Zadania z kombinatoryki – seria 1.

1. Podaj interpretację kombinatoryczną wzoru

\[1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \binom{n+1}{2}. \]

2. Na płaszczyźnie mamy \(n \) prostych takich, że żadne dwie nie są równoległe i żadne trzy nie przecinają się w jednym punkcie.
 a) Ile jest punktów przecięcia tych prostych?
 b) Na ile części te proste dzielą płaszczyznę?

3. Ile elementów ma zbiór

\[\{(x,y,z) : 1 \leq x,y,z \leq n+1, z > \max\{x,y\}\}. \]

Wyprowadź stąd wzór

\[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}. \]

Wyprowadź w podobny sposób wzory na sumę

\[1^k + 2^k + 3^k + \ldots + n^k \]

dla \(k \) równego 3 i 4 (a może i większych...).

4. Mamy dane odcinki o długościach od 1 do \(n \) (po jednym odcinku każdej długości). Ile różnych trójkątów można zbudować z tych odcinków? Inaczej, ile jest trójkątów nierównoboczych, których boki mają długość będącą liczbą naturalną nie większą od \(n \)?

5. Ile jest ciągów zerojedynkowych długości \(n \), w których jest dokładnie \(m \) par 01? Dokładniej, ile jest ciągów \((a_1, a_2, \ldots, a_n) \) takich, że \(a_i \in \{0,1\} \) oraz

\[|\{i : a_i = 0, a_{i+1} = 1\}| = m? \]

6. Na ile sposobów można podzielić zbiór \(2n \)-elementowy na \(n \) zbiorów dwuelementowych? Dokładniej, ile elementów ma zbiór

\[\{\{w_1, \ldots, w_n\} : |w_1| = \ldots = |w_n| = 2, w_1 \cup \ldots \cup w_n = \{1, 2, \ldots, 2n\}\}. \]

7. Na okrągu rozmieszczono \(n \) punktów i poprowadzono wszystkie cięciwy, których końcami są te punkty. Zakładamy, że żadne trzy cięciwy nie przecinają się w jednym punkcie.
a) Na ile części te cięciwy dzielą koło?
b) Ile powstało trójkątów, których boki są tymi cięciami lub ich fragmentami?

8. Podaj dowody kombinatoryczne następujących tożsamości:
 a) \(\binom{n}{k} = \frac{n}{k} \cdot \binom{n-1}{k-1} \);
 b) \(\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \);
 c) \(\binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k} \);
 d) \(\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \);
 e) \(\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1} \);
 f) \(\sum_{k=2}^{n} k(k-1) \binom{n}{k} = n(n-1)2^{n-2} \);
 g) \(\sum_{k=1}^{n} k^2 \binom{n}{k} = n(n+1)2^{n-2} \);
 h) \(\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m} \);
 i) \(\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1} \).
 j) \(\sum_{k=0}^{n} \binom{n-k}{m} \cdot \binom{k}{m} = \binom{n+1}{2m+1} \);
 k) \(\sum_{k=0}^{n} \binom{2n-k}{n} \cdot 2^k = 4^n \).

9. Niech \(P_r(n) = \{ A \subseteq \{1, 2, \ldots, n\} : |A| = r \} \).
 Oblicz \(\sum_{A \in P_r(n)} \min(A) \)
dla \(r \) równego 2 i 3. Spróbuj znaleźć wzór ogólny dla dowolnego \(r \).

10. Losujemy 6 liczb spośród liczb od 1 do 49. Jakie jest prawdopodobieństwo tego, że nie wylosujemy dwóch liczb sąsiednich?