Logic homework #3

due October 29, 2019

Recall that a family \mathcal{F} of subsets of a non-empty set X is called a *filter on* X if it satisfies the following properties:

- if $A \in \mathcal{F}$ and $A \subseteq B$, then $B \in \mathcal{F}$ (\mathcal{F} is upward closed),
- if $B_1 \in \mathcal{F}$ and $B_2 \in \mathcal{F}$, then $B_1 \cap B_2 \in \mathcal{F}$ (\mathcal{F} is closed under finite intersections),
- $\emptyset \notin \mathcal{F}$ (\mathcal{F} is a proper filter).

If, moreover,

• if $A \subseteq X$, then either $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$,

then a filter \mathcal{F} is called an *ultrafilter* on X.

Exercise 1. Prove that if a set X is finite, then:

- (i) every filter on X has the form $\mathcal{F} = \{B \subseteq X : A \subseteq B\}$ for a certain $A \subseteq X$ (such a filter is called the principal filter generated by A),
- (ii) every ultrafilter on X is a principal filter on X generated by a singleton.

Exercise 2. Prove that a filter on a set X is an ultrafilter on X iff it is a maximal (proper) filter on X.

Exercise 3. With the help of the Kuratowski-Zorn Lemma prove that every filter on a set X can be extended to an ultrafilter on X. As a consequence, show that on every infinite set X there exists a non-principal ultrafilter.

Exercise 4. Let *Form* be the set of propositional formulas over a fixed set *Var* of propositional variables. Let \mathcal{A} be a field (an algebra) of subsets of a nonempty set X. Let us call an arbitrary function $\nu : V \to \mathcal{A}$ a valuation in \mathcal{A} . By induction on formulas ν can be uniquely extended to a function $\bar{\nu} : Form \to \mathcal{A}$ such that for every $\alpha, \beta \in Form$:

- 1. $\bar{\nu}(\neg \alpha) = X \setminus \bar{\nu}(\alpha),$
- 2. $\bar{\nu}(\alpha \lor \beta) = \bar{\nu}(\alpha) \cup \bar{\nu}(\beta),$
- 3. $\bar{\nu}(\alpha \wedge \beta) = \bar{\nu}(\alpha) \cap \bar{\nu}(\beta),$
- 4. $\bar{\nu}(\alpha \Rightarrow \beta) = (X \setminus \bar{\nu}(\alpha)) \cup \bar{\nu}(\beta),$
- 5. $\bar{\nu}(\alpha \Leftrightarrow \beta) = X \setminus (\bar{\nu}(\alpha) \bigtriangleup \bar{\nu}(\beta)).$

Prove that if $\alpha \in Form$ is a tautology, then $\overline{\nu}(\alpha) = X$.