UNIVERSALLY MEAGER SETS, II

PIOTR ZAKRZEWSKI

Abstract. We present new characterizations of universally meager sets, shown in [11] to be a category analog of universally null sets. In particular, we address the question of how this class is related to another class of universally meager sets, recently introduced by Todorcevic [10].

1. Introduction

In this note we continue the study of universally meager sets undertaken in [11]. Suppose that A is a subset of a perfect (i.e. with no isolated points) Polish (i.e. separable, completely metrizable) topological space X. We say that A is universally meager ($A \in \text{UM}$, see [11], [1] and [2]), if for every Borel isomorphism between X and the Cantor space 2^ω (or equivalently, a perfect Polish space Y – see [11]) the image of A is meager in 2^ω (or in Y, respectively) (this class of sets was earlier introduced and studied by Grzegorek [3], [4], [5] under the name of absolutely of the first category sets). We say that A is perfectly meager ($A \in \text{PM}$), if for all perfect subsets P of X, the set $A \cap P$ is meager relative to the topology of P. Both UM and PM may be seen as category analogs of the class of universally null sets, i.e., such sets $A \subseteq X$ that for every Borel isomorphism between X and 2^ω the image of A is null in 2^ω, though by the results of [11] it is perhaps more accurate to view universally meager sets in this role. Clearly, $\text{UM} \subseteq \text{PM}$ and under the Continuum Hypothesis or Martin's Axiom the inclusion is proper. On the other hand various examples of uncountable perfectly meager sets that can be constructed in ZFC (see [7]) turn out to be universally meager and in fact Bartoszyński [1] proved that it is consistent with ZFC that $\text{UM} = \text{PM}$.

Recently, Todorcevic [10] defined another notion of universally meager sets in a much broader setup. Recall that a topological space Y is a Baire space if every nonempty open subset of Y is non-meager in Y (see [6, 8.B]). Recall also that a function f defined on a topological space Y is nowhere constant if it not constant on any nonempty open subset of Y. Let us say that a subset A of a topological space
X is universally meager in the sense of Todorcevic if for every Baire space Y and continuous nowhere constant map $f : Y \to X$ the preimage $f^{-1}[A]$ is meager in Y. Todorcevic makes the remark that this is a smallness property very much reminiscent of the notion of a perfectly meager set. Actually we will establish the following connection with universally meager sets (note, however, that under a large cardinal assumption no uncountable set of reals is universally meager in the sense of Todorcevic – see [10]):

Theorem 1.1. For a subset A of a perfect Polish space X, the following are equivalent:

1. $A \in \text{UM}$.
2. For every second countable space Y and continuous nowhere constant map $f : Y \to X$ the preimage $f^{-1}[A]$ is meager in Y.
3. For every Polish space Y and continuous nowhere constant map $f : Y \to X$ the preimage $f^{-1}[A]$ is meager in Y.

Another smallness property has recently been studied by Nowik and Reardon [8]. Let $H_B[U|BP]$ be the collection of all sets $A \subseteq X$ with the property that for every subset B of A and Borel map $f : 2^\omega \to X$ the preimage $f^{-1}[B]$ has the Baire property (BP) in 2^ω. A slight modification of the proof of 1.1 gives the following answer to a question from [8].

Theorem 1.2. For a subset A of a perfect Polish space X, the following are equivalent:

1. $A \in \text{UM}$.
2. For every second countable Baire space Y, subset B of A and Borel map $f : Y \to X$ the preimage $f^{-1}[B]$ has the Baire property in Y.
3. For every Polish space Y, subset B of A and Borel map $f : Y \to X$ the preimage $f^{-1}[B]$ has the Baire property in Y.

As a matter of fact, the conditions formulated in Theorems 1.1 and 1.2 are easily seen to be sufficient for $A \in \text{UM}$ and the more difficult part is to prove that they are also necessary. On the other hand, a considerable weakening of these conditions still suffices. Recall that the Baire space ω^ω is the unique, up to homeomorphism, nonempty Polish zero-dimensional space for which all compact subsets have empty interior (see [6, 7, 7]). Our main result is:

Theorem 1.3. For a subset A of a perfect Polish space X, the following are equivalent:

1. $A \in \text{UM}$.
2. For every continuous bijection $f : \omega^\omega \to X$ the preimage $f^{-1}[A]$ is meager in ω^ω.
(3) For every subset B of A and continuous bijection $f : \omega^\omega \to X$ the preimage $f^{-1}[B]$ has the Baire property in ω^ω.

In the rest of the paper we always assume that A is a subset of a perfect Polish space X. We will sometimes use the notation $\langle X, \tau \rangle$ to indicate which topology is being considered at the moment. The relative topology of a subspace $Z \subseteq X$ will be denoted $\tau|Z$. The σ-algebra of all Borel subsets of a topological space Y will be denoted by $\mathcal{B}(Y)$ (or $\mathcal{B}(\tau)$, where τ is the topology of Y, if there is a need to be more specific). The collection of all meager subsets of Y will be denoted by $\mathcal{M}(Y)$ (or $\mathcal{M}(Y, \tau)$, if needed).

2. Characterizations of UM

The proofs of Theorems 1.1 and 1.2 are based on the following lemma.

Lemma 2.1. Suppose that $f : Y \to X$ is Borel map defined on a second countable Baire space Y. If $A \in \text{UM}$ and the fibers $f^{-1}([x])$ of all $x \in A$ are meager in Y, then the preimage of A is meager in Y.

Proof. This is a refinement of the proof of [11, Theorem 2.1, (iii) \Rightarrow (i)].

Assume that $A \in \text{UM}$ and let $Z = f^{-1}[A]$. We are going to prove that $Z \in \mathcal{M}(Y)$.

Let us first convince ourselves that with no loss of generality we may assume that Y is dense in itself. To see this, let $P = \overline{Z}$. If $P \in \mathcal{M}(Y)$, then we are done. Otherwise, let $U = \text{Int}(P)$ and note that U is a nonempty open set hence a Baire subspace of Y. Since $Z \setminus U \subseteq P \setminus U \in \mathcal{M}(Y)$, it suffices to prove that $Z \cap U \in \mathcal{M}(Y)$. However, since U is open, a subset of U is meager in Y if and only if it is meager in U. In particular, $f^{-1}([x]) \cap U \in \mathcal{M}(U)$ for all $x \in A$ and it is enough to prove that $Z \cap U \in \mathcal{M}(U)$. Finally, note that U has no isolated points. Indeed,

$z \in f^{-1}([f(z)]) \in M(Y) \text{ for all } z \in Z,$

which shows that points of Z are not isolated and it follows that the same is true for points of $U = \text{Int}(Z)$. This means that by replacing Y with U and f with $f|U$ we reduce the problem to the “dense-in-itself” case.

Suppose now that $Z \notin \mathcal{M}(Y)$. Define a σ-ideal \mathcal{I} in $\mathcal{B}(A)$ by letting

$B \in \mathcal{I} \iff f^{-1}[B] \in \mathcal{M}(Y), \text{ for } B \in \mathcal{B}(A).$

Note that \mathcal{I} is indeed a σ-ideal in $\mathcal{B}(A)$, since $A \notin \mathcal{I}$ and the fact that $f^{-1}([x]) \in \mathcal{M}(Y)$ for all $x \in A$ implies that \mathcal{I} contains all singletons. Let $\mathcal{J} = \mathcal{M}(Y) \cap \mathcal{B}(Z)$; \mathcal{J} is a σ-ideal in $\mathcal{B}(Z)$ (note again that $Z \notin \mathcal{J}$ and it follows from (\ast) that \mathcal{J} contains all singletons). Now the function f induces a complete embedding of the Boolean algebra $\mathcal{B}(A)/\mathcal{I}$ into the algebra $\mathcal{B}(Z)/\mathcal{J}$. We claim that $\mathcal{B}(Z)/\mathcal{J} \cong \mathbb{C}$, the unique, up to an isomorphism, complete, atomless Boolean algebra with a countable
dense subset. The point is that the assumption that Y is a second countable Baire space without isolated points is enough to conclude (see [12, Lemma 2.2]), that:

- $\mathbf{B}(Y)/(\mathcal{M}(Y) \cap \mathbf{B}(Y)) \cong \mathbf{C},$
- $\mathbf{B}(Z)/\mathcal{I} \cong \mathbf{B}(Y)/(\mathcal{M}(Y) \cap \mathbf{B}(Y)).$

It follows that the algebra $\mathbf{B}(A)/\mathcal{I}$ is also isomorphic to \mathbf{C} being (isomorphic to) its complete subalgebra with no atoms. This, however, contradicts [11, Theorem 2.1 (vi)].

\qed

Proof of theorem 1.1. First assume that $A \in \text{UM}$ and let $f : Y \to X$ be a continuous nowhere constant map defined on a second countable Baire space Y. Note that since Y is a Baire space and f is continuous the condition that f is nowhere constant simply means that its fibres at all points of X are meager in Y. Then by lemma 2.1 the preimage $f^{-1}[A]$ is meager in Y.

Next assume that $A \not\in \text{UM}$. Then by [11, Theorem 2.1 (i)] there is a Borel one-to-one function $f : Z \to A$ defined on a set $Z \not\in \mathcal{M}(X)$; by dropping countably many points, if necessary, we may assume that Z is dense in itself. By Kuratowski's theorem (see [6, 3, 8]) extend f to a continuous function $g : Y \to X$ defined on a G_δ subset of X such that $A \subseteq Y \subseteq \overline{G}$. Then Y is a Polish space in the relative topology, g is nowhere constant on Y and the preimage $f^{-1}[A]$ is not meager in Y (we even have $f^{-1}[A] \not\in \mathcal{M}(X)$ since $Z \subseteq f^{-1}[A]$).

\qed

Proof of theorem 1.2. First assume that $A \in \text{UM}$ and let $f : Y \to X$ be a Borel map defined on a second countable space Y; it is enough to prove that the set $f^{-1}[A]$ has the Baire property in Y. Let $A_1 = \{x \in X : f^{-1}[x] \not\in \mathcal{M}(Y)\}$ and $A_2 = A \setminus A_1$. Notice that A_1 is countable, so $f^{-1}[A_1]$ is Borel. On the other hand, the fibres of f at all points of A_2 are meager in Y, so by lemma 2.1 we have $f^{-1}[A_2] \in \mathcal{M}(Y)$. I follows that the set $f^{-1}[A] = f^{-1}[A_1] \cup f^{-1}[A_2]$ has the BP in Y. This proves that (1) \Rightarrow (2).

Implications (2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious.

So finally assume that $A \in H_{\mathbf{B}}[U[\text{BP}]]$ and let $g : 2^\omega \to X$ be a Borel isomorphism between the Cantor space and X. By (4), the preimage $f^{-1}[B]$ has the BP in 2^ω for every $B \subseteq A$. But this, g being a bijection, means that $f^{-1}[A]$ has the BP hereditarily, which in turn is equivalent to the fact that $f^{-1}[A] \in \mathcal{M}(2^\omega)$.

\qed

As another corollary of 2.1 we have the following “Reclaw style” (see [9]) characterization of UM.

Proposition 2.2. For a subset A of a perfect Polish space X, the following are equivalent:

- $A \in \text{UM}$
- $X \setminus A$ is perfectly meager in X.
- There is a Borel $g : X \to 2^\omega$ such that $g^{-1}[A]$ has the BP in 2^ω.

\qed
(1) $A \in \text{UM}$.

(2) For every Polish space Y and a Borel set $B \subseteq X \times Y$ with every section B^x countable, if for each $x \in A$ the section B_x is meager in Y, then the union $\bigcup_{x \in A} B_x$ is meager in Y.

Proof. Use the fact that by the Lusin-Novikov theorem (see [6, 18.10]) B can be written as the countable union of graphs of Borel functions $f_n : \text{proj}_Y(B) \to X$.

The proof of Theorem 1.3 is based on the following lemma.

Lemma 2.3. Let τ be the topology of X (making it a perfect Polish space) and assume that $\overline{\nu} \supseteq \tau$ is a Polish topology on X.

If $C \subseteq X$ is countable, then there exists a countable disjoint collection \mathcal{P} of subsets of X such that:

1. each $Q \in \mathcal{P}$ is a perfect subset of the space $\langle X, \tau \rangle$,
2. each $Q \in \mathcal{P}$ is a F_{σ} nowhere dense subset of the space $\langle X, \overline{\nu} \rangle$,
3. $C \subseteq \bigcup \mathcal{P}$.

Proof. Let $C = \{c_n : n \in \mathbb{N}\}$. We are going to define inductively a sequence $\langle Q_n : n \in \mathbb{N} \rangle$ of subsets of X so that the family $\mathcal{P} = \{Q_n : n \in \mathbb{N}\}$ satisfies the requirements of the lemma. At step n let $X_n = X \setminus \bigcup_{i < n} Q_i$ (hence $X_0 = X$). If $c_n \notin X_n$, then let $Q_n = Q_{n-1}$. Otherwise, working in the space $\langle X, \tau \rangle$ fix a sequence $\langle U_k : k \in \mathbb{N} \rangle$ of pairwise disjoint open subsets of X_n converging to c_n (in the sense that if $x_k \in U_k$ for each k, then $\lim_{k \to \infty} x_k = c_n$). Next, working in the space $\langle X, \overline{\nu} \rangle$, in each U_k find a nowhere dense homeomorphic copy C_k of the Cantor set (this is possible since $B(\overline{\nu}) = B(\tau)$, so U_k is an uncountable Borel subset of $\langle X, \overline{\nu} \rangle$). Finally, let $Q_n = \bigcup_{k \in \mathbb{N}} C_k$. It is easy to see that this works.

Note that continuous bijections from the Baire space ω^ω onto a given perfect Polish space $\langle X, \tau \rangle$ correspond to topologies $\tau' \supseteq \tau$ on X such that the space $\langle X, \tau' \rangle$ is homeomorphic to ω^ω. Thus the following result is actually an equivalent formulation of Theorem 1.3 restated in the form in which we are now going to prove it (compare [11, Theorem 2.1 (iv)]).

Theorem 2.4. For a subset A of a perfect Polish space $\langle X, \tau \rangle$, the following are equivalent:

1. $A \in \text{UM}$.
2. A is meager in every Polish topology $\tau' \supseteq \tau$ such that the space $\langle X, \tau' \rangle$ is homeomorphic to ω^ω.
3. Every subset B of A has the Baire property in every Polish topology $\tau' \supseteq \tau$ such that the space $\langle X, \tau' \rangle$ is homeomorphic to ω^ω.
Proof. Only implication (2) \(\Rightarrow \) (1) requires a proof. So assume that \(A \not\subset \text{UM} \). By [11, Theorem 2.1(iv)], there is a topology \(\tau_1 \) on \(X \) such that \(\langle X, \tau_1 \rangle \) is a perfect Polish space, \(B(\tau_1) = B(\tau) \) and \(A \not\subset \mathcal{M}(X, \tau_1) \).

Since the identity function from \(\langle X, \tau_1 \rangle \) to \(\langle X, \tau \rangle \) is Borel, by Kuratowski’s theorem ([6, 8.38]) there is a dense \(G_\delta \) subset \(G \) of \(\langle X, \tau_1 \rangle \) such that \(\tau_1 | G \supseteq \tau | G \). By further shrinking \(G \), if necessary, we may also assume that the space \(\langle G, \tau_1 | G \rangle \) is homeomorphic to \(\omega^\omega \). Let \(\tau_G = \tau_1 | G \).

Then \(A \cap G \not\subset \mathcal{M}(X, \tau_1) \) hence also \(A \cap G \not\subset \mathcal{M}(G, \tau_G) \) and without loss of generality in the rest of the proof we assume that \(A \subseteq G \).

Next let \(\tau_2 \supseteq \tau \) be a Polish topology on \(X \) such that \(B(\tau_2) = B(\tau) \) and \(G \) is clopen in \(\tau_2 \) (see [6, 13.1]). Then \(X \setminus G \) is also clopen in \(\tau_2 \) so the topology \(\tau_2 \) \((X \setminus G) \) is Polish.

Let \(X \setminus G = P \cup C \) be the Cantor-Bendixon decomposition of the space \(\langle X \setminus G, \tau_2 \rangle \) \((X \setminus G) \) (see [6, 6.4]). Since the space \(\langle P, \tau_2 | P \rangle \) is perfect, there is a topology \(\tau_P \supseteq \tau_2 | P \) on \(P \) such that the space \(\langle P, \tau_P \rangle \) is homeomorphic to \(\omega^\omega \) (see [6, 7.15]).

Let \(\mathfrak{P} \) be the direct sum of the topologies \(\tau_G \) on \(G \), \(\tau_P \) on \(P \) and \(\tau_C \) on \(C \). Clearly, \(\mathfrak{P} \supseteq \tau \) and \(\mathfrak{P} \) is a Polish topology on \(X \). Apply Lemma 2.3 to get a collection \(\mathcal{P} \) of subsets of \(X \) satisfying the conditions of the lemma. Note that since \(\bigcup \mathcal{P} \) is a \(F_\sigma \) nowhere dense subset of \(\langle X, \tau \rangle \), the space \(\langle G \cup P \setminus \bigcup \mathcal{P}, \mathfrak{P} | (G \cup P \setminus \bigcup \mathcal{P}) \rangle \) is homeomorphic to \(\omega^\omega \). Also, since each \(Q \in \mathcal{P} \) is a perfect subset of the space \(\langle X, \tau \rangle \), there is a topology \(\tau_Q \supseteq \tau | Q \) on \(Q \) such that the space \(\langle Q, \tau_Q \rangle \) is homeomorphic to \(\omega^\omega \).

Finally, let \(\tau' \) be the direct sum of the topology \(\mathfrak{P} | (G \cup P \setminus \bigcup \mathcal{P}) \) and the respective topologies \(\tau_Q \) for all \(Q \in \mathcal{P} \). Clearly, \(\tau' \supseteq \tau \) and the space \(\langle X, \tau' \rangle \) is homeomorphic to \(\omega^\omega \). Moreover, \(\tau' | (G \cup \bigcup \mathcal{P}) = \tau_G | (G \setminus \bigcup \mathcal{P}), A \not\subset \mathcal{M}(G, \tau_G) \) and \(G \setminus \bigcup \mathcal{P} \) is a dense \(G_\delta \) subset of \(\langle G, \tau_G \rangle \). It follows that \(A \setminus \bigcup \mathcal{P} \not\subset \mathcal{M}(G, \tau_G) \) hence \(A \not\subset \mathcal{M}(X, \tau') \) which is what we wanted to prove.

\[\square \]

References

Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

E-mail address: pioracz@impan.pl