtona:
n_n Y n—kpk _ (™) ny0 Y\ n_1;1 n 1pn—1 Y o:n
(a +b) _kz—o(k)a b _(O)ab+(1)a b—l—...—l—(nl)ab —f—(n)ab

dla dowolnych liczb rzeczywistych a i b i dowolnej liczby naturalnej dodatniej n. Wspdlczynniki dwu-
mianowe tworza tzw. trojkat Pascala, ktérego poczatkowe wiersze przedstawiaja sie w nastepujacy
sposob:

czyli
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Po tym wstepie przejdziemy do dowodu nastepujacej rownosci:
zn: n\> _(2n
k) \n)’
k=0
2 2 2 2
n + n I n + n\" _ 2n
0 1 o n—1 n n/

Podstawmy we wzorze dwumianowym Newtona a = 11 b = z. Otrzymamy wzor

1+a)" = ; (Z)ack = (g) + (T):mt (Z)ﬁ ot (nn l)x”—l + (Z)x"

Podnosimy obie strony do kwadratu:

ae = (S (1)) (S (1))

Po lewej stronie réwnosci mamy oczywiscie wielomian stopnia 2n. Po prawej stronie mamy iloczyn dwdch
wielomianéw n-tego stopnia, a wiec jest to takze wielomian stopnia 2n. Porownajmy wspdlczynniki stojace
przy " w obu wielomianach. Poniewaz

2n
2n 2n 2n 2n 2n 2n
1 2n _ k: 2 n 2n
(14 ) I;(k)x (0)+(1)x+(2)x+ +(n)x+ +(2n)x :

3
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wiec po lewej stronie przy =" stoi wspotezynnik (27?) Po prawej stronie mamy iloczyn wielomianéw f - g,

o= (@ 66 (onon)

Inaczej méwiac

n
ap =bg = (0),
n
ar =by = (1),
n
as =by = (2),
an:bn: (n)a
n
am =b, =0 dlam>n

Mozemy tez napisaé¢ po prostu, ze

dla kazdej liczby naturalnej m (gdyz (:«L) = 0 dla m > n). Zgodnie ze wzorem Cauchy’ego mamy zatem

h = (60701702, .. .),

gdzie
Cm = Qobm + a1by—1 + ...+ Q_1by + abo = Zakbm—k
k=0

dlam =0,1,2,... Po podstawieniu otrzymamy

n\ (n n n n T n n N n\ [n " /n n

Cp = ... = .

0/)\n 1/\n—-1 n—1/\1 n) \0 prrd k) \n—k

Poniewaz

(02 ()

Poréwnujac obliczone wspélezynniki stojace w obu wielomianach przy ™ otrzymamy dowodzona réwnosc.

wiec ostatecznie otrzymujemy

W dowodzie nastepnego wzoru skorzystamy ze wzoru dwumianowego Newtona i z podstawowych wla-
snoéci liczb zespolonych. Przypomnijmy krétko te wlasnosci.

Liczba zespolong nazywamy liczbe postaci a + bi, gdzie i jest tzw. jednostka urojona, tzn. liczba
o tej wlasnoéci, ze i2 = —1. Kazda liczba rzeczywista jest liczba zespolona:

a=a+ 01
dla a € R. Dzialania na liczbach zespolonych wykonujemy w nastepujacy sposéb:

(a+bi)+ (c+di) = (a+c)+ (b+d)i,
(a+bi) = (c+di) = (a—c)+ (b—d)i,
(a + bi) - (c + di) = ac + adi + bci + bdi* = (ac — bd) + (ad + be)i,

4



dla dowolnych liczb zespolonych a + bi oraz ¢ + di. Jesli ponadto ¢ + di # 0, to

a+bi  a+bi c—di (a+bi)-(c—di) (ac+bd)+ (bc—ad)i ac+bd bc—ad.

c+di c+di c—di (c+di)-(c—di) 2 — (di)? _62+d2+62+d22.

Liczby zespolone wykorzystamy do rozwiazywania réwnan kwadratowych. Przypuéémy, ze dane jest réw-
nanie kwadratowe
az? + bz + ¢ =0,

w ktérym wspolezynniki sg liczbami rzeczywistymi oraz wyréznik A jest ujemny:
A =b*—4ac<0.
Wtedy réwnanie ma dwa pierwiastki zespolone:

b VTR b VR

T % oraz Tg = %a
czyli
b /A b=
xlf%Jr %a -1 oraz ngZJr %a - 1.

W zbiorze liczb zespolonych prawdziwe sa znane ze szkoly wzory skréconego mnozenia, w szczegdlnosci
przypomniany wczesniej wzor dwumianowy Newtona.

z": (gz) _ 8" +2?; (71)"_

k=0

Udowodnimy teraz rownosé

Przyktady. Dla n = 1 dostajemy réwnosé

3 3 gl4+2.(-1)' 8-2 6
—14+1=2= - -0
(0)+(3) * 3 3 3

Dla n = 2 mamy:

6 6 6 8242 (—=1)2 6442 66
=1+20+1=22= = =
(o) (5)+ (5) =2 oo T

Wreszcie dla n = 3 otrzymujemy

9 9 9 9 8 +2.(-1)3 512—-2 510
=1+84+84+1=170= = =2
(0)+<3>+<G)+(g> 1844844 1=170 : 25

Dowéd réwnosci rozpoczniemy od rozwigzania réwnania
=1
w zbiorze liczb zespolonych. Przeksztalcamy najpierw to réwnanie:

3 —1=0,
(x—1)(2*+x+1)=0.
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Jednym pierwiastkiem jest oczywiscie x1 = 1. Dwa nastepne pierwiastki otrzymamy rozwiazujac réwnanie
kwadratowe

2 +z+1=0.

Poniewaz A = —3, wiec otrzymujemy pierwiastki zespolone
—1-+/3-i —14++3-i
Tg=———— oraz Ir3=———.

2 2

Pierwiastki te nazywamy zespolonymi pierwiastkami trzeciego stopnia z jednosci. Niech ¢ bedzie ktorym-
kolwiek z pierwiastkéw o lub x3. Wtedy oczywiscie

e =1.
Ponadto ¢ jest pierwiastkiem réwnania kwadratowego 2 + z + 1 = 0, wiec
2 —
e+e+1=0.

Stad wynika, ze
l4+e=—-¢> oraz 14¢e%=—c¢.

Obliczymy teraz dwoma sposobami sume
(1 +€O)3n + (1 +€1)3n + (1 +52)3n

Najpierw skorzystamy ze wzoru dwumianowego Newtona:

(T4+2 (14" + (1 +e2) = an (?) (eNF + :; <3]:L> ek + Ii (ij) (e2)F =

3N\ ok 3N\ 1 ko 3N\ ok
3 (e ()3 (1)
k=0 k=0
3n
3
=> (kn)(go—f—sk—i—a%)
k=0
3n
3
= (;)(1+€k+52k)
k=0
Popatrzmy teraz, jak wygladaja sumy
14 ek 4 o2k

dla réznych k. Oczywiscie dla liczb k podzielnych przez 3 dodajemy do siebie trzy jedynki. Zatem suma
jest réwna 3. Niech teraz k = 31 + 1. Wtedy

T+ =143 e . 2=1+ec+£2=0.
Podobnie dla k = 31 + 2 stwierdzimy, ze ta suma réwna jest 0. Zatem, kontynuujac przerwane obliczenia,

dostajemy
3n n n
3N\ o, ko, 2k 3n\ 3n
E (k)(s +e"+e )—g 33]€ =3 ,;:0 a5 )

k=0 k=0
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Nastepnie obliczymy te sama sume bez odwolywania si¢ do wzoru Newtona. Mamy wtedy:

)
(
=27 4 (—1)3e0 4 (—1)%ne?" =
(
(

oraz ze wspomnianych wyzej rownoéci
— 2 2 _
l+e=—¢" oraz 14¢°=—¢.

Poréwnujac wyniki obu obliczen, otrzymamy:

" /3n
. =8 4+ 92.(=1)"
SkZ_O(%) 8" +2-(~1)",

czyli ostatecznie

k";o @/;:L) _ 8”+23~(—1)"'

Dowody niealgebraiczne.

Pokazemy teraz dowody niealgebraiczne obu udowodnionych wyzej réwnosci. Najpierw dowodzimy réw-

nosci )
> () = ()
k) \n)
k=0

Pokazemy tzw. dowdd kombinatoryczny, polegajacy na tym, ze dwoma sposobami policzymy elementy
tego samego zbioru. Niech M i K beda dwoma roztacznymi zbiorami n elementowymi. Wtedy oczywiscie
zbiér M U K ma 2n elementéw. Policzymy elementy nastepujacego zbioru A:

A={XCMUK: |X|=n}.

4] = (2;"‘),

co wynika bezposrednio z definicji wspotczynnika dwumianowego: zliczamy przeciez n-elementowe pod-
zbiory zbioru 2n-elementowego. Z drugiej strony, zbiér A jest suma zbioréw roztacznych

7Z jednej strony, zbiér A ma (27:1) elementéw,

A=AgUA U...UA,,

gdzie
Ak:{XEA: |XﬁK|:k}
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dla k=0,1,...,n. Stad wynika, ze
Al = [Aol +|Ax| + ...+ |An] = D |Ak-
k=0

Policzymy teraz elementy dowolnego zbioru Ag. Zbiér X € Ay mozemy utworzy¢ wybierajac k elementow
ze zbioru K oraz n — k elementow ze zbioru M. Inaczej méwiac, mozemy wybraé k elementéw ze zbioru
K i odrzucié k elementow ze zbioru M. Stad wynika, ze

=) ()= () ()= ()

=3 (Z)

Zatem

co konczy dowdd.

Ten dowdd kombinatoryczny ma nastepujaca interpretacje. Dany jest zbior 2n oséb: n kobiet (zbiér K)
i n mezczyzn (zbiér M). Pytamy, na ile sposobéw mozna z tego zbioru wybraé delegacje skladajaca sie
z n 0s6b. Z jednej strony, wybieramy n 0séb sposérdéd 2n oséb — oczywiscie na (27?) sposoboéw. Z drugiej
strony, najpierw ustalamy liczbe kobiet (k = 0,1,...,n), potem wybieramy k kobiet i wreszcie odrzucamy
k mezczyzn. Mozemy to zrobié¢ na (2)2 sposobéw i po dodaniu tych liczb dla wszystkich k otrzymujemy

liczbe
n 2
n
> (3)

k=0

jaka taczna liczbe sposobéw wyboru.

Teraz udowodnimy réwnosé

z": (3n) 8T+ 2 (—1)"

= 3k 3

Tym razem ulozymy tzw. zaleznos¢ rekurencyjng. Przypusémy, ze mamy dany zbiér 3n-elementowy A.
Podzbiér B zbioru A nazwiemy podzbiorem dobrym, jesli liczba jego elementéw jest podzielna przez 3.

W przeciwnym przypadku podzbiér B nazwiemy podzbiorem zlym. Niech a,, bedzie liczba wszystkich
dobrych podzbioréw zbioru 3n-elementowego. Mamy pokazaé, ze

82 (1)
Qp = 3
dlan=1,2,...

Oczywiscie a; = 2, gdyz zbiér trzyelementowy A ma dwa podzbiory dobre: zbiér pusty & i caly zbiér A.

Znajdziemy teraz zalezno$¢ a,+1 od a,. Niech A bedzie zbiorem 3n-elementowym i niech a,b,c € A, przy
czym a # b, a # c oraz b # c. Zbiér A ma a,, podzbioréw dobrych i 23" — a,, podzbioréw zlych. Chcemy
policzyé, ile podzbioréw dobrych ma zbiér A U {a, b, c}.

Dla kazdego podzbiéru B zbioru A policzymy, ile jest podzbioréw dobrych zbioru A U {a,b, ¢} zawiera-
jacych zbior B. Jesli zbiér B jest podzbiorem dobrym, to istnieja 2 dobre podzbiory zbioru A U {a, b, ¢}
zawierajace B: sam zbiér B oraz zbiér B U {a,b,c}. Jedli zbiér B jest podzbiorem zlym, to istnieja 3
podzbiory dobre zbioru A U {a, b, c} zawierajace B. Mianowicie, jesli liczba elementéw zbioru B daje
reszte 1 przy dzieleniu przez 3, to tymi podzbiorami dobrymi sa:

BU{a,b}, BU{a,c} oraz BU{b,c}.
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Jedli zas liczba elementéw zbioru B daje reszte 2 przy dzieleniu przez 3, to tymi podzbiorami dobrymi
s
BU{a}, BU{b} oraz BU{c}.

Stad wynika, ze
Unt1 =2 an+3-(2°" —a,) =3-8" —a,.

Ciag (a,,) spelnia zatem nastepujaca zalezno$é rekurencyjng:

ay = 2,
an41 =3 - 8" —ap.
Mozemy teraz udowodnié¢ przez indukcje, ze

82 (1)
Ap = 3

dlan=1,2,...
1. Sprawdzamy warunek poczatkowy (dla n = 1). Mianowicie a; = 2 oraz

gl+2.(-1)t 8-2
3 3

2. Krok indukcyjny.

Zaktadamy, ze dla pewnej liczby naturalnej n zachodzi réwnosé

8"+ 2. (—=1)"
a =
" 3
i dowodzimy, ze zachodzi tez wtedy rownosé

8n+1 + 2 . (71)n+1
3 .

Ap+4+1 =

Otéz

8" 42 (=)' Q.87 —8"—2.(=1)" 8.8 42.(—1)"*
Gy =38 —a, —3.gn_ S H2 (D" (=" _ +2-(-1)

3 3 3
B 8n+1 + 2 . (71)n+1
= 3 ,

co konczy dowdd indukcyjny.

Pokazemy jeszcze, w jaki sposéb z otrzymanej zaleznoéci rekurencyjnej mozna wyprowadzi¢ wzoér ogolny.
Definiujemy ciag (by,) wzorem

dlan=1,2,... Mamy wéwczas

bosr = (1" appn = (=1)" - (3-8" —an) =3 (-1)"F 8" — (1) a, =
=3 (=) . 8"+ (-1)"-a, =b, +3-(—1)"F.8"
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Zatem
by =bp_1+3-(=1)"-8"71,

buy = buo +3- (~1)"1 872,
bn72 = bn73 +3- (71>n72 : 8n737

by =bz+3-(—1)*-8%
by =by +3-(—1)%-8%
bo :bl+3'(—1)2-81.

Po dodaniu stronami tych réwnoéci i zredukowaniu wyrazéw bs, b3, . . ., b,—1 wystepujacych po obu stro-
nach réwnosci, dostaniemy

by =b1+3-((-1)2 -8+ (=1)% - &2 +...+ (=) 1. 8" 24 (=1)"- 8" 1) =
=b1—3- ((—8)" +(=8)2+ ...+ (=8" 2+ (-8)"7 ) =
=b1+24- (1+(=8) +...+ (=8)" 3+ (=8)"7?) =

1— (_S)n—l
= (=1)*- 2. ——~ 2 —
( ) ay + 1— (*8)
1 (-8t
=-2424 —— =
+ 9
1 (—8)"!
= -2 8 — < =
+ 3
 6+48-8-(—1)"t.gn!
= 3 =
24 (=18
= 73 .
Stad wynika, ze
24 (-1)"-8"
1" n — P
(-1)"-a -
2 —1)" -1 2n . Qn
(71)271 an = ( ) +( ) 8 ,
3
W B2
3

co konczy dowdd.
Systemy tr6jek Steinera.
Na poczatku popatrzmy na przyklad.

Przyktad. (V. Bryant, Aspekty kombinatoryki, str. 199.) Dziewie¢ gatunkéw kawy ma zostaé rozdanych
do testowania réznym rodzinom. Nie jest wskazane, by kazda rodzina poréwnywala wszystkie dziewie¢
gatunkéw (po okolo czwartej probie wszystkie one smakuja tak samo!). Tak wiec kazda z dwunastu
rodzin otrzyma do poréwnania trzy gatunki. Poda¢ taka konfiguracje eksperymentu, w ktérej kazda para
gatunkéw (sposrod dziewigciu) jest poréwnywana w jednej rodzinie.

Rozwiazanie. Niech rodzaje kawy beda ponumerowane liczbami od 1 do 9. Rozdajmy dwunastu rodzi-
nom do poréwnania nastepujace zestawy trzech gatunkdw:

{]"273}’ {4’576}’ {778’9}7
{1,4,7}, {2,5,8}, {3,6,9},
{1,5,9}, {2,6,7}, {3,4,8},
{1,6,8}, {2,4,9}, {3,5,7}.
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Woweczas kazda para liczb od 1 do 9 znajduje si¢ w jednym z tych zbioréw.

Systemem tréjek Steinera nazywamy pare zbioréw (S,7T) o nastepujacych wlasnosciach:

(1) zbiory S i T sa skoniczone,
(2) elementami zbioru T sa 3-elementowe podzbiory zbioru S:

XeT = XCS A I|X|=3,
(3) kazda para elementéw zbioru S wystepuje w dokladnie jednym zbiorze nalezacym do T

a,beS N a#b = istnieje dokladnie jeden zbiér X € T taki, ze a,b € X.

Elementy zbioru S nazywamy czesto punktami, a zbiory nalezace do T' nazywamy tréjkami punktow.
Warunek (3) mozemy zatem wyslowié w taki sposéb, ze kazde dwa punkty ze zbioru S naleza do doktadnie
jednej trojki ze zbioru T

Zbiér trojek w powyzszym przykladzie ma jeszcze jedna interesujaca wlasno$é. Mianowicie w kazdym
wierszu wystepuja wszystkie punkty (czyli liczby od 1 do 9). Zatem zbiér T tréjek punktéw mozna
podzieli¢ na 4 rozlaczne zbiory o tej wlasnosci, ze elementy tréjek z kazdego z tych zbioréw wyczerpuja
caly zbioér punktéw.

Warstwa nazwiemy taki zbior trojek parami roztacznych, ktérego suma jest caly zbiér S. Systemem
tréjek Kirkmana nazywamy taki system trojek Steinera, w ktorym zbior tréjek T' mozna podzielié
na parami rozlaczne warstwy. System tréjek Steinera pokazany w powyzszym przykladzie jest zatem
systemem tréjek Kirkmana.

Przyktlady.

1. Niech S = {1,2,3,4,5,6,7,8,9}. Niech nastepnie zbiér T bedzie zbiorem tréjek z poprzedniego
przyktadu:

oo {123} {456}, {7.8,9), {147}, {258}, {3,6,9},
_{{175,9}7 {2,6,7}, {3,4,8}, {1,6,8}, {2,4,9}, {3,577}}'

Wtedy para (S,T) jest systemem tréjek Steinera. WidzieliSmy juz, ze jest to takze system trdjek
Kirkmana.

2. Niech S ={1,2,3,4,5,6,7} i niech T bedzie nastepujacym zbiorem tréjek:

T ={{1,2,4},{2,3,5},{3,4,6},{4,5,7},{1,5,6},{2,6,7},{1,3,7} }.

Wtedy para (S,T) jest systemem tréjek Steinera. Ten system tréjek Steinera Ma tadna interpretacje
graficzna:
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3. Niech S =1{1,2,...,15} i niech T bedzie zbiorem nastepujacych tréjek liczb:

{1,2,3}, {4,8,12}, {5,10,14}, {6,11,13}, {7,9,15},
{1,4,5},  {2,8,10}, {3,13,15}, {6,9,14}, {7,11,12},
{1,6,7},  {2,9,11}, {3,12,14}, {4,10,15}, {5,8,13},
{1,8,9}, {2,12,15}, {3,5,6},  {4,11,14}, {7,10,13},
{1,10,11}, {2,13,14}, {3,4,7}, {5,9,12}, {6,8,15},
{1,12,13}, {2,4,6}, {3,9,10}, {5,11,15}, {7,8,14},
{1,14,15}, {2,5,7}, {3,811}, {4,9,13}, {6,10,12}.

Wtedy para (S,T) jest systemem tréjek Steinera. Zauwazmy, ze ten system jest réwniez systemem
tréjek Kirkmana (warstwami sa wiersze powyzszej tablicy). Ten system stanowi rozwiazanie naste-
pujacego zadania postawionego i rozwiazanego przez Kirkmana:

Czy mozliwe jest, aby 15 uczennic wychodzilo na spacer przez 7 dni tygodnia w taki sposéb, by
codziennie spacerowaly w 5 rzedach po 3 uczennice w kazdym rzedzie oraz, by kazda para uczennic
spacerowala w tym samym rzedzie dokladnie jednego dnia?

Wiersze powyzszej tablicy ilustruja sposéb ustawienia uczennic przez kolejne dni tygodnia, od po-
niedziatku do niedzieli.

Twierdzenie. Jedli istnieje system tréjek Steinera (S,T), w ktérym |S| = n, to liczba n przy dzieleniu
przez 6 daje reszte 1 lub 3.

Dowé6d. Dwoma sposobami zliczamy pary punktow. Z jednej strony, liczba par jest rowna (g) Z drugiej
strony, kazda para nalezy do dokladnie jednej tréjki ze zbioru T'. Poniewaz w kazdej tréjce sa dokladnie

3 pary, wiec
n n(n —1)
3.7 = A S —
1= (5) = "5

7] = n(n67 1).

Natepnie bierzemy dowolny element x zbioru S i rozwazamy zbiér

czyli

U={teT: zct}.

Zauwazmy, ze rodzina par
{t\{z}: teU}

jest podziatem zbioru S\ {z} na zbiory dwuelementowe. Stad wynika, ze liczba n jest nieparzysta. Zatem
n przy dzieleniu przez 6 moze daé jedna z reszt 1, 3 lub 5. Poniewaz liczba n(n — 1) jest podzielna przez
6, wiec n nie moze dawac reszty 5 przy dzieleniu przez 6, co konczy dowdd twierdzenia.

Whiosek. Jedli istnieje system tréjek Kirkmana (S, T), w ktérym |S| = n, to liczba n daje reszte 3 przy
dzieleniu przez 6.

Dowdd. Poniewaz jedna warstwa daje podzial zbioru S na zbiory trzyelementowe, wiec liczba n dzieli
sig przez 3. Nie moze zatem dawad reszty 1 przy dzieleniu przez 6.

Prawdziwe jest tez twierdzenie odwrotne: jesli liczba naturalna n > 3 daje reszte 1 lub 3 przy dzieleniu
przez 6, to istnieje system tréjek Steinera (S,T'), w ktérym |S| = n. Pokazemy teraz sposéb konstrukeji
systemu tréjek Steinera (S, T), w ktérym |S| = 6m + 3. Do tego wprowadzimy kilka pojeé¢ algebraicznych.

Niech @ bedzie zbiorem skoniczonym, w ktérym jest okreslone dzialanie dwuargumentowe o. Méwimy, ze
zbiér @) (z dzialaniem o) jest quasigrupa przemienna, jesli spelnione sa nastepujace warunki:

(1) aob=boa dla dowolnych a,b € @,
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(2) dla dowolnych a, ¢ € @ istnieje dokladnie jeden element b zbioru @ taki, ze aob = c.

Warunek (2) jest réwnowazny nastepujacemu warunkowi (2°):

(27) dla dowolnego a € @ funkcja f : Q — Q okreSlona wzorem f(x) = a o x jest réznowartosciowa

Méwimy nastepnie, ze quasigrupa @ jest idempotentna, jesli ponadto jest spelniony warunek

(3) aoa = a dla dowolnego a € Q.

Przyktady.
1. Zbiér liczb @ = {0, 1,2} z dzialaniem o okre$lonym za pomoca nastepujacej tabelki

jest idempotentna quasigrupa przemienna.

2. Zbiér liczb @ = {0,1,2,3,4} z dzialaniem o okreslonym za pomoca nastepujacej tabelki

jest idempotentna quasigrupa przemienna.

Twierdzenie. Jedli n jest liczba nieparzysta, to istnieje idempotentna quasigrupa przemienna () majaca
n elementéw.

Dowéd. Sposéb konstrukeji quasigrupy @ zilustrujemy najpierw na przykladzie. Niech @ = {0,1,...,n—
1} i zdefiniujmy w zbiorze @) dzialanie o wzorem

ioj=(i+j) modn
dla i,j € Q. Symbolem a mod n oznaczamy reszte z dzielenia liczby a przez n. Dzialanie o jest zatem
dzialaniem dodawania modulo n. Zauwazmy teraz, ze dla kazdego j € @) istnieje element ¢ € Q taki, ze
101 =j. Wynika to stad, ze dla kazdej liczby naturalnej j kongruencja

2¢ =3 (mod n)

ma rozwiazanie. Zatem w tabelce dzialania o w zbiorze @) na przekatnej wystepuja wszystkie elementy
zbioru @. Na przyklad dla n = 5 mamy:

13



Zauwazmy, ze na przekatnej stoja liczby 0, 2, 4, 1, 3. Teraz w tej tabelce przenumerowujemy liczby bedace
wynikami dziatania w taki sposéb, by na przekatnej wystepowaly kolejno liczby 0, 1, 2, 3, 4. Zatem liczbe
0 zostawiamy wszedzie w tabelce bez zmian, zamiast 2 piszemy 1, zamiast 4 piszemy 2, zamiast 1 piszemy
3 i zamiast 3 piszemy 4. Otrzymamy tabelke

Nietrudno zauwazyé¢, ze dla dowolnej nieparzystej liczby naturalnej n taka konstrukcja jest mozliwa.
Opiszemy ja teraz dokladniej. Okazuje sie, ze dzialanie o w zbiorze @ = {0,1,...,n — 1} bedzie wtedy
opisane wzorem

o %, jesli ¢ + j jest liczba parzysta,
ioj=< 7
% mod n, jesli ¢+ j jest liczba nieparzysta
dla dowolnych 4, j € Q. Zauwazmy, ze jesli i + j jest liczba nieparzysta, to liczba i + j + n jest parzysta,
wiec % jest liczba calkowita.

Wykazemy, ze zbiér Q z dzialaniem o jest idempotentna quasigrupa przemienna. Przemienno$¢ dziatania
o jest oczywista. Idempotentno$¢ wynika stad, ze dla kazdego i liczba i + i jest parzysta, wiec

Wykazemy wreszcie warunek (2’). Niech 4, j, k € Q i zalézmy, ze
1oj=1to0k.
Mozliwe sg trzy przypadki.

Przypadek 1. Liczby i + j oraz i 4+ k sa parzyste. Wtedy

i+j i+k
2 = 2

skad natychmiast wynika, ze j = k.
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Przypadek 2. Liczby ¢ + j oraz ¢ + k sa nieparzyste. Wtedy

i+j+n i+k+n

———— mod n = ——— mod n.
2 2

Zatem

rHotn _ith4m (mod n),
2 2
i+j+n=i+k+n (modn),

j=k (mod n).

Poniewaz 0 < 3,k < n, wiec j = k.
Przypadek 3. Jedna z liczb i + j oraz i + k jest parzysta (np. ¢ + j), a druga nieparzysta. Wtedy

i+j itk+n

5 > mod n.
Zatem
vty _rtktm (mod n),
2 2
i+j=i+k+n (modn),
j=k (mod n).

Tak jak w przypadku 2 otrzymujemy j = k, co konczy dowdd twierdzenia.

Niech teraz ) bedzie idempotentna quasigrupa przemienna majaca 2m + 1 elementéw. Definiujemy zbior
S w nastepujacy sposob

S=Qx{0,1,2} ={(a,i): a€Q A ie{0,1,2}}.
Oczywiscie |S| = n = 6m + 3. Zdefiniujemy teraz zbiér T

Do zbioru T zaliczymy dwa rodzaje tréjek par:
(1) Tréjki pierwszego rodzaju:
{(a,0), (a,1), (a,2)}
dla a € Q.
(2) Tréjki drugiego rodzaju:

{(2,0),(0,0),(a0b, 1)}, {(a,1),(b,1),(acd,2)}, {(a,2),(b,2),(a0b,0)}
dla a,b € @Q takich, ze a # b.

Udowodnimy teraz, ze tak okre$lona para (S,T) jest rzeczywiscie systemem tréjek Steinera. Najpierw
pokazemy, ze kazde dwie pary ze zbioru S znajduja sie w co najmniej jednej trojce ze zbioru T'. Niech
wiec (a, k), (b,1) € S oraz (a, k) # (b,1). Mozliwe sa trzy przypadki.

Przypadek 1. a =b. Wtedy k # [ oraz

(a, k), (a,l) € {(a,0),(a,1),(a,2)} € T.
Przypadek 2. a # b oraz k = [. Wtedy
(a,k), (b, k) € {(a,k), (b,k),(aob,(k+1)mod 3)} € T.
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Przypadek 3. a # b oraz k # [. Para liczb {k,(} jest jedna z trzech par: {0,1},{1,2},{2,0}. Mozemy
zatem przyjaé, ze | = (k + 1) mod 3. Z definicji quasigrupy wynika, Ze istnieje element ¢ € @ taki, ze
aoc=b. Poniewaz @) jest quasigrupa idempotentna oraz a # b, wiec ¢ # a. Zatem

(a, k), (b,1) € {(a, k), (c, k), (aoc,(k+1) mod 3)} = {(a, k), (c, k), (b,1)} € T.

Aby teraz pokazaé, ze kazde dwie pary nalezg do dokladnie jednej tréjki ze zbioru T', wystarczy pokazac,
ze zbiér T' ma % elementéw. Otéz w zbiorze T istnieje 2m—+1 trdjek pierwszego rodzaju oraz 3- (Qm;rl)
tréjek drugiego rodzaju. Zatem

(2m+1)-2m

IT|=(2m+1)+3- >

=(2m+1)+3m2m+1)=2m+1)(3m +1)

ro D) _ A DOm L) _ (g 1 1)(3m 4 1),

To koticzy dowdd, ze para (S,T) jest systemem tréjek Steinera.

Przyktlady.

1. Dla quasigrupy {0, 1,2} z dzialaniem o zdefiniowanym za pomoca tabelki

Otrzymujemy nastepujacy zbiér S:

(0,0) (1,0) (2,0)
S=¢(0,1) (1,1) (2,1)
0,2) (1,2) (2,2)

Zbiér T sklada sie z trzech trojek pierwszego rodzaju:

{(0,0),(0,1),(0,2)}, {(1,0),(1,1),(2, 1)} oraz {(2,0),(2,1),(2,2)}

i dziewieciu trdjek drugiego rodzaju:

{(0,0),(1,0), (001, 1)} = {(0,0), (1,0), (2, 1)},
{(0,1), (1,1),(001,2)} = {(0,1), (1,1),(2,2)},
{(0,2),(1,2),(001,0)} = {(0,2),(1,2), (2,0)},
{(0,0),(2,0),(002,1)} = {(0,0), (2,0), (1, 1)},
{(0,1),(2,1),(002,2)} = {(0,1),(2,1), (1, 2)},
{(0,2),(2,2),(002,0)} = {(0,2),(2,2),(1,0)},
{(1,0),(2,0), (102, 1)} = {(1,0),(2,0), (0, 1)},
{(1,1),(2,1),(102,2)} = {(1,1),(2,1),(0,2)},
{(1,2),(2,2),(102,0)} = {(1,2),(2,2),(0,0)}.



Zauwazmy nastepnie, ze jesli ponumerujemy pary (z,7) € S w nastepujacy sposéb

0,0)—~1 (1,0)—4 (2,0)+—9
0,1)—2 (1,1)—5 (2,1)—7
0,2)—3 (1,2)—6 (2,2)—38

to otrzymany system trdjek Steinera bedzie identyczny z systemem pokazanym w pierwszym przy-
ktadzie. Jest to zatem system trojek Kirkmana.

. Dla quasigrupy @ = {0,1,2,3,4} z dzialaniem o zdefiniowanym za pomoca tabelki

otrzymujemy nastepujacy zbiér S:

(0,0) (1,0) (2,0) (3,0) (4,0)
S=<¢(0,1) (1,1) (2,1) (3,1) (4,1)
(0,2) (1,2) (2,2) (3,2) (4,2)
Trojki pierwszego rodzaju majg nastepujaca postac:
(0,0) (1,0) (2,0) (3,0) (4,0)
S=41(0,1) (1,1) (2,1) (3,1) (4,1)
0,2) (1,2) (2,2) (3,2) (4,2)

Kolorami czerwonym, zielonym i niebieskim zaznaczone sa tréjki

{(0,0),(0,1),(0,2)},  {(3,0),(3,1),(3,2)} oraz {(4,0),(4,1),(4,2)}.

Trojki drugiego rodzaju maja postac:

(0,0) (1,0) (2,0) (3.0) (4,0)
S=4{(0,1) (1,1) (2,1) (3,1) (4,1
0,2) (1,2) (2,2) (3,2) (4,2)

Kolorem czerwonym zaznaczona jest trojka

{(2,0),(3,0),(203,1)} = {(2,0),(3,0), (0, 1)},

kolorem zielonym zaznaczona jest trojka

{(3a 1)’ (4a 1)’ (3 o4, 2)} = {(37 1), (47 1), (17 2)}a

wreszcie kolorem niebieskim zaznaczona jest trdjka
{(0,2),(3,2),(003,0)} = {(0,2),(3,2),(4,0)}.
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Mozna pokazaé, ze otrzymany system trojek Steinera nie jest systemem tréojek Kirkmana, zatem
roézni sie istotnie od przykladu pokazanego wczesniej.

Pokazemy teraz sposéb konstrukeji systemu tréjek Steinera (S,T), w ktérym |S| = 6m + 1. Znéw za-
czniemy od pojeé algebraicznych. Méwimy, ze quasigrupa przemienna @ = {0,1,...,2n — 1} (majaca
zatem 2n elementéw) jest polidempotentna, jesli spelnia nastepujacy warunek:

(4)aca=(n+a)o(n+a)=adlaa=0,1,...,n.

Przyktady.
1. Zbiér liczb Q = {0, 1} z dzialaniem o okreslonym za pomoca nastepujacej tabelki

o 0 1
0 0 1
1 1 0

jest potidempotentna quasigrupa przemienna.

2. Zbiér liczb @ ={0,1,2,3, } z dzialaniem o okreslonym za pomoca nastepujacej tabelki

jest idempotentna quasigrupa przemienna.

2. Zbiér liczb @ = {0,1,2,3,4,5} z dzialaniem o okreslonym za pomoca nastepujacej tabelki

jest idempotentng quasigrupa przemienna.

Twierdzenie. Dla kazdej liczby naturalnej n > 1 istnieje pétidempotentna quasigrupa przemienna @ =
{0,1,...,2n — 1} majaca 2n elemendw.
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Szkic dowodu. Znéw mozemy przenumerowaé tabelke dodawania modulo 2n. Dziatanie o w zbiorze @
bedzie wtedy okreslone wzorem:

o M, jesli i + j jest liczbg parzysta,
1o = i+i—1) m ST .. . .
G 1)2 od2n - 56dli i + 4 jest liczba nieparzysta

dlai,j € {0,1,...,2n— 1}. Sprawdzenie, ze zbiér @ z tak okreslonym dzialaniem o jest pélidempotentna
quasigrupa przemienna, pozostawimy jako ¢wiczenie.

Niech teraz @ = {0, 1, ...,2m—1} bedzie pétidempotentna quasigrupa przemienng majaca 2m elementéw
i niech oo & @ x {0, 1,2}. Definiujemy zbiér S w nastepujacy sposéb

S ={oc}U(Q x{0,1,2}) = {oc} U{(a,i): acQ A i€{0,1,2}}.
Oczywiscie |S| = n = 6m + 1. Zdefiniujemy teraz zbiér T

Do zbioru T' zaliczymy trzy rodzaje tréjek par:
(1) Tréjki pierwszego rodzaju:
{(a,0),(a,1),(a,2)}
dlaa=0,...,m—1.
(2) Trojki drugiego rodzaju:
{00, (a,1),(a+m,0)}, {oo,(a,2),(a+m,1)}, {oo,(a,0),(a+m,2)}

dlaa=0,...,m—1.

(2) Tréjki trzeciego rodzaju:
{(a,0),(b,0),(aob, 1)}, {(a,1),(b,1),(a0b,2)}, {(a;2),(b,2),(acb,0)}
dla a,b € Q takich, ze a # b.

Wykazanie, ze tak okreslona para (S,T) jest rzeczywiscie systemem tréjek Steinera, pozostawimy jako
¢wiczenie.

Przyktlady.

1. Dla quasigrupy {0,1} z dzialaniem o zdefiniowanym za pomoca tabelki

o 0 1
0 0 1
1 1 0

Otrzymujemy nastepujacy zbiér S:

Zbiér T sklada sie z jednej tréjki pierwszego rodzaju:

{(0,0),(0,1),(0,2)},
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trzech tréjek drugiego rodzaju:

{00, (1,0),(0, 1)}, {00, (1,1),(0,2)}, {00, (1,2)(0,0)}
i trzech tréjek trzeciego rodzaju:
{(0,0),(1,0),(001,1)} = {(0,0), (1,0), (1, 1)},

{(Oa 1)’ (L 1)’ (0 ol, 2)} = {(0’ 1), (1’ 1), (L 2)}a
{(0,2),(1,2),(001,0)} = {(0,2),(1,2),(1,0)}.

Zauwazmy nastepnie, ze jesli ponumerujemy elementy zbioru S w nastepujacy sposdb

(0,0) 1 (1,0)— 6
o0—T7 (0,1)—2 (1,1)—5
(0,2) —4 (1,2)— 3

to otrzymany system tréjek Steinera bedzie identyczny z systemem pokazanym poprzednio dla sied-
mioelementowego zbioru S.

. Dla quasigrupy {0, 1, 2,3} z dzialaniem o zdefiniowanym za pomoca tabelki

3 3 0 2 1
otrzymamy nastepujacy zbior S:
(0,0) (1,0) (2,0) (3,0)
S=< o0 (0,1) (1,1) (2,1) (3,1)
0,2) (1,2) (2,2) (3,2)
Zbiér T sklada sie z dwoch trojek pierwszego rodzaju (zaznaczonych kolorami czerwonym i zielonym):
(0,0) (1,0) (2,0) (3,0)
S={oc (0,1) (L1) (21) (3.1)
0,2) (1.2) (2,2) (3,2)

szesciu trojek drugiego rodzaju, z ktérych trzy zostaly zaznaczone kolorami czerwonym, zielonym
i niebieskim:

(0,0) (1,0) (2,0) (3,0)
S=<0o0 (0,1) (1,1) (2,1) (3,1)
0,2) (1,2) (2,2) (3,2)
(0,0) (1,0) (2,0) (3,0)
S={ o0 (0,1) (1,1) (2,1) (3,1)
(0,2) (1,2) (2,2) (3,2)
(0,0) (1,0) (2,0) (3,0)
S=<{ o0 (0,1) (1,1) (2,1) (3,1)
(0,2) (1,2) (2,2) (3,2)



i 18 tréjek trzeciego rodzaju, z ktorych trzy réwniez zostaly zaznaczone kolorami czerwonym, zielo-
nym i niebieskim:

(0,0) (1,0) (2,0) (3,0)
S={c (0,1) (1,1) (2,1) (3,1)
0,2) (1,2) (2,2) (3,2)

Dowdéd niealgebraiczny.

Naszkicujemy teraz pochodzacy od Kirkmana, oryginalny dowdd istnienia systemow tréjek Steinera.
Wprowadzimy najpierw dwa pojecia pomocnicze.

Niech X = {oy,...,02,—2} U {a} bedzie zbiorem 2n-elementowym i niech H bedzie zbiorem wszystkich
dwuelementowych podzbioréw zbioru X:

H={ACX: |Al =2}

Ciag zbioréw (Hy, ..., Hsn—2) nazywamy 1-faktoryzacja zbioru H, jesli dla kazdego x € X w kazdym
zbiorze H; istnieje dokladnie jedna para, ktérej x jest elementem.

Cwiczenie. Cigg zbioréw (Hy, ..., Hay,_2) zdefiniowanych w nastepujacy sposéb

Hj ={{op,o}: k+1=j+1 (mod2n—1)} U{{, 00 +1)n mod 2n-1)} }
dla j =0,...,2n — 2 jest 1-faktoryzacja zbioru H.
Przyklad. Ciag zbioréw (Hy,..., Hg) zdefiniowanych w nastepujacy sposéb

Hy = {{00, o1},{02,06},{03,05}, {04, a}},
Hy = {{00,02},{03,06},{04,05},{01,a} },
Hy = {{00, o3}, {o1,09},{04,06}, {05, a}},
H; = {{00, o4}, {01,035}, {05,06}, {02, a}},
Hy = {{o0,05},{01,04}, {02,053}, {06, a}},
Hs = {{00,06},{01,05},{02,04},{03,0}},
Hg = {{o1,06},{02,05},{03,04},{00,a}}

jest 1-faktoryzacja zbioru X = {0y, ..., 0¢}U{a}. Te 1-faktoryzacje nazywamy faktoryzacja Kirkmana.
W dalszym ciagu szczegélnie wazne bedzie to, ze:

{o0,01} € Ho,

{00,02},{01,a} € Hy,

{00,0j+1},{01,0,} € H; dlaj=2,...,2n—3,
{00, a},{o1,09n—2} € Hap_o.

Przypu$émy nastepnie, ze para (S,T) jest systemem tréjek Steinera, w ktérym |S| = n (przypominamy,
ze n jest liczba nieparzysta). Niech nastepnie x,y € S i niech z bedzie jedynym elementem zbioru S
takim, ze {x,y, 2z} € T. Mdéwimy, ze system (S,T) jest z,y-ogrodzony, a ciag (s, ..., Sp—4) elementdéw
zbioru S jest jego x, y-ogrodzeniem, jesli

{% 50, 51}, {% S1, 52}7 {% 52, 53}, {y, 53, 54}, ) {% Sn—6, 5n75}; {z, Sn—5, Sn74}7 {y, Sp—4, 50} erT.
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Przyktad. System tréjek Steinera (S,7T), w ktérym S = {1,...,9} oraz

o L2383} {456}, {7.8,9}, {147}, {258}, {3,6,9},
_{{1,5,9}, {2,6,7}, {3,4,8}, {1,6,8}, {2,4,9}, {3,5,7}}

jest systemem 1, 2-ogrodzonym, a jego 1, 2-ogrodzeniem jest ciag (4,7,6,8,5,9):
{1,4,7},{2,7,6},{1,6,8},{2,8,5},{1,5,9},{2,9,4} € T".

A oto graficzna ilustracja tego ogrodzenia:

Dowdéd Kirkmana wynika teraz (przez indukcje, ktorej szczegdly pozostawimy jako ¢wiczenie) z nastepu-
jacych trzech faktow.

1. Istnieje system tréjek Steinera (S,T), w ktérym |S| = 3.

2. Jedli istnieje system tréjek Steinera (S,T), w ktérym |S| = 2n — 1, to istnieje ogrodzony system tréjek
Steinera (S*,T*), w ktérym |S*| = 4n — 1.

3. Jedli istnieje ogrodzony system tréjek Steinera (S,T), w ktérym |S| = 2n + 1 (przy czym n > 3), to
istnieje ogrodzony system trdéjek Steinera (S*,7*), w ktérym |S*| = 4n — 3.

Fakt 1 jest oczywisty. Pokazemy teraz szkice dowodow faktow 2 i 3.

2. Niech (S,T) bedzie systemem trdéjek Steinera, w ktérym S = {so, ..., S2,—2} oraz niech zbiér X =
{00,...,02n—2} U {a} bedzie zbiorem rozltacznym ze zbiorem S. Niech nastepnie ciag (Ho, ..., Han—2)
bedzie faktoryzacja Kirkmana zbioru H dwuelementowych podzbioréw zbioru X. Definiujemy rodzine
tréjek U w nastepujacy sposéb:

U={{sj,a,b}: (j €{0,...,2n—2}) A ({a,b} € H;)}.

Niech nastepnie S* = S U X oraz T* = T UU. Wtedy para (S*,T*) jest o, 01-ogrodzonym systemem
tréjek Steinera oraz ciag
(81,02,82,03,83,04,...,02,-2, S2pn—2, )

jest jego og, o1-ogrodzeniem.
3. Niech (S, T') bedzie systemem tréjek Steinera, w ktérym S = {z,y, z, so, . . ., San—3} oraz {z,y,z} € T.
Zalézmy, ze system (S, T) jest x, y-ogrodzony, przy czym ciag

(805815 -+ S2n—4, S2n—3)

jest jego x,y-ogrodzeniem. Niech zbiér X = {o¢,...,02,-2} U {a} bedzie zbiorem rozlacznym ze zbio-
rem S. Niech nastepnie ciag (Hy,. .., Han—2) bedzie faktoryzacja Kirkmana zbioru H dwuelementowych
podzbioréw zbioru X. Definiujemy nstepujace rodziny tréjek:

T = {{a,b,c} eT: {abc}n{x,y} = Q},

U={{sj,a,b}: (j€{0,....2n=3}) A ({a,b} € Hjz1) A ({a,b} N {op,01} =2)},
V={{za,b}: ({a,b} € Hy) A ({a,b} # {o0,01})},

W = {{sj,sj+1,aj+2} c0<j<2n— 3} U {{a,so,s%,g}}.
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Niech nastepnie S* = {sg,...,S2n—3} U{z} U {o2,...,02n—2} U{a} oraz T* =T, UU UV UW. Wtedy
{09,035, 83} € T* oraz para (S*,T*) jest 02, 03-0grodzonym systemem tréjek Steinera, przy czym ciag

(So, 51,52,Q, 84,04, 85,05, . - -,S2n—3,02n—3,2,02n—2)
jest jego g, o3-ogrodzeniem.

Szczegbdly dowoddéw pozostawimy réwniez jako ¢wiczenie.
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Zliczanie kolorowan; lemat Burnside’a.
Popatrzmy na cztery przykiady.

Przyklad 1. Wierzchotki kwadratu mozna pokolorowaé¢ co najwyzej dwoma kolorami na 16 réznych
Sposobow:

O O O ® O O O ®
O O O O O ® O ®
® o [ @ ® O [ ®
O O O O O L O ®
@ O O ® O O @ ®
[ O [ O [ ® [ ®
® O ® ® ® O ® ®
[ 4 O ® O ® ® [ 4 ®

Przyktad 2. Niektore z kolorowan pokazanych w przyktadzie 1 mozemy uznaé za jednakowe w tym sensie,
ze pewna izometria kwadratu przeprowadza jedno z tych kolorowan na drugie. Na przyklad kolorowanie

powstaje z kolorowania

przez obrét o 90° w kierunku przeciwnym do ruchu wskazéwek zegara. Takie kolorowania bedziemy nazy-
waé kolorowaniami geometrycznie nierozréznialnymi. Okazuje sie, ze istnieje doktadnie 6 geometrycznie
rozroznialnych kolorowan wierzchotkow kwadratu za pomoca co najwyzej dwdch kolorow:

Przyklad 3. Uzywajac trzech koloréw mozna pokolorowaé¢ wierzchotki kwadratu na 21 geometrycznie
rozréznialnych sposobdw:



O——O (S © ® ®

o——oO0 O O (© 0] (© 0] ® ® o —0
o———O [ 4 O O o [ o O ® oO—e
o——0 O ® (& L J (© O ® O o——0
oO——=0 O ® (S ® O o O ® oO—e
o—e @ ® ® & ® O ® @] o—e
o0——=0 (S O ® O O o (S O e—O

W ostatnim przykladzie bedziemy kolorowaé¢ wierzcholki szescianu. Dwa kolorowania uwazamy za iden-
tyczne (geometrycznie nierozréznialne), jesli jedno mozna otrzymac z drugiego przez odpowiedni obrét
szescianu.

Przykltad 4. Wierzchotki szeScianu mozna pokolorowaé¢ na dokladnie 23 geometrycznie rozréznialne
sposoby za pomoca co najwyzej dwoch kolordw:

Definicja geometrycznej nierozroznialnosci zalezy od tego, jakie izometrie bedziemy rozwazaé. Gdyby$my
w ostatnim przykladzie dopuscili wszystkie izometrie szeScianu (czyli réwniez symetrie), to otrzyma-
libysmy doktadnie 22 geometrycznie rozréznialne kolorowania za pomoca co najwyzej dwdch koloréw.
Pozostawimy Czytelnikowi jako ¢wiczenie znalezienie dwoch kolorowan, ktore sg rozréznialne, gdy rozpa-
trujemy wylacznie obroty szescianu i sg nierozréznialne, gdy dopuscimy réwniez symetrie.

Widzimy wiec, ze definicja geometrycznej rozréznialnoéci kolorowan zalezy od tego, jaka grupe izometrii
bedziemy rozpatrywac¢. Problemem rozréznialnosci kolorowan zajmiemy sie teraz bardziej ogdlnie.

Niech bedzie dany zbiér skoficzony A. Kolorowaniem zbioru A nazwiemy dowolng funkcje
c: A—A{1,... k}.
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Moéwimy tez wtedy, ze elementy zbioru A kolorujemy za pomoca k koloréw (nawet, jesli nie wszystkie
kolory zostaly uzyte). Niech K bedzie zbiorem wszystkich kolorowan zbioru A za pomoca k koloréw.
Przypuéémy nastepnie, ze dana jest pewna grupa G przeksztalcen zbioru A na siebie (czyli podgrupa grupy
wszystkich permutacji zbioru A). Definiujemy teraz grupe G* przeksztalcen zbioru K. Dla dowolnego
przeksztalcenia w € G definiujemy przeksztalcenie

™. K— K
wzorem 7*(c) = c o 7~ L. Wreszcie przyjmujemy

G*={n": meG}.

Cwiczenie. Jesli k > 2, m,0 € G oraz m # o, to * # o*. W szczegblnoéci |G*| = |G.

Przyktad 5. Niech A bedzie zbiorem wierzchotkow kwadratu. Grupa G wszystkich izometrii kwadratu
sklada sie z nastepujacych 8 przeksztalcen:

g o3 g o3

— mo = (1)(2)(3)(4)
1 2 1 2
19— o3 Sg——e2

- T = (1725374)
1 2 4 ®

— T = (1,3)(2,4)
1 ) 3@ ®,
lg o3 lg— o4

- 3 = (1745372)
1 2 20 ®3
4. o3 3e ol

— Ty = (1,2)(3,4)
1 2 2@ ®
lg o3 lg— o2

- 5 = (174)(2ﬂ3)
1 2 4@ ®3
g o3 2e— @3

- m6 = (1)(2,4)(3)
1. .2 1.—'4
lg o3 lg—9ol

— 77 = (1,3)(2)(4)
1 2 3@ ®)
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Popatrzmy na nastepujace dwa kolorowania
c,d:{1,2,3,4} — {1,2,3}
(kolorowi bialemu odpowiada liczba 1, kolorowi szaremu liczba 2 i kolorowi czarnemu liczba 3):

4 3 4 3

Zauwazmy, ze kolorowanie d powstalo przez ,,obrécenie” kolorowania c 0 90° zgodnie z ruchem wskazéwek
zegara, czyli w taki sposéb, w jaki dziala na wierzchotkach kwadratu przeksztatcenie m3. Pokazemy, ze
rzeczywiscie d = 75 (c). Mianowicie

m5(c)(1) = c(m3 ' (1) = ¢(2) = 1 = d(1),
m3(c)(2) = e(m51(2)) = ¢(3) = 3 =d(2),
m3(c)(3) = e(m5 ' (3)) = c(4) =2 =d(3),
m5(c)(4) = c(r3 ' (4)) = c(1) = 3 = d(4).

Przyktad 6. Ogdlniej, przypusémy, ze przeksztalcenie m € G przeprowadza element a € A na element

be A, tzn. w(a) = b:

Przypu$émy nastepnie, ze elementy a i b zostaly pokolorowane (w kolorowaniu ¢) kolorami p i ¢. Prze-
ksztalcenie m* zamienia wtedy kolory w nastepujacy sposob:

l

Mamy wéwczas

czyli



Moéwimy teraz, ze dwa kolorowania ¢ i d zbioru A sa nierozréznialne (ze wzgledu na grupe G), jesli istnieje
przeksztalcenie m € G takie, ze 7*(¢) = d. Interesuje nas wyznaczenie liczby kolorowan rozréznialnych ze
wzgledu na grupe G.

Definicja. Jesli G jest pewna grupa przeksztalcen zbioru A oraz a € A, to orbitg elementu a (ze wzgledu
na grupe G) nazywamy zbidr

O(a) ={n(a) : m€ G}.

Naszym celem jest wiec wyznaczenie liczby orbit grupy G* w zbiorze K.

Definicja. Niech G bedzie pewna grupa przeksztalcen zbioru A i niech a € A. Wéowczas stabilizatorem
elementu a nazywamy zbior

S(a) ={r e G: n(a) =a}.

Nietrudno zauwazy¢, ze stabilizator elementu a jest podgrupa grupy G. Udowodnimy nastepujacy lemat:
Lemat. Dla kazdego elementu a zbioru A zachodzi réwnosc¢
1S(a)| - |0(a)| = |GI.
Dowéd. Niech O(a) = {b1,...,b,}. Wybieramy takie przeksztalcenia 71, ..., 7, € G, by
m(a) = by,...,m(a) = by

Niech P = {m,...,m}. Oczywiscie |P| = |O(a)|. Pokazemy, ze kazde przeksztalcenie 7 € G mozna
przedstawié¢ jednoznacznie w postaci m = o o p, gdzie 0 € P oraz p € S(a). To oczywiscie zakonczy
dowdd.

Niech wigec m € G. Niech nastepnie 7(a) = by, gdzie 1 < s < r. Zatem 7(a) = 75(a). Przyjmijmy

-1
o=Tms, pP=T, OT.

Oczywiscie
cop=mso(n, om)=m.
Ponadto o = w4 € P. Pokazemy, ze p € S(a). Mianowicie

p(a) = (v om)(a) = 77" (n(a)) = 77 (ms(a)) = a.

To dowodzi, ze przeksztalcenie m moze by¢ przedstawione w zadanej postaci.

Przypusémy teraz, ze
TsOp =T OT,

gdzie 1 < s,t < r oraz p,7 € S(a). Woéwczas

(s © p)(a) = (¢ 0 7)(a),
ms(p(a)) = m(7(a)),
ms(a) = m(a),

bs = by,
s =1.

Zatem 7y = 7y, skad oczywiscie wynika, ze p = 7, co konczy dowdd lematu.
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Definicja. Niech G bedzie pewng grupa przeksztatcen zbioru A i niech 7 € G. Wtedy charakterem
przeksztalcenia 7 nazywamy liczbe tych a € A, dla ktérych 7(a) = a:

x(r) = {a€ A: w(a) = a}.

Udowodnimy teraz nastepujacy lemat:

Lemat Burnside’a. Niech G bedzie pewna grupa przeksztalcen zbioru A. Wtedy liczba orbit w zbiorze
A (ze wzgledu na grupe G) jest réwna

Dowdd. Bedziemy zliczaé¢ na dwa sposoby liczbe elementow zbioru
X ={(ma) e Gx A: w(a) =a}.

Dla kazdego m € G istnieje x(7) takich a € A, dla ktérych 7(a) = a, czyli (7,a) € X. Zatem

X1 =3 ().

TeG

Z drugiej strony, dla kazdego a € A istnieje |S(a)| takich przeksztalcen 7, dla ktérych n(a) = a, czyli

(r,a) € X. Zatem
X1= " 15(a)l.
a€A

Z poprzedniego lematu wynika, ze
G| 1
X=F o~ ¥ o
2~ [0(a)] 2~ J0(a)]

Przypu$émy teraz, ze zbiér A zostal rozbity na r = ¢(G) orbit i niech by, ...,b, beda reprezentantami
tych orbit. Wowczas

1 1 i 1 i 1
Z|O(a>|:Z 2 |0<a>|:Z 2 |0<bj>|:,Z 0(,)] 2 1=

a€A Jj=1a€O(b;) Jj=1a€O(b;) j=1 acO(b;)
T 1 s
= |O(b)|> = 1=r=tQq).
> (- 1o01) -2
Zatem
1X| =G| - t(G),
czyli

skad natychmiast wynika teza lematu Burnside’a.

Przypusémy teraz, ze dany jest zbiér A i pewna grupa G przeksztalcen zbioru A. Rozwazamy zbior K
kolorowan zbioru A za pomocsg k koloréw i grupe G* przeksztalcen zbioru K. Wéwcezas liczba orbit grupy

G* jest réwna
1 1
t(G*) = . x(o) = — - x (7).

oceG* TeG




Dla dowolnego przeksztalcenia 7 € G chcemy obliczyé¢ x(7*). Przypusémy zatem, ze ¢ € K Zauwazmy,
ze nastepujace warunki sa rownowazne:

7 (c) = ¢,
com ! =c,
c=com,

Va € A (c(n(a)) = c(a)).

Ostatni warunek jest réwnowazny temu, ze wszystkie elementy tego samego cyklu (w rozkladzie permu-
tacji m na cykle) sa pokolorowane tym samym kolorem. Zatem, jesli z(7) oznacza liczbe cykli permutacji
T, to

x() = k0.

Stad otrzymujemy wzor

* 1 z(m
t(G):@~Zk().

TeG

Przyklad 7. Przypomnijmy, ze grupa izometrii kwadratu (traktowana jako grupa przeksztalcen zbioru
wierzcholkéw ponumerowanych liczbami 1,2,3.4) sklada sie z 8 przeksztalcen:

3
o
I
=
=
~
©

ol
|

3
o
Il
— = = = e
TN RN R W
= =0
w
[\
S~—

3
w
Il

m~ o~ o~ o~ o~ o~ o~ o~

T4 = (1, )(3’4)5
75 = (1,4)(2,3),
me = (1)(2,4)(3),
mr = (1,3)(2)(4).

Zatem liczba geometrycznie rozrdznialnych kolorowan wierzchotkéw kwadratu za pomoca k koloréw jest
rowna

1
g-(k:4+k+k:2+k+k:2+k2+k3+k:3): (K" + 23 + 3K? + 2K).

ol

Dla k = 2 otrzymujemy

1

48
- (24222 4+3.-2242.2) = (16+16+12+4) = = =6

0o
| =

kolorowan. Dla k = 3 otrzymujemy

168

~(3*+2-3°+3.32+2.3) = ~(81+54+27+6):? 21

oo | =
| =

kolorowan.

Przyklad 8. Grupa obrotéw sze$cianu sklada sie z 24 przeksztalcen. Znoéw traktujemy ja jako grupe
przeksztalcen zbioru wierzchotkéw ponumerowanych liczbami od 1 do 8.

Pierwszym przeksztalceniem jest identycznosé:
™= (1)(2)(3)(4)(5)(6)(7)(8)-

Nastepnie mamy obroty szescianu woko6! osi przechodzacej przez $rodki przeciwleglych Scian (sa 3 takie
osie).



8, | [ 6
i G 15

- Se | ay
1 % 4 ]

Obrot szescianu o 90°: = (1,2,3,4)(5,6,7,8)

8, 6, | 5
% T ——1%

T - JY
1 % 3 %y

Obrot szescianu o 180°: w = (1, 3)(2,4)(5,7)(6,8)

8 5 8

T - P ——
1 % 2 — %3

Obrot szescianu o 270°: © = (1,4, 3,2)(5,8,7,6)

Teraz mamy obrdt szescianu wokdl osi przechodzacej przez srodki przeciwlegltych krawedzi (jest 6 takich

osi).

8
s
R "—'?‘
_ 41
1

Obrét szescianu o 180°: m = (1,5)(2,8)(3,7)(4, 6)

Wreszcie mamy obroty szescianu wokol osi przechodzace] przez przeciwlegle wierzcholki (sa 4 takie osie).
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— 1
fl,b'-----‘\'«\- ------ 3 ,5}-----“'1\- ------ 1

1 - \ 2 6 - \ 2

Obrét szescianu o 120°: = (1, 3,6)(2)(4,7,5)(8)
8 7 8 5

5 i \ 6 4 i >'\ 1

AN SR

,,/’-----1\- ------ 3 ///A.----_T\- ------ 6

1 - \ 2 3 - \ 2

Obrét szescianu o 240°: = (1,6,3)(2)(4,5,7)(8)

Mamy zatem jedna permutacje o 8 cyklach, 6 permutacji o 2 cyklach i 17 permutacji o 4 cyklach. Stad
wynika, ze liczba geometrycznie rozréznialnych kolorowan wierzchotkéw szeécianu za pomoca k kolordéw
jest réwna

1

— - (k® 4+ 17k + 6K?).

57 (K +17k" +6k%)
Dla k = 2 otrzymujemy

1 1 552
— (2241722 46-2) = — - (256 4+ 272 +24) = —— =23
24 2"+ + ) 24 (256 + +24) 24

kolorowania. W podobny sposob stwierdzamy, ze dla k = 3 istnieja 333 kolorowania.

Przyktad 9. Grupa wszystkich izometrii sze$cianu sktada sie z 48 przeksztalcen. Wérdd tych permutacji
zbioru wierzchotkéw jest jedna majaca 8 cykli, 6 majacych 6 cykli, 21 majacych 4 cykle i 20 majacych 2
cykle. Zatem liczba kolorowan rozréznialnych ze wzgledu na grupe wszystkich izometrii jest rowna

1
T (k® 4 6K° 4+ 21%* 4 20k?).

Dla k = 2 istnieja 22 kolorowania, dla k = 3 istnieje 267 kolorowan.



Turnieje Howella

Przypusémy, ze osiem par brydzowych chce rozegrac turniej. Chea przy tym, by kazda
para zagrata przeciwko kazdej innej parze. Jednym ze sposobow rozegrania takiego
turnieju jest wykorzystanie tzw. kart pilotujacych Howella (od nazwiska matematyka,
ktory pierwszy zaproponowal uzycie takich kart). Oto przyklad karty pilotujacej do
turnieju Howella dla osmiu par.

IWE —— SWE ——— 2WE ——— 3NS
T 11— 72«72«27 3«4 l

2NS — 4NS — 4WE

Turniej jest rozgrywany na czterech stotach, o numerach od 1 do 4. Na kazdym stole
graja dwie pary: jedna na linii NS, druga na linii WE. Siedem par (o numerach od 1 do
7) otrzymuje takie karty, kazda z zaznaczona inna pozycja startowa:

1WE
2NS
4 NS
4 WE
3NS
2WE
3WE

=1 O Ot = W N~

Para numer 8 nie otrzymuje karty pilotujacej; zajmuje ona miejsce na linii NS na stole 1
1 nie zmienia swojej pozycji przez caly czas trwania turnieju. Pozostate pary przechodza
w kolejnych rundach na nastepne miejsce na swojej karcie pilotujacej. I tak na przyktad
w drugiej rundzie pary o numerach od 1 do 7 przejda na nastepujace pozycje:

1 1WE — 3WE
2 2 NS — 1WE
3 4 NS — 2NS
4 4 WE — 4 NS
5 3NS — 4 WE
6 2WE — 3NS
7 3WE — 2WE

W nastepnych rundach pary poruszaja sie wedlug tego samego schematu. W tym samym
czasie pudetka z kartami rowniez zmieniaja swoje poltozenia. Oprocz czterech stolikow,

1



na ktorych sa rozgrywane kolejne rozdania, sedzia ustawia trzy dodatkowe stoliki, zwane
zbiornicami. Na tych stolikach znajduja sie pudetka z rozdaniami, ktore w danej rundzie
nie sg rozgrywane. Dwie zbiornice znajduja sie miedzy stolikami o numerach 1 1 2,
trzecia miedzy stolikami o numerach 2 1 3. Karty w kolejnych rundach sa przenoszone
w kierunku malejacych numerdéw stolikdéw, uwzgledniajac zbiornice (oraz ze stolika 1 na
stolik 4). Na poczatku karty zajmuja nastepujace pozycje:

rozdanie 1 stolik 1
rozdanie 2 zblornica
rozdanie 3 zblornica
rozdanie 4 stolik 2
rozdanie 5 zblornica
rozdanie 6 stolik 3
rozdanie 7 stolik 4

W nastepnej rundzie zajma pozycje:

rozdanie 1 stolik 4
rozdanie 2 stolik 1
rozdanie 3 zblornica
rozdanie 4 zblornica
rozdanie 5 stolik 2
rozdanie 6 zblornica
rozdanie 7 stolik 3

W nastepnych rundach rozdania beda przemieszczaé sie wedlug tego samego schematu.
A oto przebieg caltego turnieju. W kolejnych wierszach tabeli mamy podane pozycje par
1 kart w kolejnych rundach. Wewnatrz kwadratu znajduje sie numer rozdania rozgrywa-
nego w danej rundzie na danym stole. Liczby nad 1 pod kwadratem oznaczaja numer
pary grajacej na linii NS, z lewej 1 prawej strony — numer pary grajacej na liniit WE.

I tak oznaczenie

2

1|7

2

wskazuje, ze na danym stoliku para 2 gra na linii NS przeciwko parze 7 grajacej na linii
WE; rozgrywane jest rozdanie numer 1.



Stot 1

Stot 4

Przebieg turnieju.

Stot 3

Z

Stot 2

Z




Mozna zauwazy¢, ze karta pilotujaca jest skonstruowana w taki sposob, by kazda para
zagrala przeciwko kazdej innej parze doktadnie jeden raz i1 by kazda para zagrata kazde
rozdanie dokladnie jeden raz. Karta pilotujaca ma jeszcze jedna wlasnose, ktorej teraz
sie przyjrzymy. Popatrzmy najpierw na dzieje rozdania numer 6.

Runda Stot para NS para WE

1 3 5 7
2 Z — —
3 2 4 1
4 Z — —
5 Z

6 1 8 6
7 4 2 3

Protokét turniejowy tego rozdania moze wyglada¢ nastepujaco:

Nr | NS | WE | Kontrakt | Rozgr. | Lew | NS WE |NS|WE
35| 7 36 N 9 140 3] 3
214 |1 44 S 10 420 6| 0
118 6 36 S 9 140 3] 3
4 12| 3 44 N 9 50 0] 6

W pierwszej kolumnie zapisany jest numer stolu, na ktorym to rozdanie bylo rozgry-
wane. W dwoch nastepnych kolumnach zapisane sg numery par grajacych to rozdanie.
W nastepnych trzech kolumnach zapisany jest wylicytowany kontrakt, oznaczenie roz-
grywajacego oraz liczba lew. W kolejnych dwoéch kolumnach zapisana jest wartosé osiag-
gnietego kontraktu. Te wszystkie kolumny wypelniaja grzcze po rozegraniu rozdania.

Ostatnie dwie kolumny sa przeznaczone na wynik i wypelnia je sedzia turnieju. W
kolumnie NS wpisywany jest wynik dla pary grajacej na linii NS. Za kazdy wynik (innej
pary) gorszy od uzyskanego przez dana pare ta para otrzymuje 2 punkty; za jednakowy
otrzymuje 1 punkt. I tak para numer 4 otrzymuje 6 punktow: po 2 punkty za wyniki
gorsze (140, 140, —50). Para numer 5 otrzymuje 3 punkty: 2 punkty za wynik gorszy
(—=50) i 1 punkt za wynik jednakowy (140). Tyle samo punktéw uzyskuje para numer 8.
Wreszcie para numer 2 uzyskuje 0 punktéw, bo wszystkie pary uzyskaty wyniki lepsze
od niej.

Podobnie przyznaje sie punkty parom grajacym na linit WE. Mozna zauwazy¢, ze suma
punktéw przyznanych parom grajacym na tym samym stole jest zawsze rowna 6. Punkty
uzyskane w ten sposob we wszystkich rozdaniach dodaje sie 1 otrzymane sumy decyduja
o miejscu w turniaju. Ten sposob punktacji nie jest najlepszy w przypadku tak malego
turnieju, ale jest najprostszy 1 najlepiej pokazuje istote turnieju brydzowego. Pary gra-
jace dane rozdanie na linii NS sa poréwnywane miedzy soba; podobnie pary grajace na

linit WE.



Ostatnia wspomniana wezesniej wlasnose karty pilotujacej polega na tym, ze kazde dwie
pary sa ze soba poréwnywane w tej samej liczbie rozdan. Na przyktad, pary 71 5 sa
porownywane ze soba trzy razy:

1. w rozdaniu 2 obie graja na linii NS (para 7 w rundzie 6, para 5 w rundzie 3);
2. w rozdaniu 3 obie graja na linii WE (para 7 w rundzie 4; para 5 w rundzie 7);
3. w rozdaniu 7 obie graja na linii NS (para 7 w rundzie 7; para 5 w rundzie 4).

Podobnie pary 2 1 6 sa porownywane ze soba trzy razy:

1. w rozdaniu 3 obie graja na linii NS (para 2 w rundzie 5, para 6 w rundzie 4);
2. w rozdaniu 5 obie graja na linii WE (para 2 w rundzie 6; para 6 w rundzie 7);
3. w rozdaniu 6 obie graja na linii NS (para 2 w rundzie 7; para 6 w rundzie 6).

Mowimy, ze turniej jest catkowicie zrownowazony, gdy kazde dwie pary sa poréwnywane
ze soba te sama liczbe razy.

Przypusémy teraz, ze n par brydzowych chce rozegra¢ podobny turniej. Czy istnieje
karta pilotujaca Howella dla n par? Chcemy, by zachowane byty nastepujace warunki:

(1) w turnieju rozgrywa sie n — 1 rund,;

(2) w kazdej rundzie na kazdym z § stolow jest rozgrywane jedno rozdanie, grajg je
dwie pary: jedna na linii NS, druga na liniit WE;

(3) kazda para gra przeciwko kazdej innej parze dokladnie jeden raz;

(4) kazda para gra kazde rozdanie doktadnie jeden raz;

(5) kazde dwie pary graja te sama liczbe rozdan na tej samej linii.

Z warunku (2) wynika, ze liczba par jest parzysta: n = 2m, gdzie m jest liczba stoléw,
na ktorych sa rozgrywane rozdania. W kazdym rozdaniu m par gra na linit NS 1 m par
gra na linii WE. Zatem (’;) par jest porownywanych ze soba na kazdej z tych linii;
tacznie zatem w jednym rozdaniu mamy 2 - (’;

turnieju mamy 2m —1 rozdan, wiec taczna liczba porownan par w calym turnieju wynosi
m(m — 1)(2m — 1).

) = m(m — 1) poréwnan. Poniewaz w

Niech teraz k bedzie liczba poréwnan kazdych dwéch par: z warunku (5) wynika, ze dla

kazdych dwdch par ta liczba jest taka sama. Mamy zatem (2;71> = m(2m — 1) par, czyli

laczna liczba poréwnan wynosi km(2m — 1). Stad wynika, ze
m(m —1)(2m — 1) = km(2m — 1),

czyli
E=m—1.

To znaczy, ze dowolne dwie pary rozgrywaja ze sobg m — 1 rozdan na tej samej linii i
m rozdan na przeciwnych liniach.

Udowodnimy teraz, ze liczba n jest podzielna przez 4.

S



Kazde z 2m — 1 rozdan dzieli zbior X wszystkich par na dwa podzbiory roztaczne. Dla
rozdania o numerze ¢ mamy

AY = zbiér par grajacych rozdanie i na linii NS;

Al = zbiér par grajacych rozdanie i na linii WE.

Mamy zatem

AlnAi =0, Aud =X, |4=]4]=m
Kazda para p nalezy do dokladnie 2m — 1 zbioréow A (1 =1,2,...,2m — 1,6 =0,1):

‘ﬁu@:peAﬁ‘:mn—L

Warunek (5) mozna wystowi¢ w sposéb nastepujacy: dla dowolnych dwéch par p i ¢
mamy

H@@rpeAqueAﬁ‘:m—L

Niech p, ¢ 1 r bedg trzema dowolnymi parami. Definiujemy teraz cztery zbiory:
B :{(i,e):peA‘f A g e AS A reAf}
C :{(i,e):peAf A gd A5 A reAf}
D :{(i,e):pQAf N q€ A N rEAf}
E={(i):pga; nqg 4 A rea}
Oczywiscie zbiory B, C', D 1 E sa parami roztaczne. Niech
|B| =0, |C|l=¢, |Dl=d, |E|=c¢c
Zauwazmy nastepnie, ze
BUC:{(i,e): pEAS A reAf}

oraz

BUD:{(i,e): g€ A A rEAf}.

Stad wynika, ze
b+c=b+d=m—1,

czyli
c=d=m—1-0.



Nastepnie
BUCUDUE = {(i,e): rEAf}.

Zatem
b+(m—1-b)+(m—1->b)4+e=2m—1,

czyli
e=>0+1.

Stad wynika, ze
|BUE|=2b+1.

Definiujemy jeszcze jeden zbiér:
Ez{@@%pEAqueAfArgAﬂ.
Mozna tatwo zauwazyc¢, ze
(i,e)e B & (i,1—¢)€ E".
Stad wynika, ze |E| = |E'|. Poniewaz zbiory E i E' sa rozlaczne ze zbiorem B, wiec
|BUE|=|BUE|.

Ale
BUEH:“@@:peAqueAﬂ,

skad wynika, ze
|IBUE'|=m — 1.

Zatem

2b+1=m-—1,

czyli
m = 2b+ 2,

a wiec liczba m jest parzysta. To znaczy, ze liczba n jest podzielna przez 4.

Udowodnimy teraz, ze jesli liczba n jest podzielna przez 4 oraz liczba p = n — 1 jest
pierwsza, to mozna zorganizowac turniej spelniajacy warunki (1) — (5). Okaze sie tez,
ze sposob zmiany miejsc przez pary 1 zmiany rozdan da sie opisa¢ za pomoca karty
pilotujace;.

Zalézmy wiec, ze p > 3 jest liczba pierwszg oraz p =3 (mod 4). Wykazemy, ze istnieje
karta pilotujaca Howella dla n = p + 1 par.
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Niech a bedzie dowolnag liczba niepodzielng przez p. Przypominamy, ze liczbe a nazy-
wamy reszta kwadratowa modulo p, jesli istnieje liczba catkowita x taka, ze

r* =a (mod p).

Jesli taka liczba x nie istnieje, to liczbe a nazywamy niereszta kwadratowa modulo p.
W dalszym ciagu bedziemy uzywaé symbolu Legendre’a:

(a) { +1 jesli a jest reszta kwadratowa modulo p;
)=

-1 jesli a jest niereszta kwdratowa modulo p.

Zauwazmy najpierw, ze z twierdzenia FEulera wynika, ze <_71> = (—1)% = —1, a wiec

—1 jest niereszta kwadratowa modulo p. Stad wynika, ze dla dowolnej liczby a takie;j,
ze 0 < a < p mamy:
(5)--G)
p p)’

a jest reszta kwadratowa modulo p & —a jest niereszty kwadratowa modulo p.

czyli

= %. Oczywiscie « Jest liczba catkowita. Proste obliczenia pokazuja,

Definiujemy «
ze

a1 (modp) oraz «a# —1 (mod p).

Zatem o — 1 # 0 oraz a + 1 # 0 w ciele Z,,.
Zauwazmy nastepnie, ze
da—1)=p+1 oraz 4(a+1)=p+09.

Stad wynika, ze




Podobnie

Zatem « — 11 a + 1 sa resztami kwadratowymi modulo p. Stad tez a? — 1 jest reszta
kwadratowa modulo p.

Definiujemy teraz zbiory:

X ={0,1,....,p—1,p} 2zbiér numeroéw par,

Y ={0,1,...,p—1} zbiér numeréw rozdan,

R ={0,1,...,p—1} zbiér numerdéw rund,

S =4{0,1,...,p—1} zbiér numerdw stoltow,

L ={-1,41} zbidér oznaczen linii (+1 oznacza linie NS, —1 oznacza linie WE).
Mamy zatem n = p + 1 par numerowanych liczbami od 0 do p oraz p rozdan numero-
wanych liczbami od 0 do p — 1. Wszystkie rozdania sg rozgrywane w rundach, w kazdej
rundzie graja wszystkie pary. Mamy p rund, numerowanych liczbami od 0 do p — 1.
Mamy nastepnie p stoléw, numerowanych liczbami od 0 do p — 1. W kazdej rundzie

pary graja przy % stotach, pozostale stoly sa wolne. Na tych stotach jednak znajduja
sie karty; sa to zbiornice. Okaze sie, ze numery zbiornic sg stale: nie zaleza od rundy.

Definiujemy teraz trzy funkcje:

T:Y xR— S,
t: X xR—S,
s: X xR— L.

Jesh z € X, y € Y oraz r € R, to:

T(y,r) = numer stolu, na ktérym rozdanie y jest grane w rundzie r,
t(x,r) = numer stolu, na ktérym para @ gra w rundzie r,

s(x,r) = oznaczenie linii, na ktérej para @ gra w rundzie r.

9



A oto definicje tych funke;ji:

T(y7 7“) =r—-y.
0 jesli e = p lub o = r;
rT—r . .
jesli x — r jest reszta kwadratowa modulo p;
ta,r) =4 a—
r—x - - .
1 jesli r — x jest reszta kwadratowa modulo p.
!

+1 jesh x = p;
—1 jesh x =r;

+1 jesli x — r jest reszta kwadratowa modulo p;

—1 jesli r — x jest reszta kwadratowa modulo p.

Wszystkie dzialania w tej definicji sa wykonywane w ciele Z,,.

Zauwazmy, ze albo t(x,r) = 0, albo t(x,r) jest reszta kwadratowa modulo p. Rozdania
rozgrywane sg zatem na stole o numerze 0 1 na stotach, ktérych numery sa resztami
kwadratowymi modulo p. Zauwazmy, ze istnieje doktadnie & stoléw, przy ktorych roz-
grywane sa kolejne rozdania; sa to stoty o tych samych numerach w kazdej rundzie.
Numery stoléw, na ktérych nie rozgrywa sie rozdan (czyli zbiornic), sa nieresztami

kwadratowymi modulo p.

Przypusémy teraz, ze dany jest numer stotu ¢¢ 1 numer rundy ry. W tej rundzie na stole
to znajduje sie rozdanie yo = rg — to. Mianowicie

T(yo,7m0) =10 — Yo =10 — (10 — to) = to.

Poniewaz liczba rozdan jest rowna liczbie stotow, wiec w kazdej rundzie na kazdym stole
znajduje sie dokladnie jedno rozdanie.

Wykazemy teraz, ze w kazdej rundzie na kazdym stole, ktérego numer nie jest niereszta
kwadratowa modulo p, spotkaja sie doktadnie dwie pary. Niech wiec dany bedzie numer
stotu ty 1 numer rundy ry.

Przypusémy najpierw, ze to = 0. Z definicji funkeji ¢t wynika, ze na stole o numerze 0
w rundzie ry moga grac tylko dwie pary o numerach p 1 rg. Z definicji funkeji s wynika,
ze para o numerze p gra na linit NS, a para o numerze rg gra na linii WE.

Niech teraz ty # 0. Zatem t, jest reszta kwadratowa modulo p. Przypusémy, ze para
o numerze r gra w rundzie ro na stole o numerze tg. Oczywiscie wtedy = # p oraz
x # ro. Mozliwe sa teraz dwa przypadki:
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(1) @ — rg jest reszta kwadratows modulo p. Wtedy

r — Ty
tg = ,
a—1

czyli
r=rg+toa—1).

Ponadto s(x,r9) = +1.
(2) ro — x jest reszta kwadratows modulo p. Wtedy

b= 'o — &
0 — a_+_17

czyli
r=rg—tola+1).

Ponadto s(x,rg) = —1.

Proste obliczenia pokazuja, ze te dwie pary rzeczywiscie graja w rundzie ry na stole
o numerze tg.

Tak wiec w rundzie ry na stole o numerze t, graja dwie pary:
o =19 +to(aw — 1) mna linii NS

oraz

1 =19 —to(aw+ 1) na linii WE.

Wykazemy teraz, ze kazda para gra przeciwko kazdej innej parze. Poniewaz w kazdej
rundzie kazda para gra przeciwko dokltadnie jednej parze 1 liczba rund jest réwna liczbie
par, wiec wyniknie stad, ze kazde dwie pary graja przeciwko sobie doktadnie jeden raz.

Niech zatem beda dane dwie pary o numerach z¢ 1 x1. Definiujemy liczbe r wzorami:

To jesli x1 = p;
) jesli g = p;
T x 1 — L1 — T
r = 1+ 2o ! 0 jesli e jest reszta kwadratowa modulo p;
9 2a0 2a
T x Tog — X Lo — T
1Lt %o 0 ! jeshi =1 jest reszta kwadratowa modulo p.
9 2a0 2a

Pozostawimy jako proste ¢wiczenie wykazanie, ze w rundzie r pary zo 1 1 graja na tym
samym stole, jedna na linii NS, druga na liniit WE.

Nastepnie wykazujemy, ze kazda para gra kazde rozdanie. Poniewaz liczba rund jest
rowna liczbie rozdan, wiec z tego wyniknie, ze kazda para gra kazde rozdanie doktadnie
jeden raz.
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Niech zatem dana bedzie para o numerze z( 1 rozdanie o numerze yo. Definiujemy liczbe

r wzorami:
Yo jesli xg = p lub xy = yo;
—x —x
r—J Yot -t jesli g 0 jest reszta kwadratows modulo p;
= «
o — To —
Yo + o jesli o jest reszta kwadratows modulo p.
« «

Proste ¢wiczenie pokazuje, ze w rundzie r para o numerze xg 1 rozdanie o numerze ¥
znajduja sie na tym samym stole, a wiec para ¢ gra rozdanie yg.

Wreszcie wykazemy, ze kazde dwie pary graja te sama liczbe rozdan na tej samej linii.
Wprowadzamy w tym celu nowa funkcje

S: X xY —>1L,
zdefiniowana w nastepujacy sposéb:
S(x,y) = linia, na ktorej para = gra rozdanie y.

Niech bedzie dana para o numerze x 1 rozdanie o numerze y. Wiemy juz, ze para = gra
rozdanie y w rundzie r, gdzie

Yo jesli xg = p lub xy = yo;
—x —x
= J Yot -2 jesli Yo~ %o jest reszta kwadratows modulo p;
= «
To — To —
Yo + o jesli o jest reszta kwadratows modulo p.
« «

Wtedy
S(x,y) = s(w,r),
skad tatwo dostajemy wzor
+1 jeshi @ = p;
-1 jeshi @ = y;

S, y) =9 41 jeshi &

jest reszta kwadratowa modulo p;

-1 jesli jest niereszta kwadratowa modulo p.
Inaczej mowige:
+1 jeshi @ = p;
-1 jeshi @ = y;
S(z,y) = (v -t
r— Yy
<¢> jesli « # p oraz x # y.
p

12



Przyjmijmy teraz, ze <%> = 0. Mamy wowcezas nastepujaca wlasnose¢ symbolu Legen-

(1)

Wynika ona stad, ze <%> = 0 oraz w zbiorze {1,2,...,p — 1} jest tyle samo reszt kwa-

dre’a:

dratowych modulo p co niereszt kwadratowych modulo p. Stad otrzymujemy wniosek:

pi(“'_y>:0.

Ta rownosé¢ wynika natychmiast z poprzedniej, gdyz jesli y przebiega wszystkie liczby
od 0 do p— 1, to & — y przebiega (w ciele Z,) ten sam zbidr liczb. Zatem

p—1

5580

y=0

Wreszcie udowodnimy wazny lemat.

() ()

Dowdéd. Zauwazmy najpierw, ze

Lemat. Jesli a # 0, to

3

<@

-1 -1 -1 -1
]92:<Q>‘<y—l—a>_pz:< y—|—a> p ( 1—|—ay1> P (1—|—ay1>
y=0 p p y=1 =1 =1

Zauwazmy nastepnie, ze jesli y przebiega liczby od 1 do p — 1, to 1 4+ ay™! przebiega
(w ciele Zj,) wszystkie liczby rézne od 1. Zatem

<@
<@

1

L5500

Y

<@

co konczy dowod lematu.

Warunek, ze dowolne dwie pary graja te sama liczbe rozdan na tej samej linii, jest
réwnowazny rownosci



dla dowolnych z; 1 x5 takich, ze 1 # x2. Udowodnimy teraz te réwnosé. Mozliwe sa
dwa przypadki.

Jesli jedna z liczb xq lub x5 jest rowna p, to nasza rownosé przybiera postac

dla @ # p. Ale S(p,y) = +1. Mamy wiec dowies¢, ze

p—1

Ale

y=0 yFe y=0 p
a ! T—Y a ! i T—Y
-(5) 2 (5 = (5) 2 (5 -
P . P P y=0 P
= —1.

= Z S 1}1, 1}2, )—|—S($1,$1)'S($2,$1)+S($1,$2)'S(l’z,l’z):
== Z S 1}1, 1}2, ) 5(2}271’1)—5(1}1,1‘2):

== Z S 1}1, 1}2, ),
gdyz S(x1,22) = —=S(wg,21). Jesli @ # y, to

s (227,

b
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Zatem

I
3
2Ll
TN
T =
Na——
N
<
_|_
N
8
3w
|
8
=
p——
Na——

W ten sposob dowiedlismy, ze kazde dwie pary graja te sama liczbe rozdan na tej same;j
linii. Pozostaje tylko pokazac¢ konstrukcje karty pilotujace;j.

Zauwazamy najpierw, ze kazde rozdanie w nastepne] rundzie przechodzi na stolik o

numer o 1 wiekszy (ze stolika p — 1 na stolik o numerze 0). Mozna tatwo pokazaé, ze
pary poruszaja sie wedlug nastepujacego schematu:

(0,+1) — (0,+1),
czyli para grajaca na stoliku o numerze 0 na linii NS pozostaje w tym samym miejscu;
(0,-1) = ((@+ 17" -1),

czyli para grajaca na stoliku o numerze 0 na linii WE, przenosi sie na stolik o numerze
(o + 1)_1 na linie WE. Wreszcie dla t # 0 mamy

<w7_1> jedli 1 — #(a — 1) = 0 lub (M) —1

(RSO ’
<t (o — 1)—1,+1> jesli (#) — 1
o . (t+ @+ +1)  jed (—1 ha t(;‘ - 1)> —1
| <_1_at£0‘1+1),—1> jedli <—1+t(§+1)> -1

15



Przyktad

Niech p = 7. Zatem w turnieju uczestniczy n = p + 1 = 8 par. Mamy wowczas w ciele
Z7 nastepujace reszty 1 niereszty kwadratowe:

reszty kwadratowe: 1,2,4;
niereszty kwadratowe: 3,5,6.

Przydatna bedzie rowniez tablica elementéw odwrotnych modulo 7:

17t =1,
27! =4
371 =
471 = 2.
571 =3:
6~ =

Przystepujemy teraz do konstrukeji karty pilotujacej turnieju Howella dla 8 par. Naj-
pierw definiujemy

p+95
=—— =3
‘T
Mamy wéwcezas
a—1=2 (a—1)"1=4

oraz

at+tl=4 (a+1)t=2

Gra toczy sie na stole o numerze 0 1 na stotach, ktorych numery sa resztami kwadrato-
wymi modulo 7. Zatem sa to stoty o numerach: 0, 1, 2, 4. Stoly o numerach 3, 51 6 sa
zbiornicami. Karty w kolejnych rundach przechodza na stot o numerze o 1 wiekszym,
czyli ze stolu o numerze ¢ na stél o numerze ¢ + 1, przy czym dodawanie jest brane
modulo 7. Zatem karty poruszaja sie wedlug schematu:

—-0—-1-2=72—-4—-=72—=7 —

Zajmiemy sie teraz sposobem poruszania sie par. Para numer 8 przez caly czas turnieju
zajmuje miejsce przy stole 0, na linii NS. Reguly poruszania sie pozostalych par maja

16



postac:

(3t42,—1)  jesli 5t +1 = 0 lub (5”1):1
(t,+1) — i .
(t+3,+1) jeshi <5t + 1) =-1
p
(t4+2,—1)  jeshi <4t + 1) _1
(t,—1) — b
(5t +3,+1) jeshi <4t + 1) = —1.
p
Zatem
(0,+1) — (0, +1),
(07 _1) - (27 _1)7
(1,41) — (4,41), bo 6 jest niereszty kwadratowa,
(1,—-1) — (1,41), bo 5 jest niereszty kwadratowa,
(2,+1) — (1,-1), bo 4 jest reszta kwadratowa,
(2,—-1) — (4,-1), bo 2 jest reszta kwadratowa,
(4,41) = (0,—1),  boT7|5-4+1,
(4,-1) — (2,41), bo 3 jest niereszta kwadratows.

Ostatecznie karta pilotujaca dla par ma postac

OWE —— 2WE —— 4WE — 2NS
T 0—-1—-2—-72—-4—-7—7 l

4NS — INS — 1WE

Ponizsza tabela pokazuje przebieg turnieju. Przenumerujemy teraz pary i stoliki, tak by
zgodnie z tradycja brydzowa, spetnione byty nastepujace warunki:

(1) karty poruszaja sie na stolik o numer nizszy,
(2) pary przychodza do stolika 1 na linie WE w kolejnosci numeréw od 1 do 7,

(3) para numer 8 siedzi przez caly czas turnieju przy stoliku 1 na linii NS.

Po tym przenumerowaniu otrzymujemy dokladnie te sama karte pilotujaca, ktora wi-
dzilismy na poczatku.

17



Przebieg turnieju.

Stot 0 Stot 1 Stot 2 Stot 3 Stot 4 Stot 5 Stot 6
7 2 4 1

0O (0 3] 6 |3 6| 5 |6 4 51 3 |5 2 1
7 2 4 1

7 3 5) 2

1 |1 4, 0 |4 0] 6 |0 5) 6| 4 |6 3 2
7 3 5) 2

7 4 6 3

2 12 5 1 |5 1] 0 |1 6 0 5 |0 4 3
7 4 6 3

7 5) 0 4

3 (3 6] 2 (6 2| 1 |2 0 11 6 |1 5) 4
7 5) 0 4

7 6 1 5)

4 14 0| 3 |0 3| 2 |3 1 21 0 |2 6 5)
7 6 1 5)

7 0 2 6

5 |5 1] 4 |1 4| 3 |4 2 301 |3 0 6
7 0 2 6

7 1 3 0

6 (6 2| 5 |2 5| 4 |5 3 41 2 |4 1 0
7 1 3 0
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Wskazéwki bibliograficzne.

Przykltady kart pilotujacych do turniejéw Howella mozna znalez¢ w [3]. Pojecie turnieju
catkowicie zréwnowazonego jest wziete z [4]. Tam tez znajduje sie dowdd twierdzenia
mowiacego, ze jesli istnieje turniej catkowicie zrownowazony, to liczba par jest podzielna
przez 4. Parker i Mood podaja kilka przyktadow kart pilotujacych, piszac jednak wy-
raznie, ze nie znaja zadne] metody ogolnej konstruowania takich kart. Przedstawiona
w tekscie konstrukeja karty pilotujacej pochodzi od Berlekampa i Hwanga [1]. Tam tez
znajduje sie dowod twierdzenia ogolniejszego, mowiacego, ze jesli liczba n jest podzielna
przez 41 n — 1 jest potega liczby pierwszej, to istnieje turniej catkowicie zrownowazony
dla n par. Wiecej informacji o istnieniu tzw. rotacji Howella 1 blisko z nimi zwiazanymi
kwadratami Rooma mozna znalez¢ w [2].

[1] E. R. Berlekamp, F. K. Hwang, Constructions for Balanced Howell Rotations for
Bridge Tournaments, J. Combin. Theory A, 12 (1972), 159 — 166.

[2] Ch.J. Colbourn, J. H. Dinitz (ed.), The CRC Handbook of Combinatorial Designs,
CRC Press, Boca Raton 1996.

[3] Encyklopedia brydza, PWN Warszawa 1996.

[4] E. T. Parker, A. N. Mood, Some Balanced Howell Rotations for Duplicate Bridge
Sessions, Amer. Math. Monthly 62 (1955), 714 — 716.
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Kwadraty Rooma i turnieje brydzowe

Niech N bedzie ustalonym zbiorem (n+ 1)-elementowym. Przypomnijmy, ze symbolem Py(N) oznaczamy
zbiér

Py(N)={ACN: |A| =2}.

Kwadratem Rooma o boku n nazywamy dowolna macierz R wymiaru n X n o wyrazach ze zbioru
Py(N) U {&}:
R:{0,...,n—1}* = P, (N)U {@},
spelniajaca nastepujace trzy warunki:
(R1) kazda para {a,b} € P»(N) wystepuje dokladnie jeden raz w macierzy R,
(R2) kazdy element zbioru N wystepuje dokladnie jeden raz w kazdym wierszu macierzy R,
(R3) kazdy element zbioru N wystepuje dokladnie jeden raz w kazdej kolumnie macierzy R,

Zauwazmy, ze wiersze i kolumny kwadratu Rooma numerujemy liczbami od 0 do n — 1.

Kwadraty Rooma moga byé¢ wykorzystane do opisu turniejéw brydzowych. Niech N = {0,1,...,n}.
Liczby ze zbioru N sa numerami par startujacych w turnieju. Jesli 4,5 € {0,...,n — 1} oraz R(i,j) =
{a,b} € P»(N), to pary o numerach a i b graja ze soba rozdanie o numerze j w i-tej rundzie turnieju.
Jesli natomiast R(i,j) = &, to rozdanie o numerze j nie jest wykorzystywane w i-tej rundzie. Warunek
(R1) moéwi, ze kazde dwie pary startujace w turnieju graja ze soba dokladnie jeden raz. Warunek (R2)
méwi, ze kazda para gra (dokladnie jeden raz) w kazdej rundzie, za$ warunek (R3) méwi, ze kazda para
gra kazde rozdanie dokladnie jeden raz.

Oto przyktadowy kwadrat Rooma o boku 7. Opisuje on przebieg turnieju brydzowego, w ktérym startuje
8 par o numerach od 0 do 7.

0 1 2 3 4 ) 6
0 |{0,7}| @ g |({4,6}| o [{2,3}|{1,5}
1 |{2,6}|{1,7}| @& g |{0,5}| @ |{3,4}
{4,5} 1{0,3}[{2,7}| @ o |{1,6}| @
o {56} {1,4}|{3,7}| @ o |{0,2}
{1,3}| @ |{0,6}|{2,5}|{4,7}| @ &
g |{2,4}| = |{0,1}|{3,6}|{5,7}| @
1] g |{3,5}| @ |{1,2}|{0,4}|{6,7}

S | OV | W N

Opis turnieju zawarty w tym kwadracie nie jest kompletny. Mianowicie nalezy jeszcze ustali¢ na jakiej
linii (NS czy WE) gra kazda z par w danej rundzie. Ponadto ze wzgledéw organizacyjnych nalezy podaé
numer stotu, na ktérym dane pary graja ze soba oraz opisa¢ ruch kart miedzy stolikami. Te kwestie
wyjasnimy w dalszym ciggu.

Z warunkéw (R1) — (R3) wynika, ze liczba n jest nieparzysta. Powstaje naturalne pytanie, czy dla kazdej
liczby nieparzystej n istnieje kwadrat Rooma o boku n. Okazuje sig¢, ze jest to prawda dla n > 5.
Twierdzenia tego nie bedziemy tu dowodzié¢. Pokazemy natomiast konstrukcje kwadratow Rooma dla
liczb n pierwszych takich, ze n =3 (mod 4).

Niech n = 2m+1 i niech G bedzie grupa przemienng rzedu n. W dalszym ciagu bedziemy uzywaé znaku
+ jako symbolu dzialania w grupie G.

Starterem w grupie G nazywamy dowolny ciag par uporzadkowanych
((:rlvyl)v AR (xmvym))
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elementéw grupy G, spelniajacy nastepujace dwa warunki:

(1) A{z1,...,2mtU{y1,...,ym}t = G\ {0},
2) {z1—y1,Tm = Ym} U{y1 — 21, .. Y — 2} = G\ {0}

Starter ((ml, Y1)y -y (T ym)) nazywamy silnym starterem, jesli spelnia nastepujace warunki:

(3) Vie{l,...,m} (zi+y; #0),
(4) Vvi,j¢e{l,...,m} (z7é] = zi+yi7ézj+yj),

tzn. wszystkie sumy x; +y; (dlai=1,...,m) sa ré6znymi niezerowymi elementami grupy G.

Sumatorem dla startera ((21,y1), ..., (@m, ym)) nazywamy ciag (a1, ..., an) clementéw grupy G spel-
niajacy nastepujace warunki:

(5) Vie{l,...,m} (a; #0),

(M) {zi+an,..zm+an}U{yi+a,...,ym +an} = G\ {0}.

Inaczej méwiac, sumatorem nazywamy taki ciag (ag, ..., am) réznych, niezerowych elementéw grupy G,
ze ciag
((x14a1,91 +a1), .., (Tm + G, Y + am))
jest réwniez starterem w grupie G.
Przyktlady.

1. Ciag ((1,5), (4,6), (2,3)) jest silnym starterem w grupie addytywnej ciala Z;. Ciag (1,4,2) jest
sumatorem dla tego startera. Innym sumatorem jest ciag (4,2, 1).

2. Ciag ((1,2),(4,8),(5,10),(9,7),(3,6)) jest silnym starterem w grupie addytywnej ciala Zi;. Ciag
(8,10,7,6,2) jest sumatorem dla tego startera. Innym sumatorem jest ciag (4,5,9,3,1).

Twierdzenie. Jedli ciag ((xl,yl), cee (zm,ym)) jest starterem w grupie G rzedu n (przy czym n =
2m + 1) oraz ciag (ai, ..., a,) jest sumatorem dla tego startera, to istnieje kwadrat Rooma o boku n.

Dowdéd. Niech G = {go,91,---,9n-1}, Przy czym go = 0. Niech nastepnie co ¢ G oraz N = G U {o0}.
Definiujemy kwadrat Rooma R w nastepujacy sposéb:

{o0, g}, jeslii = j,
R(i,7) =  {9: + 2k, 9i +y}, Jjesli gi — g; = ax,
, jesli element g; — g, nie jest wyrazem sumatora (a1, ..., amn)

dlai,j € {0,...,n—1}.

Musimy wykazaé, ze tak zdefiniowana macierz R spelnia warunki (R1) — (R3). Najpierw policzymy
niepuste wyrazy macierzy R. Istnieje n wyrazéw postaci {00, ¢;}: leza one na przekatnej. Nastepnie dla
kazdego k istnieje n par (g;, g;) (a wiec i par (4, 7)) takich, ze g; — g; = ax. Mianowicie sa to pary

(90590 - ak)a C) (gnflvgnfl - ak)

(poniewaz ay # 0, wiec g; # g; — ak, czyli @ # j). Lacznie mamy wiec mn + n wyrazéw niepustych.
Poniewaz

5 = =n(m+1)=nm+n,

<n+ 1> _ n(n2+ 1) n(2n’;+ 2)
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wigc liczba wyrazéw niepustych jest réwna liczbie par nalezacych do zbioru P(NV). Dla dowodu warunku
(R1) wystarczy zatem pokazaé, ze kazda taka para jest wyrazem macierzy R.

ZauwazyliSmy juz, ze wszystkie pary postaci {oo,i} sa wyrazami macierzy R. Niech zatem g, h € G oraz
g # h. Z warunku (2) wynika, Ze istnieje w naszym starterze para (zy,yx) taka, ze

Tk —yy=9g—h lub yy—zp=9g—h

Jedlizy —yr =g—horaz g, =g —x,19; =g — o — axg, to g; — g; = ar i z definicji macierzy R wynika,
ze

R(i,5) ={gi + vk, 9i + yx} = {9, 9 — 2k +yu} = {9, 9 — (@x —yx)} ={9,9 — (9 — h)} = {g, h}.

Jesli natomiast g — h = yx, — a, to h — g = 2 — yx 1 w podobny sposéb pokazujemy, ze para {h, g} jest
wyrazem macierzy R.

Sprawdzamy teraz warunek (R2). Niech ¢ € {0,...,n — 1}. Mamy pokazaé, ze kazdy element zbioru
N wystepuje dokladnie jeden raz w wierszu i. Nietrudno zauwazy¢, ze w kazdym wierszu macierzy R
wystepuje doktadnie m + 1 wyrazdw niepustych; stad wynika, ze wystarczy pokazaé, iz kazdy element
zbioru N wystepuje co najmniej jeden raz w wierszu i. Oczywiscie co € {00,i} = R(i,4), wiec element
oo wystepuje w tym wierszu. Podobnie ¢; € R(i,4). Niech wiec teraz [ # i. Pokazemy, ze element g; tez
wystepuje w wierszu i.

Poniewaz g, — g; # 0, wiec istnieje liczba k € {1,...,m} taka, ze

g —gi=xr lub g — g =y,

czyli
g =gi+xr lub g =g+ y.

Niech j bedzie liczba taka, ze g; = g; — ar. Wtedy g; — g; = ax oraz

R(i, j) = {9i + zx, 9i + yi}-
Zatem g; € R(i,J).
Wreszcie sprawdzamy warunek (R3). Niech j € {0,...,n—1}. Znéw wystarczy pokazaé, ze kazdy element
zbioru N wystepuje co najmniej jeden raz w kolumnie j. Poniewaz R(j,j) = {o0, g;}, wiec elementy co
i g; wystepuja w tej kolumnie. Niech wiec [ # j. Pokazemy, ze element g; tez wystepuje w kolumnie j.
Oczywiscie g; — g; € G \ {0}, wiec z definicji sumatora wynika, ze istnieje liczba k taka, ze

g —9;=xk+tar lub g —gi =y +ak.

Niech i bedzie taka liczba, ze g; = g; + ar. Wtedy g; — g; = ay, oraz

R(i,7) = {9i + Tk, 9i + yr}-

Jesli g1 — g = xx + ax, to
g =9g; + Tk +ar =g + i € R, 7).

Jedli za$ g; — g; = yi + ax, to
g1 = gj + Yk +ar = gi +yr € R(4,7).
W obu przypadkach element g; wystepuje w kolumnie j. To konczy dowdd twierdzenia.
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Przypomnijmy teraz pojecie reszty i niereszty kwadratowej. Jesli p jest dowolna nieparzysta liczba pierw-
sza, to liczbe calkowita a nazywamy reszta kwadratowa modulo p, wtedy i tylko wtedy, gdy pta oraz
istnieje liczba calkowita z taka, ze

r?=a (mod p).

Jedli natomiast pfa oraz nie istnieje liczba catkowita z taka, ze 22 =a (mod p), to liczbe a nazywamy

niereszta kwadratowa modulo p. Resztami kwadratowymi sg wigc te elementy niezerowe ciala Z,,, ktére
sa kwadratami w tym ciele. Zbiér elementéw niezerowych ciata Z, oznaczamy symbolem Z;. Definiujemy
nastepnie tzw. symbol Legendre’a wzorem

a +1, jesli a jest reszta kwadratowa modulo p,
(—) =< —1, jedli a jest niereszta kwadratowa modulo p,
p 0, jeslip]|a.

W dalszym ciagu bedziemy korzystaé¢ z nastepujacych wlasnoéci reszt i niereszt kwadratowych:

1. w zbiorze Z,, istnieje p—;l reszt kwadratowych i ’72;1 niereszt kwadratowych,
2. jesli g jest generatorem grupy multyplikatywne;j Z;, to g' jest reszta kwadratows wtedy i tylko wtedy,

gdy wykladnik ¢ jest liczba parzysta,

(#)-()-()
AP P r)’
iloczyn reszt kwadratowych jest reszta kwadratowa,

iloczyn niereszt kwadratowych jest reszta kwadratowa,
. iloczyn reszty kwadratowej i niereszty kwadratowej jest niereszta kwadratowa,

N o Ut W

. jesli ab =1 w ciele Zj, to (%) = (%), czyli a jest reszta kwadratowa wtedy i tylko wtedy, gdy b jest
reszta kwadratowa,

8. (a—) —1,
p

9. (%1) = (71);%17 czyli liczba —1 jest reszta kwadratows modulo p wtedy i tylko wtedy, gdy p = 1

(mod 4),
10. jeslip=3 (mod 4), to a € Z; jest reszta kwadratowa modulo p wtedy i tylko wtedy, gdy —a jest
niereszta kwadratowa modulo p.

Pokazemy teraz konstrukcje starteréw i sumatoréw w pewnych grupach przemiennych.

Zalézmy, ze p jest liczba pierwsza oraz p > 3 1 p = 4q + 3. Wynika stad, ze liczba —1 jest niereszta kwa-
dratowa modulo p. Niech g bedzie generatorem grupy multyplikatywnej ciata Zj,. Definiujemy nastepnie

2%

Ti =4 Za
_29+1

Yi=4g

dlai =0,...,2q. Udowodnimy, ze ciag ((aco, Yo), - - (T2gs ygq)) jest silnym starterem w grupie addytywnej
ciata Zp.

Warunek (1) wynika stad, ze

{0, w20} U{yo, - 2} = {9”,- g™ ={g%....g" 7 ={1,....p— 1} =7, \ {O}.

Dla dowodu warunku (2) zauwazmy najpierw, ze
wi—yi = g% —g" T = g*(1 - g)

oraz _
Yi —Tp = 921(9 - 1)-
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Elementy ciala Z, postaci g% dla i = 0,...,2q sa wszystkimi resztami kwadratowymi modulo p w tym
ciele. Jesli g — 1 jest reszta kwadratows, to elementy x, —y; dla i = 0,...,2q sa wszystkimi resztami
kwadratowymi w ciele Z,, i elementy y; — x; sa wszystkimi nieresztami kwadratowymi w ciele Z,. Stad
wynika, ze acznie te réznice wyczerpuja caly zbiér Z,. Jedli zad g — 1 jest niereszta kwadratowa modulo
p, to elementy z; — y; sa wszystkimi nieresztami kwadratowymi i elementy y; — x; sa wszystkimi resztami
kwadratowymi w ciele Z,,, a wiec te réznice tez wyczerpuja zbiér Z;.

Warunki (3) i (4) wynikaja stad, ze '

zi+yi=g>(g+1).
Mianowicie g + 1 # 0, wiec z; +y; # 0 dla i = 0,...,2q. Ponadto, jesli z; + v; = z; + y;, to g** = g%/,
skad wynika, ze ¢ = j.

Przyktlady.
1. Liczba 5 jest generatorem grupy multyplikatywnej ciala Zr. Ponadto
50 =1,
5' =5,
5% =4,
5% =6,
51 =2,
5° = 3.

Zatem ciag ((1, 5), (4,6), (2, 3)) jest silnym starterem w grupie addytywnej ciata Zr.

2. Liczba 2 jest generatorem grupy multyplikatywnej ciata Zj;1. Ponadto

Zatem ciag ((1, 2),(4,8),(5,10),(9,7), (3, 6)) jest silnym starterem w grupie addytywnej ciata Zq;.

Przypuéémy teraz, ze dany jest dowolny silny starter ((zo, Yo), - - (T2q, ygq)) w grupie addytywnej ciala
Z,. Niech ciag (ao, ..., a2q) bedzie zdefiniowany wzorem ay = —x — yi dla k = 0, ..., 2q. Pokazemy, ze
ciag (ao,. ., azy) jest sumatorem dla tego silnego startera.

Z definicji silnego startera wynika, ze wyrazy tego ciaggu sa rézne i niezerowe. Mamy ponadto
Tk +Op = —Yr Oraz Y+ ax = —Tk,
skad wynika, ze
{zo+ ao,...,T2q +a2q} U{yo+ ao,...,Y2q + a2} = {—20,..., 22} U{—20,. .., —y2q} = Zp \ {0},
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co konczy dowdd.

Przyktady.
1. Ciag ((1, 5), (4,6), (2, 3)) jest silnym starterem w grupie addytywnej ciata Z;. Poniewaz

—1-5=-6=1 (mod7),
—4-6=-10=4 (mod 7),
—2-3=-5=2 (mod7),

wigc ciag (1,4,2) jest sumatorem dla tego startera.

2. Ciag ((1,2),(4,8),(5,10),(9,7),(3,6)) jest silnym starterem w grupie addytywnej ciala Z1;. Ponie-
waz

1-2=-3=8 (mod 11),
—4-8=-12=10 (mod 11),
—5—-10=-15=7 (mod 11),
—9—-7=-16=6 (mod 11),
—-3-6=-9=2 (mod 11),

wiec ciag (8,10,7,6,2) jest sumatorem dla tego startera.

W przypadku silnego startera zdefiniowanego wyzej w grupie addytywnej ciala Z, (gdzie p > 3 oraz
p =3 (mod 4)) mozemy wskazaé jeszcze jeden przyklad sumatora. Niech g bedzie generatorem grupy
Z,,. Wtedy g~! tez jest generatorem tej grupy. Zauwazmy takze, ze g # —1 oraz g% # —1.

Cwiczenie. Jesli (g + 1)(g? + 1) jest niereszta kwadratowa modulo p, to (g~ 4+ 1)(g=2 4 1) jest reszta
kwadratowa. W szczegdlnosci istnieje generator g grupy Z; o tej whasnodci, ze (g + 1)(g? + 1) jest reszta
kwadratowa modulo p.

Wezmy zatem taki generator g grupy Z,, ze (g+ 1)(g?+1) jest reszta kwadratowa modulo p i zdefiniujmy
ciag (ao, . . ., asy) wzorem aj, = g?**2 dla k = 0, ...,2q. Pokazemy, 7e ten ciag jest sumatorem dla startera

((¢°,9"), .- (870, g%7).

Oczywiscie wszystkie wyrazy ay sa niezerowe i rozne. Niech teraz ¢ # j. Pokazemy, ze
x; + a; ;éxj—i—aj.

Gdyby bowiem
r; +a; = x5 + aj,
to mieliby$my kolejno
g% 4GB = g g2
97 (9* +1) = g% (9* + 1),

9% = g%,
2i = 24,
i =],

co daje sprzeczno$¢. W podobny sposéb pokazujemy, ze jedli ¢ # j, to y; + a; # y; + a;. Pokazemy, ze
takze x; + a; # y; + a;. Przypudémy bowiem, ze

ziJrai:ijraj.
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Mamy wéwczas
g2 4 PR = g2l 22
97 (g* +1) = g7t (g + 1),
g7 (g +1)(g° +1) = g7 (g +1)%
Po lewej stronie réwnoéci mamy iloczyn dwéch reszt kwadratowych: g% oraz (g + 1)(g? + 1). Po prawej
stronie mamy natomiast iloczyn niereszty kwadratowej g2/ ! przez reszte kwadratowa (g+ 1)2. Zatem po

lewej stronie mamy reszte kwadratowa, a po prawej stronie niereszte, co jest niemozliwe. Udowodniliémy
wiec, ze zdefiniowany wyzej ciag (ao,. . .,a24) jest sumatorem.

Przyktlady.
1. Liczba 5 jest generatorem grupy Z;. Mamy przy tym

G+1)(5°+1)=6-26=6-5=30=2=3> (mod 7),

wiee (5+1)(5%+1) jest reszta kwadratowa modulo 7. Widzieliémy, ze z tego generatora otrzymali$my
ciag ((17 5),(4,6), (2, 3)), bedacy silnym starterem w grupie addytywnej ciata Zr;. Poniewaz

5% =4,
54 =
56 =1

w ciele Z7, wiec ciag (4, 2, 1) jest sumatorem dla tego startera. Z tego startera i sumatora otrzymujemy
nastepujacy kwadrat Rooma:

0 1 2 3 4 5) 6
0 |{c0,0}| @ g | {1,5}| @ |{4,6}]|{2,3}
1 | {3,4} |{0,1}| o s |{2,6}| @ |{0,5}
2 | {1,6} | {4,5} |{c0,2}| @ g |{0,3}| o
3 g |{0,2} | {5,6} |{c0,3}| & o | {1,4}
4 1{2,5}| o |{1,3}|{0,6} |{o0,4}| @ %}
5 g | {3,6}| @ |{2,4}]{0,1} |{cc,5}| @
6 & & {0,4} & {3,5} | {1,2} | {o0,6}

2. Liczba 2 jest generatorem grupy Z7,. Mamy przy tym
2+1)(2°+1)=3-5=15=4=2% (mod 11),

wige (2+1)(22+1) jest reszta kwadratowa modulo 11. Widzieli$my, Ze z tego generatora otrzymalismy
ciag ((1,2), (4,8),(5,10),(9,7), (3,6)) jest silnym starterem w grupie addytywnej ciata Z11. Poniewaz

22 =4,
24 =5,
20 —

?:,
waf



w ciele Zq1, wiec ciag (10,7,6,2,1) jest sumatorem dla tego startera. Z tego startera i sumatora
otrzymujemy nastepujacy kwadrat Rooma:

0 1 2 5 6 7 8 9 10
0 |[{o0,0}| @ |{510}| o %} {4,8} | {1,2} | {7,9} 1%} {3,6}
1 1{4,7 |{0,1}| @ {0,6} o o {5,9} | {2,3} |{8,10} o
2 & {5,8} |{0,2}| @ {1,7} ] & @ |{6,10}| {3,4} | {0,9}
3 |{1,10}| @ |{6,9} |{,3}| @ |{2,8}| @ @ o | {0,7} | {4,5}
4 | {5,6} | {0,2} g | {7,10} | {c0,4}| @ {3,9} o o o {1,8}
5 |4{2,9} | {6,7} | {1,3} 1] {0,8} |{c0,5}| @ [{4,10}| @& 1] 1]
6 o [{3,10}| {7,8} | {2,4} | @ | {1,9} |{c0,6}| @ |{0,5}| @ @
7 & & {0,4} | {8,9} | {3,5} g [{2,10}|{o0,7}| @ {1,6} &
8 1] 1] 1] {1,5} [{9,10}| {4,6} 1] {0,3} |{0,8}| & {2,7}
9 | {3,8} @ 2 @ {2,6} [{0,10}| {5,7} @ {1,4} |{o0,9} 2
10 1] {4,9} 1] 1] 1] {3,7} | {0,1} | {6,8} 1] {2,5} |{o0,10}

Zajmiemy sie teraz problemem przydzialu parom linii (NS lub WE), na ktérych maja graé¢ w kolejnych
rundach. Niech p bedzie liczba pierwsza taka, ze p > 3 oraz p = 4q¢ + 3. Niech g bedzie generatorem grupy
multyplikatywnej ciala Z,. Wiemy juz, ze ciag

((mOa yO)? SERE) (x2quQt]))7

gdzie _ _
x=g%, Y=gt

dlai=0,...,2q, jest silnym starterem w grupie addytywnej ciala Z,. Niech nastepnie ciag (ao, . .., a2)
bedzie sumatorem dla tego startera. Definiujemy uporzadkowany kwadrat Rooma

R:{0,...,p—1}* - (Z,U{p})?U{a}

wzorem
(p,1), jedli i = j,
R(i,j) =< (i +xk, i+ yk), jeslii—j=ay,
a, jesli ¢ — j nie jest wyrazem sumatora (ao, ..., a2q)

dlaz,7=0,...,p—1.

Liczby ze zbioru Z, U {p} = {0,...,p} sa numerami par startujacych w turnieju. Rozdania i rundy
turnieju sa numerowane liczbami od 0 dp p — 1. Jesli R(i,5) = (a,b), to pary o numerach a i b graja ze
soba rozdanie o numerze j w i-tej rundzie, przy czym para o numerze a gra na linii NS, a para o numerze
b gra na linii WE. Jesli natomiast R(i,j) = &, to rozdanie o numerze j nie jest wykorzystywane w i-tej
rundzie.

Doktadnie tak samo jak poprzednio mozemy pokazaé, ze uporzadkowany kwadrat Rooma R ma nastepu-

jace wlasno$ci:

(R1) dla dowolnych a,b € Z, U {p} takich, ze a # b dokladnie jedna z par (a,b) i (b,a) jest wyrazem
macierzy R, przy tym wystepuje w macierzy R w dokladnie jednym miejscu,

(R2) kazdy element zbioru N wystepuje dokladnie jeden raz w kazdym wierszu macierzy R,
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(R3) kazdy element zbioru N wystepuje dokladnie jeden raz w kazdej kolumnie macierzy R,

Jezeli pary o numerach a i b grajg rozdanie o numerze j na tej samej linii, to méwimy, ze sa poréwnywane
w tym rozdaniu. Udowodnimy, ze w zdefiniowanym wyzej uporzadkowanym kwadracie Rooma kazde dwie
pary sa poréwnywane w tej samej liczbie rozdan. Turniej o tej wlasnosci nazywamy zazwyczaj turniejem
zbalansowanym.

Definiujemy zatem nastepujaca funkcje
2
S Zp — {—1, +1}
wskazujaca, na jakiej linii para o umerze 4 gra rozdanie o numerze j:

S(i, §) +1, jesli para o numerze ¢ gra rozdanie o numerze j na linii NS,
1,7) = . . . . -
] —1, jesli para o numerze ¢ gra rozdanie o numerze j na linii WE

dla i,j € Zy. Z powyzszej definicji macierzy R wynika, ze

+1, jeslii=p,

—1, jeSlii#porazi=j,

+1, jeSlii#p,i+# joraz i —j = x + ai dla pewnego k,
, jeSlii#p,i#jorazi— j=yi+ ar dla pewnego k.

S(Z’]) =

MieliSmy do czynienia z dwoma sumatorami. Przyjrzyjmy sie teraz, jak wyglada funkcja S dla tych

sumatoréw. Niech najpierw sumator (ao, ..., a2q) bedzie zdefiniowany wzorem
i = —Ti —Yi
dla i = 0,...,2q. Wéwczas, jeli i — j = xp + ag, to i — j = —yi. Poniewaz y, — ¢?*T1, wiec yp jest
niereszta kwadratowa modulo p, a wiec —yy, jest reszta kwadratowa. Jesdli natomiast ¢ — j = yi + ag, to
i —j = —xp oraz —xy jest niereszta kwadratowa modulo p. Zatem definicje funkcji S mozemy zapisac¢
w postaci
+1, jesli i = p,
S(i,7) = -1, jesli i # p oraz i = j,
% , jeslii#porazi#j
dla i,j € Zp.
Drugi sumator (ao, ..., asq) byl zdefiniowany wzorem
a; — g2i+?

dlai=0,...,2¢. W tym przypadku wybieraliémy generator g w taki sposéb, by liczba (g + 1)(g® + 1)
byta reszta kwadratowa modulo p. Teraz, jesli ¢ — j = xx + ax, to mamy

l_J:$k+ak:g2k+g2k+2:ng(g2+1),

czyli
(i—3)g+1) =g"@g+1(g*+1).

Zatem (i — j)(g + 1) jest reszta kwadratowa modulo p. Jesli natomiast i — j = yx + a, to
i—j—yptap =gt 4 g% = g2 g+ 1),

czyli
(i—i)g+1) =g (g+1)
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Zatem (i — j)(g + 1) jest niereszta kwadratowa modulo p. Stad wynika, ze
11, jedli i = p,

-1, jesli i # p oraz i = j,
(%) : (%1) . jeslii £ porazi#j
dlai,j € Z,.

Udowodnimy teraz nastepujace twierdzenie.

Twierdzenie. Dla dowolnych u,w € Z, takich, ze u # w zachodzi réwnosé

Najpierw udowodnimy dwa lematy.
Lemat 1. W ciele Z, zachodzi réwno$é

0N

Jj=1

Dowéd. Réwnosé ta wynika stad, ze w zbiorze {1,2,...,p—1} jest tyle samo reszt kwadratowych modulo
p co niereszt kwadratowych modulo p.

Lemat 2. Jesli a € Z, oraz a # 0, to

—

() ()

bS]

<

Dowéd. Zauwazmy najpierw, ze

() (120) - (1) - B () B (),

=0 j=1 j=1 J=1

Zauwazmy nastepnie, ze jesli j przebiega liczby od 1 do p—1, to 1+aj~! przebiega (w ciele Z,) wszystkie

liczby rézne od 1. Zatem
p—1 .1 p—1 .
1 1
> (i) = (z) _ (_) S
P = \p P

Jj=1

co konczy dowdd lematu.

Dowéd twierdzenia. Musimy udowodnié¢ twierdzenie dla obu rozwazanych sumatoréw. Niech najpierw
ap = —xx — Yx. Wowczas mamy dwa przypadki:

Przypadek 1. Jedna z liczb u i w jest réwna p, np. u = p. Wtedy

§ (i) Stw.3) = 52 8ld) = 3 Sland) + Sl ) = 3 (=) -1- > (2)-1--1

=0 =0 AW AW
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Przypadek 2. u # p oraz w # p. Wtedy

p—1

ZS(U,])S(’LU,]) = Z S(“a])s(waj) +S(u,u)-5(w,u) —i—S(u,w)-S(w,w) =

j=0 jFu,w
=¥ S(u,j §+ (-1 (=2
= 3 S(uj) - S(w,j) + (-1 ( (L=
uw (( p

Il
~~
N
|
<.
~_
~
g
=
<
~_
Il

(Ostatnia ré6wno$é wynika z lematu 2.)

2k+2

Niech teraz ar, = g . Rozpatrujemy takie same dwa przypadki.

Przypadek 1. Jedna z liczb u i w jest rowna p, np. u = p. Wtedy

> S(u,5) - S(w,§) = S(w,j) =>_ S(w,j) + S(w,w) =
§=0 j=0 JFw

(5 (59 ()

Przypadek 2. u # p oraz w # p. Wtedy

Jj=1

£0)-

ZS(U J) Z S(u, j) - S(w, i)+ S(u,u) - S(w,u) + S(u,w) - S(w,w) =
=0 W

= > S(u,5)- S(w,j)+ (1) (w;u) ' (%) Hl)'(

u—w

S(w,j) + (1) (921) ((wpu) +(
b (“f)-(ij)(gll):

I
HNg
n
<
<

11

p

U — W
p

)=

)

g+1

p

)



Dowdd twierdzenia jest wiec zakonczony.

Udowodnione twierdzenie mowi, ze kazde dwie pary graja 2q+ 1 rozdan na tej samej linii i 2¢+ 2 rozdania
na przeciwnych liniach, a wiec sg porownywane w tej samej liczbie rozdan.

Przyktlady.

1. Ze startera ((1, 5), (4,6), (2, 3)) i sumatora (4,2,1) w grupie addytywnej ciala Z; otrzymujemy na-

stepujacy uporzadkowany kwadrat Rooma:

2. Ze startera ((17 2),(4,8),(5,10),(9,7), (3, 6)) i sumatora (10,7, 6,2, 1) w grypie addytywnej ciala Z1;

1 2 | 3 5 | 6
0 (7.0 o (1,5)| @ |(4,6)](2,3)
1 {647 z [(2,6)| @ [(50)
2 1(6,1)|(4,5](7.2)] @ | @ |(38,0] @
3 0,2)|(5,6)|(7,3)| @ | @ |41
4 16,2 2 [(1,3)]6,0)(7,4)| o

5 6,3)| @ |(2,4)](0,1)](7,5)

6 z [(0,4)] @ [3,5)]1,2)](7.6)

otrzymujemy nastepujacy uporzadkowany kwadrat Rooma:

0 1 2 3 ) 6 7 8 9 10
0 [(11,0)] @ |(510)| @ 1] (4,8) | (1,2) | (9,7) 1] (3,6)
1| @7 |, o | (6,0 @ g |59 (23)](10,8)| @
2 g |58 (11,2 o |(7,1)]| @ @ 1(6,10)] (3,4) | (0,9
3 (1,100 @ |69 |(11,3)] @ | (82) %) z | (7,0) | (4,5)
4 15,6 | (2,00 @ |(7,100/(11,4)]| @ |(9,3)| @ @ z | (81)
5 109,2) | (6,7) | (3,1) 1] (8,0) | (11,5)| @ |(10,4)| @ 1] %]
6 @ [(10,3)| (7,8) | (4,2 g |91 |11,6)| @ |05 | @
7 @ g 10,4893 | @ [10,2)|a1,7)| @ | (1,6
8 & (1,5) [(9,10)] (6,4) | & | (0,3) |(11,8)| & | (2,7)
9 | 3,8 @ | (2,6)](10,0)| (7,5 o | (1,4) (11,9 o
10 g |49 ]| o @ g | 3,7]0,1)] @86 | @ |25 1110

Ostatnim problemem organizacyjnym jest numeracja stoléw i opis sposobu poruszania si¢ par i rozdan
w kolejnych rundach. Stoliki, przy ktérych toczy sie gra numerujemy kolejnymi liczbami, pozostawia-
jac miedzy tymi stolikami miejsce na rozdania niewykorzystane w danej rundzie; te miejsca nazywamy
zbiornicami. Para o najwyzszym numerze gra przez caly czas na stoliku numer 1 na linii NS. Wszystkie
pozostate pary poruszaja sie wedlug tego samego schematu; jego opis nazywamy karta pilotujaca. A oto
otrzymane karty pilotujace turniejéw dla 8 i 12 par:
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IWE —— 3WE —— 2WE —— 3NS
] 11— 72«72«27+« 3+4 k

2NS — 4NS — 4WE

IWE — 2WE —— 5NS —— 3WE —— 5WE —— 6WE
] 11— 72«2« 7+«7«-7+—3—4—5«—7+<6 k

4NS «—— 4WE —— ©6NS ««—— 3NS — 2NS

Na zakonczenie wspomnimy jeszcze, ze jesli istnieje turniej zbalansowany dla n par, to liczba n jest
podzielna przez 4. Nietrudny dowdd tego faktu pozostawimy Czytelnikowi jako ¢wiczenie.
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