Logic homework #4

due November 5, 2019

Recall that, given a satisfiable set $T \subseteq Form$, the Lindenbaum-Tarski algebra B(T) consists of the set \mathcal{A} (its universe) of all the equivalence classes of the relation of logical equivalence under T (i.e., $\alpha \equiv_T \beta$ iff $T \models (\alpha \Leftrightarrow \beta)$) with distinguished elements **0** and **1**, binary operations +, \cdot and the unary operation - defined as follows ($[\alpha]$ is the equivalence class of α under \equiv_T):

$$\mathbf{0} = [p \land \neg p], \mathbf{1} = [p \lor \neg p]$$
$$[\alpha] + [\beta] = [\alpha \lor \beta],$$
$$[\alpha] \cdot [\beta] = [\alpha \land \beta].$$
$$-[\alpha] = [\neg \alpha].$$

Exercise 1. Prove that the structure $B(T) = \langle \mathcal{A}, \mathbf{0}, \mathbf{1}+, \cdot, - \rangle$ is isomorphic to the structure $\mathbb{B} = \langle \mathcal{B}, \emptyset, X, \cup, \cap, ' \rangle$ (' denotes the unary operation of taking the complement) for a certain field $\mathcal{B} \subseteq \mathcal{P}(X)$ of subsets of the set X of all models $\nu : Var \to \{0, 1\}$ of T.

Exercise 2. Let \mathcal{B} be a field of subsets of a non-empty set X.

Let $Var = \{p_A : A \in \mathcal{B}\}$ (where $p_A \neq p_B$ if $A \neq B$) and let *Form* be the set of propositional formulas over the set of propositional variables Var. Let $\nu : Var \rightarrow \mathcal{B}$ be the identity valuation in \mathcal{B} , i.e., $\nu(p_A) = A$ for every $A \in \mathcal{B}$. Let $\bar{\nu} : Form \rightarrow \mathcal{B}$ be the unique extension of ν (defined in exercise 4 of Logic homework #3).

Let $T = \{ \alpha \in Form : \overline{\nu}(\alpha) = X \}$. Prove that the structure $\mathbb{B} = \langle \mathcal{B}, \emptyset, X, \cup, \cap, ' \rangle$ (' denotes the unary operation of taking the complement) is isomorphic to the Lindenbaum–Tarski algebra B(T).

In Exercises 3 and 4 (on the next page) let \mathcal{A} be the universe of the Lindenbaum-Tarski algebra $\mathbb{A} = B(\emptyset)$ (so \mathcal{A} consists of all the equivalence classes of the relation of logical equivalence). Define a binary relation \leq on \mathcal{A} as follows:

 $[\alpha] \leq [\beta]$ iff the formula $(\alpha \Rightarrow \beta)$ is a tautology.

Exercise 3. Prove that \leq is a partial order on \mathcal{A} with the following properties:

- 1. \mathcal{A} has the smallest element **0** and the largest element **1**,
- 2. (\mathbb{A}, \leq) is a lattice, i.e., for every $\alpha, \beta \in Form$ there is the smallest upper bound and the greatest lower bound of the set $\{[\alpha]_{\equiv}, [\beta]_{\equiv}\}$ in \mathcal{A} .

A non-empty set $\mathcal{F} \subseteq \mathcal{A}$ is called a *filter in* \mathbb{A} if it satisfies the following conditions:

- 1. $\mathbf{0} \notin \mathcal{F}$,
- 2. $[\alpha], [\beta] \in \mathcal{F}$ implies $[\alpha] \cdot [\beta] \in \mathcal{F}$,
- 3. $[\alpha] \in \mathcal{F}$ and $[\alpha] \leq [\beta]$ implies $[\beta] \in \mathcal{F}$.

If, moreover, for every $\alpha \in F$ either $[\alpha] \in \mathcal{F}$ or $-[\alpha] \in \mathcal{F}$, then \mathcal{F} is called an *ultrafilter in* \mathbb{A} .

Exercise 4. Let $\mathcal{F} \subseteq \mathcal{A}$ and $S = \{\alpha \in Form : [\alpha] \in \mathcal{F}\}$. Prove that \mathcal{F} is a filter in \mathbb{A} if and only if S is consistent (equivalently, S is satisfiable) and is closed under logical consequences (i.e., for every $\alpha \in Form$, $S \models \alpha$ implies $\alpha \in S$). Moreover, \mathcal{F} is an ultrafilter in \mathbb{A} if and only if S is consistent, closed under logical consequences and complete (i.e., for every $\alpha \in Form$, either $\alpha \in S$ or $\neg \alpha \in S$).