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Wyktlad 13. Lemat Kuratowskiego-Zorna.

W wyktadzie 10 wspomnielismy o lemacie Kuratowskiego-Zorna — twierdze-
niu, podajacym pewien warunek dostateczny istnienia elementu maksymalnego
w danym zbiorze czesciowo uporzadkowanym. Twierdzenie to ma liczne zastosowa-
nia w wielu dziatach matematyki, gdzie wykorzystuje sie je w dowodach istnienia
roznych obiektow matematycznych. Mianowicie, czasem okazuje sie, ze szukany
obiekt jest wlasnie elementem maksymalnym pewnego zbioru czesciowo uporzad-
kowanego. Wtedy problem istnienia tego obiektu sprowadza sie do pytania o to,
czy w danym zbiorze istnieje element maksymalny. W tym wykladzie zetkniemy

sie z kilkoma tego rodzaju sytuacjami.

Przypomnijmy, ze tancuchem w zbiorze X, czeSciowo uporzadkowanym przez
relacje =< nazywamy dowolny podzbior L C X liniowo uporzadkowany przez relacje

= |L, w szezegdlnosei podzbior pusty.

Twierdzenie 13.1. (Lemat Kuratowskiego-Zorna). Niech X bedzie niepu-
stym zbiorem czesciowo uporzadkowanym przez relacje <. Zalézmy, ze kazdy tan-
cuch w zbiorze X ma ograniczenie gorne w X. Wtedy w zbiorze X istnieje element

maksymalny.

W celu lepszego zrozumienia dowodu, przedstawimy tu jego dwa warianty.
Pierwszy z nich opiera sie bezposrednio na twierdzeniu Zermelo (zob. twierdzenie
12.13), drugi — korzysta jedynie z gléwnego lematu (zob. lemat 12.18) uzytego
w jego dowodzie. W dalszej czesci tego wyktadu podamy jeszcze jeden dowod
lematu Kuratowskiego-Zorna, oparty na twierdzeniu o definiowaniu przez indukcje

pozaskonczona.

Wprowadzmy teraz oznaczenia, ktérych bedziemy uzywaé w obu wariantach
dowodu. Dla dowolnego lancucha L w zbiorze X (dopuszczamy przypadek, gdy
L = @) oznaczmy przez b(L) zbiér wszystkich ograniczen gérnych zbioru L; na

mocy zalozen lematu Kuratowskiego-Zorna mamy b(L) # @ (w szczegolnosci,

o) = X).

Niech f: P(X) \ {X} — X bedzie funkcja, spelniajaca nastepujace dwa wa-

runki:
(1) f(A) € X\ A, dla dowolnego A ¢ X,
(2) f(L) €b(L)\ L, oile L jest tancuchem w X oraz b(L) \ L # @.
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Zatem funkcja f przyporzadkowuje kazdemu wlasciwemu podzbiorowi zbioru X
pewien element jego dopelnienia. Dodatkowo, jesli podzbior ten jest tancuchem
w X, to funkcja f wybiera pewne jego ograniczenie gérne, o ile tylko jest to
mozliwe (tzn. wtedy, gdy w ogdle ma on ograniczenie gorne, ktére do niego nie
nalezy). Funkcje taka tatwo znalez¢ biorac najpierw dowolna funkcje wyboru ¢ dla

rodziny wszystkich niepustych podzbioréw zbioru X, a nastepnie definiujac

F(4) = g(b(A)\ A), jesli A jest tancuchem w X oraz b(A) \ A # @,
g(X\A), w przeciwnym przypadku.

W obu wariantach dowodu wykorzystamy nastepujaca obserwacje.

Lemat 13.2. Niech X bedzie zbiorem czesciowo uporzadkowanym przez relacje
= 1 niech L bedzie niepustym tancuchem w X, dla ktorego w zbiorze X istnieje
ograniczenie gorne. Jesli kazde ograniczenie gorne zbioru L w X nalezy do L
(tzn. (L) C L), to zbiér L ma element najwiekszy i jest on zarazem elementem

maksymalnym zbioru X.

Dowéd. Niech # € X bedzie dowolnym ograniczeniem gornym tancucha L.
Z zalozenia wynika, ze € L, wiec x jest elementem najwiekszym w L. Ponadto,
gdyby istniat element y € X taki, ze * < y, to bylby on takze ograniczeniem

gornym L oraz y € L — otrzymalibysmy sprzecznosé. W

Dowéd lematu Kuratowskiego-Zorna — wariant 1.

Z twierdzenia Zermelo (zob. twierdzenie 12.8) wynika, ze istnieje doktadnie
jeden dobry porzadek < zbioru X, zgodny z funkcja f. W zbiorze X mamy wiec
teraz relacje dobrego porzadku < oraz relacje czesciowego porzadku <, ktora spet-
nia zatozenia lematu Kuratowskiego-Zorna. Dla unikniecia nieporozumien, pojecia
zwiazane z porzadkami poprzedzamy symbolami odpowiednich relacji (np. element

»=-maksymalny” lub ,,<-najmniejszy”).

Odcinek poczatkowy (w sensie porzadku <), wyznaczony przez element a €
X, bedziemy tu oznacza¢ symbolem O<(a). Zatem O<(a) = {z € X : =z < a}.
Ponadto, symbolem D<(a) bedziemy oznacza¢ ,domkniety” odcinek poczatkowy
O<(a) U {a}. Zatem D<(a) ={r € X : v < a}.

Rozpatrzmy teraz dwa przypadki.
Przypadek 1. Porzadek < jest liniowy.
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Wtedy caty zbior X jest =<-lanicuchem i jego <-ograniczenie gorne jest oczy-

wiscie elementem <-maksymalnym (a nawet <-najwiekszym) zbioru X.

Przypadek 2. Porzadek < nie jest liniowy.

Rozwazmy woéwezas zbior YV, zdefiniowany nastepujaco
Y ={y € X : odcinek D<(y) nie jest =<-taiicuchem w X}.
Twierdzimy, ze Y # @. Pokazemy nawet troche wiecej:

Lemat 13.3. Jesli zbior Z C X nie jest <-tancuchem, to ZNY # @.

Dowdéd. Skoro zbior Z nie jest <-lancuchem, to istniejg <-nieporownywalne
elementy =,y € Z. Oczywiscie elementy te sa <-porownywalne; niech na przyktad
r <y. Wtedy z,y € D<(y), a poniewaz z i y sa <-nieporéwnywalne, wiec zbior
D<(y) nie jest <-taiicuchem. Stad y € ZNY, co konczy dowdd lematu. W

Powracamy do dowodu lematu Kuratowskiego-Zorna. Zatem Y # @ i niech
a; bedzie <-najmniejszym elementem zbioru Y. Niech Ly = O<(ay). Zauwazmy,
ze skoro a1 € Y, to |D<(ay)| > 2, wiec Ly # @. Z lematu wynika, ze zbiér Ly jest

=-tancuchem; w przeciwnym razie L1 NY # @, co przeczy wyborowi elementu ay.
Twierdzimy, ze b(L1) € Ly i z lematu 13.2 wynika, ze zakoneczy to dowod.

Przypusémy wiec, ze b(L1)\ L1 # @. Wtedy f(L1) € b(L1)\ Ly. Ale porzadek
< jest zgodny z funkcja f, wiec f(L1) = a1, a stad ay € b(L1)\ L1. To oznacza, ze

Vy eIy (y = al)
1 w szczegolnosei, zbidr D<(ay ) jest <-tancuchem. Zatem ay € Y, whrew zalozeniu.

Pierwszy wariant dowodu lematu Kuratowskiego-Zorna jest tym samym za-

konczony. W

Dowé6d lematu Kuratowskiego-Zorna — wariant II.

Niech R bedzie rodzina wszystkich zbiorow A C X takich, ze relacja < |A
jest dobrym porzadkiem zbioru A, zgodnym z funkcja f. W szczegolnosci, kazdy
zbior A € R jest zgodny z funkcja f 1 dla dowolnego @ € A zachodzi réwnosc
a = f(Oala)), gdzie Oa(a) = {x € A: x < a} jest odcinkiem poczatkowym

wyznaczonym w zbiorze A przez element a. Zauwazmy, ze {f()} € R.
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Niech Ly = |JR; z lematu 12.18 wynika, ze porzadek < |Ls jest zgodny
z funkcja f. Zatem Ly € R; w szczegolnosci, zbior Ly jest <-tancuchem. Ponadto,
Ly # @, gdyz f(@) € Ly. Dowdd, tak jak w wariancie I, zakonczymy pokazujac,
ze b(Lz) C Ls.

Przypusémy wiec, ze b(L2) \ Ly # @. Wowezas f(Lz) € b(Ly) \ La. Niech
ay = f(Lz) oraz A = Ly U {ay}. Zauwazmy, ze A € R, gdyz zbiér A jest dobrze
uporzadkowany przez relacje < oraz L = O4(az) (az jest elementem najwiekszym
w zbiorze A). Stad jednak, na mocy definicji zbioru Ly, mamy A C Ly i w szcze-

golnosci ag € Lo, co daje sprzecznosc.

Tym samym drugi wariant dowodu lematu Kuratowskiego-Zorna jest zakon-

czony. N

Uwaga. W obu wariantach dowodu znalezliSmy ten sam, zalezacy tylko od

wyboru funkeji f, element maksymalny zbioru X.

Istotnie, niech ponownie < bedzie dobrym porzadkiem zbioru X, zgodnym

z funkcja f. Zachowajmy oznaczenia z obu wariantow dowodu.

Jesli Ly = X, to w szczegolnosci zbior X jest liniowo uporzadkowany przez
relacje <1 jedynym elementem <-maksymalnym zbioru X jest jego element <-naj-

wiekszy.

Jesli Ly # X, to skoro Ly € R, z lematu 12.16 wynika, ze Ly jest odcinkiem
poczatkowym w X w sensie porzadku <. Zatem Ly = O<(ay), gdzie as = f(L2).
W szczegdlnosei, jesli @ < ag, to D<(x) C Lg; zbiér D<(x) jest wiec <-tancuchem,
a zatem r < ay. Wynika stad, ze a; < ay, czyli Ly C L. Ale w trakcie dowodu
pokazalismy, ze elementami <-maksymalnymi w X sg elementy m; = max<IL,
1 mp = max< Ly, czyli <-najwigksze elementy, odpowiednio, zbioréw L oraz L.

Skoro jednak Lo C Ly, to my < my, a stad my = ma.

Zastosowania lematu Kuratowskiego-Zorna.

Pokazemy teraz kilka zastosowan lematu Kuratowskiego-Zorna. W rozpatry-
wanych przyktadach X jest pewna rodzing zbiorow, a < — relacja zawierania w ro-
dzinie X. W takich sytuacjach przydatny bywa nastepujacy wniosek z lematu

Kuratowskiego-Zorna.
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Twierdzenie 13.4. Niech X' bedzie niepusta rodzing zbiorow, czesciowo uporzad-
kowana przez relacje zawierania. Zalézmy, ze suma kazdego niepustego tancucha

w X nalezy do rodziny X'. Wtedy w rodzinie & istnieje element maksymalny.

Dowdd. Oczywiscie, jesli L jest taicuchem w X, to zbiér D = | L zawiera
kazdy ze zbiorow nalezacych do tancucha L; jeshi wiec D € X', to zbior D jest
ograniczeniem gornym tancucha £ w rodzinie X'. Wynika stad, ze spelnione sa
zalozenia lematu Kuratowskiego-Zorna: ograniczeniem gérnym dowolnego niepu-
stego tancucha w A’ jest jego suma, a tancuch pusty jest ograniczony z gory przez

kazdy element zbioru X'. Zatem w rodzinie X’ istnieje element maksymalny. W

Pierwszy przyktad zastosowania lematu Kuratowskiego-Zorna dotyczy alge-

bry liniowe;.

Niech V' bedzie przestrzenig liniowa nad ciatem K (zgodnie z ogdlnie przyjeta
definicja zakladamy, ze V # @). Przypomnijmy, ze wektory vy, vz,...,v, (gdzie
v; # v;, oile © # j) przestrzeni V nazywamy wektorami liniowo niezaleznymi,

jesli dla dowolnego ciggu tq,t5, ..., 1, elementow K, z tego, ze
tl-vl —|—t2v2—|——|—tnvn:0

wynika, ze
ti1=t,=...=1, =0.

W takim przypadku moéwimy tez, ze zbidr wektoréw {vy,vq,...,v,} jest zbiorem
liniowo niezaleznym. Ogdlnie, zbiér wektoréw przestrzeni V nazywamy zbiorem
liniowo niezaleznym, jesli kazdy jego skonczony podzbidr jest liniowo niezalezny

(przyjmujemy, ze pusty zbior wektoréow jest liniowo niezalezny).

Jesli zbior B C V jest liniowo niezalezny 1 kazdy element przestrzeni V jest
kombinacja liniowa pewnych wektorow ze zbioru B, to B nazywamy baza prze-
strzeni V. Problem istnienta bazy w dowolnej przestrzeni liniowej mozna sprowa-
dzi¢ do rozpatrywanego w tym wyktadzie zagadnienia istnienia elementow maksy-
malnych w zbiorach czesciowo uporzadkowanych dzieki nastepujacej znanej 1 ta-
twej do udowodnienia charakteryzacji: zbior B C V jest bazqg przestrzens V wtedy
i tylko wtedy, gdy B jest maksymalnym (w sensie zawierania) podzbiorem liniowo

niezaleznym tej przestrzend.

Twierdzenie 13.5. Kazda przestrzen liniowa ma baze. Co wiecej, kazdy zbidr
liniowo niezalezny w przestrzeni V nad cialem K jest zawarty w pewnej bazie tej

przestrzeni.
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Dowdd. Niech A bedzie dowolnym liniowo niezaleznym podzbiorem przes-
trzeni V (jesli chcemy udowodnié istnienie jakiejkolwiek bazy, to mozemy przyjac,
ze A = @). Niech X' bedzie rodzina wszystkich liniowo niezaleznych podzbioréw
przestrzeni V', zawierajacych zbior A, czeSciowo uporzadkowang przez relacje in-
kluzji. Checemy pokazac, ze w rodzinie & istnieje element maksymalny — bedzie on
szukana bazg przestrzeni V. Zbior X jest niepusty, gdyz A € X'. Pokazemy, ze spel-
nia on zalozenia lematu Kuratowskiego-Zorna, a scislej, jego wersji sformutowane;]

w twierdzeniu 13.4.

Niech wiec £ bedzie tancuchem w zbiorze X. Rodzina £ sklada sie zatem ze

zbiorow liniowo niezaleznych 1 ma nastepujaca wtasnosc:
Al,AQE,C = (Al gAQ\/AQgAl).

Cheemy pokazaé, ze zbior C = | J £ nalezy do X'. Oczywiscie A C C, wiec wystar-
czy pokazaé, ze zbior C' jest liniowo niezalezny. Wybierzmy wiec skonczenie wiele
wektoréw vy, vq,...,v, € C (zakladamy, ze v; # v;, o ile ¢ # j). Istnieja wtedy
zbiory A1, Ay, ..., A, nalezace do L takie, ze

UlEAl, UQEAQ,..., vy € A,

Zbior L jest jednak zbiorem liniowo uporzadkowanym przez relacje inkluzji, a wiec
wsrod zbiorow Aj, As, ..., A, jest zbiér najwiekszy; niech A; bedzie tym najwiek-
szym zbiorem. Wtedy

V1, V2, ..., 0, € A;.

Zatem zbidr {vy,va,...,v,} jest skoniczonym podzbiorem zbioru liniowo niezalez-

nego A;, jest wiec liniowo niezalezny.

Pokazalismy, ze kazdy skonczony podzbior zbioru C' jest liniowo niezalezny —
sam zbior C jest wiec tez liniowo niezalezny. Zatem C' € X'. Skoro suma kazdego
lancucha w X' nalezy do X, to z lematu Kuratowskiego-Zorna (zob. twierdzenie
13.4) wynika, ze w rodzinie X istnieje element maksymalny; jest on szukana baza

przestrzeni V. W

Drugi przyktad tez pochodzi z algebry. Przypomnijmy (zob. przyklad 9.14,
punkt (4)), ze idealem w pierscieniu P = (P,0,1,+,-) nazywamy zbiér I C P
majacy nastepujace dwie wlasnosci:

(1) jelia,be I, toa+bel,
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(2) jeSlia eI orazbée P,toa-bel.

Przykladem ideatu jest zbior {0}. Ideal I nazywamy idealem wladciwym, je-
sli I # P. Ideal wlasciwy I nazywamy idealem maksymalnym, jesli nie jest

zawarty w zadnym innym ideale wlasciwym pierscienia P.

Twierdzenie 13.6. Kazdy ideal wlasciwy I w pierscieniu P jest zawarty w

pewnym ideale maksymalnym.

Dowdéd. Niech X bedzie rodzina wszystkich idealow wlasciwych pierscienia
P zawierajacych ideal I, czesciowo uporzadkowang przez relacje inkluzji. Checemy
pokazac, ze w rodzinie X’ istnieje element maksymalny — bedzie on szukanym ide-
alem maksymalnym pierscienia P. Zbior X jest niepusty, gdyz I € A. Pokazemy,
ze spelnia on zalozenia lematu Kuratowskiego-Zorna, a scislej, jego wersji sformu-

towanej w twierdzeniu 13.4.

Niech wiec £ bedzie tancuchem w zbiorze A'. Rodzina £ sklada sie zatem

z idealow pierscienia P 1 ma nastepujaca wlasnosé:
Il,IQE,C = (Il QIQ\/IZQIl).

Cheemy pokaza¢, ze zbiér J = | J £ nalezy do X. Oczywiscie I C J, wiec wystarczy
pokazac, ze zbidr J jest idealem wlasciwym. Musimy wiec sprawdzi¢, ze J # P

oraz ma on wilasnosci (1) i (2).

Zauwazmy najpierw, ze ideal I pierscienia P jest wlasciwy wtedy 1 tylko
wtedy, gdy 1 € I. Poniewaz wszystkie idealy nalezace do lancucha £ sg wlasciwe,
wiec 1 & J.

(1) Niech a,b € J. Istnieja wtedy idealy I i Iy nalezace do L takie, ze a € I3
oraz b € Iy. Bez straty ogolnosci mozemy przyjac, ze Iy C Ir. Wtedy a, b € I,
skad wynika, ze a + b € I,. Zatem a4+ b € J.

(2) Niech a € J i b € P. Istnieje wtedy ideal I} € L taki, ze a € I,. Wtedy
a-be I, skad wynika, ze a- b € J.

Pokazalismy, ze zbior J jest idealem. Zatem I € X. Skoro suma kazdego
lancucha w X' nalezy do X, to z lematu Kuratowskiego-Zorna (zob. twierdzenie

13.4) wynika, ze w rodzinie X istnieje element maksymalny. W
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Nastepny przyktad pochodzi z teorii mnogosci. Udowodnimy zapowiadane
pod koniec wykltadu 6 twierdzenie, ktore pozwala poréwnywaé dowolne zbiory pod
wzgledem liczby elementow. Doktadniej, dla danych zbioréw A, B chcielibysmy

stwierdzi¢, ze |A| < |B|, badz ze |B| < |A|. Zauwazmy, ze mamy tu znéw do

1—1
czynienia z problemem istnienta: pytamy, czy istnieje funkcja hy : A —— B

1—1
badz funkcja hy : B —— A. Okaze sie, ze 1 ten problem uda sie sprowadzié
do zagadnienia istnienia elementu maksymalnego w pewnym zbiorze czesciowo

uporzadkowanym.

Twierdzenie 13.7. Dla dowolnych zbioréw A i B zachodzi co najmniej jedna
z dwéch nieréwnosci |A| < |B| lub |B| < |A].

Dowdd. Rozwazmy zbior X skladajacy sie z funkeji f o nastepujacych wita-

snosciach:
(1) Dy C 4;
(2) Ry € B;
3. f jest réznowartosciowa.
Zbior X jest niepusty, gdyz nalezy do niego funkcja pusta. Poniewaz jego
elementy sa podzbiorami zbioru A x B, wiec X jest rodzina zbiorow, czesciowo

uporzadkowana przez relacje inkluzji. Zauwazmy, ze dla funkcji f, ¢ € X mamy:
f C g wtedy i tylko wtedy, gdy ¢|Ds = f.

Zatem funkcja ¢ jest wieksza w rozpatrywanym sensie od funkeji f, jesli jest jej
wlasciwym przedluzeniem. Wynika stad, ze funkcja i € X jest elementem mak-
symalnym w zbiorze X wtedy 1 tylko wtedy, gdy nie mozna jej dalej przedtuzyc
w sposéb roznowartosciowy do funkeji o dziedzinie zawarte] w A i zbiorze wartosci

zawartym w B. Pokazemy, ze zachodzi to jedynie wtedy, gdy Dy = A lub R, = B.

Dla dowodu zalézmy najpierw, ze D, = A lub rg(h) = B oraz ¢ jest dowolnym

roznowartosciowym przediuzeniem funkeji h, takim ze D, C A oraz R, C B.
Jesli Dy, = A, to z inkluzji D, € D, C A wynika, ze D, = Dy, a stad g = h.

Jesli Ry, = B, to z inkluzji Ry € R, C B wynika, ze R, = B. Przypus¢my
teraz, ze Dy & Dy 1 wezmy dowolny element a; € D, \ Dj. Skoro R, = B, to
istnieje element ay € Dy, taki ze h(az) = g(a1). Ale ¢|Dy, = h, wiec h(az) =

Wryktad 13, wersja 27.10.2004 13 -8



W. Guzicki, P. Zakrzewski, Wyklady ze wstepu do matematyki. Wprowadzenie do teorii mnogosci.

g(az). WskazaliSmy wiec dwa rozne elementy a1 i aq, dla ktérych g(az) = g(aq),
co przeczy roznowartosciowosci funkeji ¢g. Zatem 1 w tym przypadku musi byc

D, = Dy, skad g = h.

Teraz zalozmy, ze funkcja h € X jest elementem maksymalnym w zbiorze X.
Przypadek, ze D), # A1 Rj, # B jest wowczas niemozliwy. Przypusémy bowiem, ze
a € A\ Dy, oraz b € B\ R,. Wtedy zbiér hU{(a, b)} jest funkcja réznowartosciowa,

nalezaca do zbioru X 1 wiekszg od h, co przeczy maksymalnosci h.

Pokazalismy wiec, ze funkcja h € X jest elementem maksymalnym w zbiorze
X wtedy 1 tylko wtedy, gdy Dy, = A lub R;, = B. Jesli jednak D = A, to wowczas
1

oczywidcie h 1 A —— B, co dowodzi, ze |A| < |B|. Jedli natomiast Ry = B, to

1-1
wtedy h™!: B —— A, co z kolei pokazuje, ze |B| < |A|.

1—1
Na odwrot, jesli [A| < |B|ihy : A —— B, to hy € X oraz Dy, = A, wicc
funkcja hq jest elementem maksymalnym w zbiorze X; jesli natomiast |B| < |A|
1—1
ihy:B—— A to hy ' € X oraz Ry,-1 = B, zatem funkcja hy ! jest elementem

maksymalnym w X.

Nasze zadanie sprowadza sie zatem do wykazania, ze w zbiorze X istnieje

element maksymalny.

Sprawdzimy zalozenia lematu Kuratowskiego-Zorna (w wersji z twierdzenia
13.4). Niech wiec L bedzie laiicuchem w zbiorze X. Zbiér L sklada sie zatem

z funkcji nalezacych do zbioru X 1 ma nastepujaca wlasnosé:

fi.fz2el = (fiCfaVvfaCfh)

Chcemy pokazac, ze zbiér h = | J L nalezy do X.

Oczywiscie, zbior h jest relacja o dziedzinie lewostronnej zawarte] w A 1 dzie-
dzinie prawostronnej zawarte) w B. Wystarczy wiec sprawdzic, ze h jest funkcja

oraz, ze jest to funkcja réoznowartosciowa.

Zeby udowodnié, ze relacja h jest funkeja, wezmy dowolne pary (z,y1) i (z,y2)
nalezace do h 1 majace ten sam poprzednik z. Istnieja wtedy funkeje f1, f2 nalezace

do L takie, ze (x,y1) € f1 oraz (x,ys) € fa. Zbiér L jest jednak zbiorem liniowo
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uporzadkowanym przez relacje inkluzji, a wiec jedna z funkcji f1, fo zawiera druga.
Wiynika stad, ze (x,y1), (x,y2) € f, gdzie f € X jest wieksza z funkeji fi, f2. Ale
wtedy y1 = f(x) oraz y2 = f(x), a stad y; = y2. Pokazalismy wiec, ze relacja h
jest funkcja.

Zeby pokazac, ze funkeja h jest réznowartosciowa, wezmy dowolne pary (x1,y)
i (x2,y) nalezace do h i majace tym razem ten sam nastepnik y. Podobnie jak po-
przednio stwierdzamy, ze (x2,y), (x1,y) € f dla pewnej funkeji f € X. Ale wtedy
y = f(x1) oraz y = f(x2), a stad 1 = x9, gdyz funkcja f jest réznowartosciowa.
Pokazalismy wiec, ze funkcja h jest réoznowartosciowa, co konczy dowod tego, ze

h e X.

Skoro suma kazdego tanicucha w X nalezy do X, to z lematu Kuratowskiego-
Zorna (zob. twierdzenie 13.4) wynika, ze w zbiorze X istnieje element maksymalny.
Jak stwierdzilismy wezesniej, dowodzi to, ze |A| < |B| lub |B| < |A]. N

Jeszcze innym ciekawym zastosowaniem lematu Kuratowskiego-Zorna w teorii
mnogosci jest oparty na nim pomystowy dowodd wspomnianego w wyktadzie 7
twierdzenia Hessenberga, mowiacego, ze kazdy zbior nieskonczony T' ma te wlas-

nosc, ze T'x T ~ T. Dowdd ten pokazemy w dodatku E.

Jeszcze jeden dowéd lematu Kuratowskiego-Zorna.

Przedstawimy teraz obiecany szkic alternatywnego dowodu lematu Kuratow-
skiego-Zorna. Poniewaz oparty jest on na twierdzeniu o definiowaniu przez indukeje
pozaskonczona, wydaje sie pouczajace przeprowadzenie go najpierw przy dodatko-
wym zalozeniu, ze X = N. W tym przypadku wystarczy skorzysta¢ z twierdzenia

o indukeyjnym definiowaniu ciagéw okreslonych na N — por. twierdzenie 4.15).

Przyktad 13.8 (Indukcyjny dowdd lematu Kuratowskiego-Zorna dla X = N).

Zaltézmy wiec, ze = jest relacja czesciowego porzadku w zbiorze N, ktora
spelnia zalozenia lematu Kuratowskiego-Zorna. Oprocz tego w N mamy tez ,,zwyk-
la” relacje dobrego porzadku <. Dla unikniecia nieporozumien, pojecia zwigzane

z porzadkami bedziemy ponownie poprzedza¢ symbolami odpowiednich relacji.

Idea szukania elementu maksymalnego jest w tym przypadku bardzo prosta.
Przegladamy kolejno liczby naturalne, zgodnie z porzadkiem <, poszukujac ele-

mentu <-maksymalnego.
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Definiujemy wiec przez indukeje zero-jedynkowy ciag (a,)neny W nastepujacy

Sposob.

Przyjmujemy ag = 1. Przypuscmy nastepnie, ze n > 0 1 mamy juz zdefinio-
wane wyrazy dg,...,a,—1. Jesli k < n dla wszystkich k£ < n, takich ze ax = 1, to

przyjmujemy a, = 1; w przeciwnym przypadku a,, = 0. Dokladnie;j:
(P)  ap =1,
(R)an =¢({ar : k <n)),
gdzie funkeja
v :{0,1}" —{0,1},

o ktorej mowa w twierdzeniu 4.15 o definiowaniu ciagdéw przez indukceje, okreslona

jest wzorem

e({ay : k< n)) = {L jesliVk <n (a(k)=1=k <n),

0, w przeciwnym przypadku.

To konezy indukeyjng definicje ciagu (a, : n € N).

Zatem przypisanie jedynki w n-tym kroku konstrukeji indukeyjnej nastepuje
w przypadku, gdy liczba n jest <-wieksza od tych wszystkich liczb <-mniejszych od
n, ktorym weczesniej przypisalismy jedynke. W tym momencie n staje sie naszym
kandydatem na poszukiwany element <-maksymalny zbioru N. Okaze sie, ze jeden
(=-najwiekszy) ze wskazanych ta droga kandydatéw rzeczywiscie jest elementem

<-maksymalnym.

Niech wiec L = {n € N: a, = 1}. Zauwazmy, ze zbiér L jest =<-tancuchem.
Mianowicie, jesli k,n € L1 k < n, to k < n. Istotnie, skoro a; = a, = 1 oraz
k < n, to musi by¢ k < n, gdyz w przeciwnym wypadku, zgodnie z warunkiem (R)

1 definicja funkcji ¢, bytoby a, = 0.

Z zalozenia lematu Kuratowskiego-Zorna wynika zatem, ze zbior L jest <-og-
raniczony z gory — niech liczba n bedzie jego dowolnym =<-ograniczeniem gérnym.
Twierdzimy, ze n € L. Istotnie, jesli n = 0, to n € L. Jesli zag n > 0, to w szcze-
golnosci k < n dla kazdego k € L, takiego ze k < n, gdyz n jest <-ograniczeniem

gornym zbioru L. Ale wtedy, zgodnie z warunkiem (R), a, = 1, czyli znéw n € L.

Pokazalismy wiec, ze dowolne <-ograniczenie gorne tancucha L jest jego ele-
mentem. Stad 1 z lematu 13.2 wnioskujemy, ze w zbiorze N istnieje element <-mak-

symalny. W
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Przyktad 13.9 (Indukcyjny dowdd lematu Kuratowskiego-Zorna).

Zalézmy teraz, ze = jest relacja czesciowego porzadku w niepustym zbiorze
X, ktora spelnia zatozenia lematu Kuratowskiego-Zorna. Z twierdzenia Zermelo
wynika, ze istnieje relacja < dobrze porzadkujaca zbior X. W zbiorze X mamy wiec
relacje dobrego porzadku < oraz relacje czesciowego porzadku <; pojecia zwiazane

z tymi z porzadkami znéw bedziemy poprzedzac¢ symbolami odpowiednich relacji.

Idea szukania elementu maksymalnego jest taka sama, jak w rozpatrywanym
wezesnie] przypadku, gdy X = N. Dobry porzadek < spelnia te role, ktora poprzed-
nio odgrywat zwykty dobry porzadek w N. Mianowicie, przegladamy kolejno, zgod-

nie z porzadkiem <, elementy zbioru X, poszukujac elementu <-maksymalnego.

Doktadniej, niech zg bedzie <-najmniejszym elementem zbioru X. Definiu-
jemy przez indukcje pozaskonczona ciag pozaskonczony b : X — {0,1} typu (X, <)

za pomoca nastepujacych warunkow:

{h(l’o) = 1,
h(z) = ¢(h|O<(z)), dla z > z¢,

gdzie funkeja
o |J 10.139<@ — {o,1},
rE€X
o ktérej mowa w twierdzeniu o definiowaniu przez indukcje pozaskonczong (zob.

twierdzenia 12.11), jest okreslona wzorem

H(h|O<(z)) = { L jesliVy <o (h(y)=1=y <),

0, w przeciwnym przypadku.

Zatem w x-tym kroku konstrukeji indukeyjnej przypisujemy elementowi x € X
jedynke wtedy 1 tylko wtedy, gdy element = jest <-wiekszy od tych wszystkich
elementow <-mniejszych od z, ktorym weczesniej przypisalismy jedynke. W tym
momencie element z staje sie naszym kandydatem na poszukiwany element <-mak-
symalny zbioru X. Okaze sie, ze jeden (=-najwiekszy) ze wskazanych ta droga

kandydatow rzeczywiscie jest elementem <-maksymalnym w X.

Niech wiec L = {z € X : h(x) = 1}. Zauwazmy, ze zbiér L jest =<-taricuchem
w X. Mianowicie, jesli y,x € Liy <z, to y < x. Istotnie, skoro h(z) = h(y) =1
oraz y < x, to musi by¢ y < x, gdyz w przeciwnym wypadku, zgodnie z definicja
indukcyjna, bytoby h(x) = 0.
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Z zalozenia lematu Kuratowskiego-Zorna wynika zatem, ze zbior L jest <-og-

raniczony z gory — niech element x bedzie jego dowolnym =<-ograniczeniem gérnym.

Twierdzimy, ze * € L. Istotnie, jesli * = x¢, to @ € L. Jesli zas x > xg,
to w szczegolnosci y < x dla kazdego y € L, takiego ze y < x, gdyz x jest

=<-ograniczeniem gérnym zbioru L. Ale wtedy h(x) =1, czyli znéw « € L.

Pokazalismy wiec, ze dowolne <-ograniczenie gorne tancucha L jest jego ele-

mentem. Z lematu 13.2 wynika, ze konczy to dowod. W

Uwaga. Na koniec zauwazmy, ze powyzsze rozumowanie ma Scisty zwigzek
z dowodem lematu Kuratowskiego-Zorna, przeprowadzonym przez nas wczesnie]

(por. dowdd twierdzenia 13.1).

Zachowajmy oznaczenia ze sformutowania twierdzenia 13.1 1 obu wariantow
jego dowodu. Dobry porzadek < jest wiec zgodny z pewna funkcja f, o ktorej
zakladamy, ze kazdemu =<-taiicuchowi L w zbiorze X takiemu, ze b(L)\ L # @,

przyporzadkowuje jego ograniczenie gorne
F(L) = ming (b(L) \ L),

<-wieksze od wszystkich jego elementéw (w szczegdlnosci, f(@) = min<X = zg

jest elementem <-najmniejszym zbioru X).

Nietrudno teraz zauwazy¢, ze skonstruowany powyzej <-tanicuch L = {z €
X : h(x) = 1} nalezy do rodziny R. Istotnie, z konstrukeji wynika, ze < |L =< |L
oraz © = f({y € L:y < a}) dla kazdego « € L.

Jesli ponadto L # X, to L = O<(a), gdzie a = f(L). Réwnoczesnie a ¢ L,

czyli h(a) = 0. Oznacza to, ze istnieje element y < a taki, ze y £ a.

Wynika stad, ze zbior L jest najwiekszym, w sensie inkluzji, elementem ro-
dziny R. Istotnie, niech A € R oraz L C A. Wtedy porzadek < |A jest zgodny z
funkeja f 1z lematow 12.16 1 12.17 wnioskujemy, ze zbior A jest odcinkiem poczat-
kowym zbioru X w sensie porzadku < oraz < |4 =< |A. Gdyby wiec L& A, to
a = f(L) € A imusialaby zachodzi¢ nieréwnosé y < a, whrew wyborowi elementu

y. Tym samym pokazalismy wiec, ze L = Ls.
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