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Abstract. Unordered data Petri nets (UDPN) are an extension of clas-
sical Petri nets with tokens that carry data from an infinite domain and
where transitions may check equality and disequality of tokens. UDPN
are well-structured, so the coverability and termination problems are
decidable, but with higher complexity than for Petri nets. On the other
hand, the problem of reachability for UDPN is surprisingly complex,
and its decidability status remains open. In this paper, we consider the
continuous reachability problem for UDPN, which can be seen as an
over-approximation of the reachability problem. Our main result is a
characterization of continuous reachability for UDPN and polynomial
time algorithm for solving it. This is a consequence of a combinatorial
argument, which shows that if continuous reachability holds then there
exists a run using only polynomially many data values.
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1 Introduction

The theory of Petri nets has been developing since more than 50 years. On one
hand, from a theory perspective, Petri nets are interesting due to their deep math-
ematical structure and despite exhibiting nice properties, like being a well struc-
tured transition system [1], we still don’t understand them well. On the other hand,
Petri nets are a useful pictorial formalism for modeling and thus found their way
to the industry. To connect this theory and practice, it would be desirable to use
the developed theory of Petri nets [2—4] for the symbolic analysis and verification
of Petri nets models. However, we already know that this is difficult in its full gen-
erality. It suffices to recall two results that were proved more than 30 years apart.
An old but classical result by Lipton [5] shows that even coverability is ExpSpace-
hard, while the non-elementary hardness of the reachability relation has just been
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established this year [6]. Moreover, when we look at Petri nets based formalisms
that are needed to model various aspects of industrial systems, we see that they go
beyond the expressivity of Petri nets. For instance, colored Petri nets, which are
used in modeling workflows [7], allow the tokens to be colored with an infinite set
of colors, and introduce a complex formalism to describe dependencies between
colors. This makes all verification problems undecidable for this generic model.
Given the basic nature and importance of the reachability problem in Petri nets
(and its extensions), there have been several efforts to sidestep the complexity-
theoretic hardness results. One common approach is to look for easy subclasses
(such as bounded nets [8], free-choice nets [9] etc.). The other approach, which we
adopt in this work, is to compute over-approximations of the reachability relation.

Continuous Reachability. A natural question regarding the dynamics of a Petri
net is to ask what would happen if tokens instead of behaving like discrete units
start to behave like a continuous fluid? This simple question led to an elegant
theory of so-called continuous Petri nets [10-12]. Petri nets with continuous
semantics allow markings to be functions from places to nonnegative rational
numbers (i.e., in QT) instead of natural numbers. Moreover, whenever a tran-
sition is fired a positive rational coefficient is chosen and both the number of
consumed and produced tokens are multiplied with the coefficient. This allows
to split tokens into arbitrarily small parts and process them independently. This
may occur, e.g., in applications related to hybrid systems where the discrete part
is used to control the continuous system [13,14]. Interestingly, this makes things
simpler to analyze. For example reachability under the continuous semantics for
Petri nets is PTime-complete [11]. However, when one wants to analyze exten-
sions of Petri nets, e.g., reset Petri nets with continuous semantics, it turns out
that reachability is as hard as reachability in reset Petri nets under the usual
semantics i.e. it is undecidable’. In this paper we identify an extension of Petri
nets with unordered data, for which this is not the case and continuous semantics
leads to a substantial reduction in the complexity of the reachability problem.

Unordered Data Petri Nets. The possibility of equipping tokens with some addi-
tional information is one of the main lines of research regarding extensions of Petri
nets, the best known being Colored Petri nets [15] and various types of timed Petri
nets [16,17]. In [18] authors equipped tokens with data and restricted interactions
between data in a way that allow to transfer techniques for well structured transi-
tion systems. They identified various classes of nets exhibiting interesting combi-
natorial properties which led to a number of results [19-23]. Unordered Data Petri
Nets (UDPN), are simplest among them: every token carries a single datum like a
barcode and transitions may check equality or disequality of data in consumed and
produced tokens. UDPN are the only class identified in [18] for which the reacha-
bility is still unsolved, although in [20] authors show that the problem is at least
Ackermannian-hard (for all other data extensions, reachability is undecidable).
A recent attempt to over-approximate the reachability relation for UDPN in [22]

! This can be seen on the same lines as the proof of undecidability of continuous
reachability for Petri nets with zero tests [12].
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considers integer reachability i.e. number of tokens may get negative during the
run (also called solution of the state equation). From the above perspective, this
paper is an extension of the mentioned line of research.

Our Contribution. Our main contribution is a characterization of continuous
reachability in UDPN and a polynomial time algorithm for solving it. Observe
that if we find an upper bound on the minimal number of data required by a run
between two configurations (if any run exists), then we can reduce continuous
reachability in UDPN to continuous reachability in vanilla Petri nets with an
exponential blowup and use the already developed characterization from [11].
In Sect.5 we prove such a bound on the minimal number of required data. The
bound is novel and exploits techniques that did not appear previously in the
context of data nets. Further, the obtained bounds are lower than bounds on
the number of data values required to solve the state equation [22], which is
surprising considering that existence of a continuous run requires a solution of a
sort of state equation. Precisely, the difference is that we are looking for solutions
of the state equation over QT instead of N and in this case we prove better bounds
for the number of data required. This also gives us an easy polytime algorithm
for finding Q*-solutions of state equations of UDPN (we remark that for Petri
nets without data, this appears among standard algebraic techniques [24]).

Finally, with the above bound, we solve continuous reachability in UDPN
by adapting the techniques from the non-data setting of [12,25]. We adapt the
characterization of continuous reachability to the data setting and next encode
it as system of linear equations with implications. In doing so, however, we face
the problem that a naive encoding (representing data explicitly) gives a system
of equations of exponential size, giving only an ExpTime-algorithm. To improve
the complexity, we use histograms, a combinatorial tool developed in [22], to
compress the description of solutions of state equations in UDPNs. However,
this may lead to spurious solutions for continuous reachability. To eliminate
them, we show that it suffices to first transform the net and then apply the
idea of histograms to characterize continuous runs in the modified net. The
whole procedure is described in Sect. 7.3 and leads us to our PTime algorithm
for continuous reachability in UDPN. Note that since we easily have PTime
hardness for the problem (even without data), we obtain that the problem of
continuous reachability in UDPN is PTime-complete.

Towards Verification. Over-approximations are useful in verification of Petri
nets and their extensions: as explained in [24], for many practical problems,
over-approximate solutions are already correct. Further, we can use them as a
sub-routine to improve the practical performance of verification algorithms. A
remarkable example is the recent work in [25], where the PTime continuous
reachability algorithm for Petri nets from [11] is used as a subroutine to solve
the ExpSpace hard coverability problem in Petri nets, outperforming the best
known tools for this problem, such as Petrinizer [26]. Our results can be seen as a
first step in the same spirit towards handling practical instances of coverability,
but for the extended model of UDPN, where the coverability problem for UDPN
is known to be Ackermannian-hard [20].
Omitted proofs and details can be found in the extended version at [27].
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2 Preliminaries

We denote integers, non-negative integers, rationals, and reals as Z, N, Q, and
R, respectively. For a set X C R denote by XT, the set of all non-negative
elements of X. We denote by 0, a vector whose entries are all zero. We define
in a standard point-wise way operations on vectors i.e. scalar multiplication -,
addition +, subtraction —, and vector comparison <. In this paper, we use
functions of the type X — (Y — Z), and instead of (f(z))(y), we write f(y,z).
For functions f, g where the range of g is a subset of the domain of f, we denote
their composition by f o g. If 7 is an injection then by 7~! we mean a partial
function such that 7! o7 is the identity function. Let f: X1 — Y, ¢g: Xo = Y
be two functions with addition and scalar multiplication operations defined on Y.
A scalar multiplication of a function is defined as follows (a- f)(z) = a- f(x) for all
z € X1. We lift addition operation to functions pointwise, i.e. f+¢g: X;UXy — Y
such that

f(z) if r € X1\ Xo
(f+9)(z) = 9(z) if v € X2\ X1
fl@)+g(x) ifzreX;nXe.

Similarly for subtraction (f — g)(x) = f(x) + —1-g(x), and f < g if for all
reX1UXs, (g— f)(z) <0.

We use matrices with rows and columns indexed by sets S;,Ss, possibly
infinite. For a matrix M, let M(r,c) denote the entry at column ¢ and row
r, and M(r,e), M(e,c) denote the row vector indexed by r and column vec-
tor indexed by c¢, respectively. Denote by col(M), row(M) the set of indices
of nonzero columns and nonzero rows of the matrix M, respectively. Even if
we have infinitely many rows or columns, our matrices will have only finitely
many nonzero rows and columns, and only this nonzero part will be repre-
sented. Following our nonstandard matrix definition we precisely define oper-
ations on them, although they are natural. First, a multiplication by a con-
stant number produces a new matrix with row and columns labelled with the
same sets S1,Se and defined as follows (a - M)(r,c) = a - (M(r,c)) for all
(r,e) € S1 x Sy. Addition of two matrices is only defined if the sets index-
ing rows S; and columns S, are the same for both summands M; and Ms,
V(r,c) € S1 x S the sum (My + Ms)(r,¢) = Mi(r,c) + Ms(r, ¢), the subtraction
M, — My is a shorthand for M + (—1) - My. Observe that all but finitely many
entries in matrices are 0, and therefore when we do computation on matrices we
can restrict to rows row(M7) U row(Msz) and columns col(M;) U col(Ms). Sim-
ilarly the comparison for two matrices My, Ms is defined as follows M; < My
if V(r,¢) € (row(My) U row(Ms)) x (col(My) U col(Ms)) Mi(r,c) < Ms(r,c);
relations >, >, < are defined analogically. The last operation which we need is
matrix multiplication My - My = M3, it is only allowed if the set of columns
of the first matrix M; is the same as the set of rows of the second matrix
Ms, the sets of rows and columns of the resulting matrix Mz are rows of the
matrix M; and columns of My, respectively. Ms(r,c) = Y, My(r, k)Ms(k,c)



264 U. Gupta et al.

where k runs through columns of M;. Again, observe that if the row or a col-
umn is equal to 0 for all entries then the effect of multiplication is 0, thus we
may restrict to row (M) and col(Msz). Moreover in the sum it suffices to write

ZkEa)l(JVh) M (r, k)Ms(k,c).

3 UDPN, Reachability and Its Variants: Our Main
Results

Unordered data Petri nets extend the classical model of Petri nets by allowing
each token to hold a data value from a countably-infinite domain . Our defini-
tion is closest to the definition of v-Petri nets from [28]. For simplicity we choose
this one instead of using the equivalent but complex one from [18].

Definition 1. Let D be a countably infinite set. An unordered data Petri net
(UDPN) over domain D is a tuple (P, T, F, Var) where P is a finite set of places,
T is a finite set of transitions, Var is a finite set of variables, and F : (P x T)U
(T x P) = (Var — N) is a flow function that assigns each place p € P and
transition t € T a function over variables in Var.

For each transition ¢ € T we define functions F'(e,t) and F(t,e), Var —
(P —N) as F(e,t)(p,z) = F(p,t)(x) and analogously F(t,e)(p,z) = F(t,p)(x).

Displacement of the transition ¢ is a function A(t) : Var — (P — Z) defined as

At) X F(t, ) — Fe,t).

For X € {N,Z,Q,Q"}, we define an X-marking as a function M : D — (P —
X) that is constant 0 on all except finitely many values of D. Intuitively, M (p, «)
denotes the number of tokens with the data value a at place p. The fact that
it is 0 at all but finitely many data means that the number of tokens in any
X-marking is finite. We denote the infinite set of all X-markings by Mx.

We define an X-step as a triple (¢, t,7) for a transition t € T, mode 7 being
an injective map 7 : Var — D, and a scalar constant ¢ € XT. An X-step (c, t, )
is fireable at a X-marking i if 4 —c- F(e,t) o1~ ! € Mx.

The X-marking f reached after firing an X-step (c,¢,7) at @ is given as
f=1i+c-A(t)on~l. We also say that an X-step (c,t,7) when fired consumes
tokens c- F'(e,t) o~ ! and produces tokens c- F(t,8)or 1. We define an X-run as
a sequence of X-steps and we can represent it as {(c;, t;,m;)}|,| where (c;, t;, ;)
is the i'" X-step and |p| is the number of X-steps. A run p = {(c;, t;,m)} |
is fireable at a X-marking ¢ if, V1 < ¢ < |p|, the step (¢;,t;,7;) is fireable at
i+ Z;;ll ciA(t;) o Tl'j_l. By i %% f we denote that p is fireable at 4 and after
firing p at ¢ we reach X-marking f = ¢ + ZL‘;'I ci - A(t;) om;t. We call (the
function computed by) the mentioned sum Ellp:l LCiA(t;) o as the effect of
the run and denote it by A(p).

We fix some notations for the rest of the paper. We use Greek letters «, 3,y
to denote data values from data domain D, p, o to denote a run, m to denote
a mode and x,y,z to denote the variables. When clear from the context, we
may omit X from X-marking, X-run and just write marking, run, etc. Further,
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we will use letters in bold, e.g., m to denote markings, where %, f will be used
for initial and final markings respectively. Further, throughout the paper, unless
stated explicitly otherwise, we will refer to a UDPN N = (P, T, F, Var), therefore
P, T, F, Var will denote the places, transitions, flow, and variables of this UDPN.

Example 1. An example of a simple UDPN A7 is p1 P2
given in Fig.1. For this example, we have P =

{p1,p2,p3,pa}, T = {t}, Var = {z,y, z}, and the flow €>\y 76)
relation is given by F(pi,t) = {y — 1}, F(p2,t) =

{l‘i—>1}, F(t,pg):{yHQ]q F(t,ps) ={z— 1,2~

1}, and an assignment of 0 to every variable for the 2y

remaining of the pairs. Thus, for enabling transition P3 X,z P4
p1 and p2 must have one token each with a different

data value (since = # y) and after firing two tokens @ @

are produced in ps with same data value as was con-
sumed from p; and two tokens are produced in p4, one Fig. 1. A simple UDPN N
of whom has same data as consumed from ps.

Definition 2. Given X-markings i, f, we say f is X-reachable from 1 if there
exists an X-run p s.t., i Ly I

When X = N, X-reachability is the classical reachability problem, whose
decidability is still unknown, while Z-reachability for UDPN is in NP [22].

In this paper we tackle Q and Q*-reachability, also called continuous reach-
ability in UDPN.

The first step towards the solution is showing that if a QT-marking f is
Qt-reachable from a QT-marking ¢, then there exists a QT-run p which uses
polynomially many data values and 2 L@Jr f. We first formalize the set of
distinct data values associated with X-markings, data values used in X-runs and
variables associated with a transition.

Definition 3. For N' = (P,T,F, Var) a UDPN, X-marking m, t € T, and
X-run p = {(ci, ts, ™)}, we define

1. vars(t)={zx € Var| I3pe P : F(p,t)(x) #0V F(t,p)(z) # 0}.
2. dval(m) ={a€D| Ipe P:mp,a)#0}.
3. dval(p) ={aeD| Fi<|p| Iz € vars(t;) : (mi(z) = a)}.

With this we state the first main result of this paper, which provides a bound
on witnesses of Q, Q" -reachability, and is proved in Sect. 5.

Theorem 1. ForX € {Q,Q*}, if an X-marking f is X-reachable from an initial
X-marking i, then there is an X-run p such that 3 Sx f and |dval(p)| < |dval(9)U
dval(f)| + 1 4+ maxeer (Jvars(t)]).

Using the above bound, we obtain a polynomial time algorithm for Q-
reachability, as detailed in Sect. 6.
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Theorem 2. Given N' = (P,T,F, Var) a UDPN and two Q-markings %, f,
deciding if f is Q-reachable from i in N is in polynomial time.

Finally, we consider continuous, i.e., QT-reachability for UDPN. We adapt
the techniques used for QT -reachability of Petri nets without data from [11,12]
to the setting with data, and obtain a characterization of QT-reachability for
UDPN in Sect.7.1. Finally, in Sect. 7.3, we show how the characterization can
be combined with the above bound and compression techniques from [22] to
obtain a polynomial sized system of linear equations with implications over Q.
To do so, we require a slight transformation of the net which is described in
Sect. 7.2. This leads to our headline result, stated below.

Theorem 3 (Continuous reachability for UDPN). Given a UDPN N =
(P,T,F, Var) and two QT -markings %, f, deciding if f is Q" -reachable from i in
N is in polynomial time.

The rest of this paper is dedicated to proving these theorems. First, we present
an equivalent formulation via matrices, which simplifies the technical arguments.

4 Equivalent Formulation via Matrices

From now on, we restrict X to a symbol denoting Q or Q. We formulate the
definitions presented earlier in terms of matrices, since defining object such as
X-marking as functions is intuitive to define but difficult to operate upon.

In the following, we abuse the notation and use the same names for objects as
well as matrices representing them. We remark that this is safe as all arithmetic
operations on objects correspond to matching operations on matrices.

An X-marking m is a P x D matrix M, where Vp € P,Va € D, M (p,a) =
m(p,a). As a finite representation, we keep only a P X dval(m) matrix of non-
zero columns. For a transition ¢ € T, we represent F(t,e), F(e,t) as P x Var
matrices. Note that (¢, e) is not the position in the matrix, but is part of the
name of the matrix; its entry at (¢,7) € P x Var is given by F(t,e)(i, 7). For
a place p € row(F(t,e)), the row F(t,e)(p,e) is a vector in NV%" given by
an equation F'(e,t)(p,e)(z) = F(p,t)(x) for p € P,t € T,x € Var. Similarly,
A(t) is a P x Var matrix with A(¢)(p,z) = F(t,e)(p,z) — F(e,t)(p,z) for t €
T,p € P, and x € Var. Although, both A(t) and F(e,t) are defined as P x Var
matrices, only the columns for variables in vars(t) may be non-zero, so often we
will iterate only over vars(t) instead of Var.

Finally, we capture a mode 7 : Var — D as a Var x D permutation matrix
‘P. Although P may not be a square matrix, we abuse notation and call them
permutation matrices. P basically represents assignment of variables in Var to
data values just like w does. An entry of 1 represents that the corresponding
variable is assigned corresponding data value in mode 7. Thus, for each mode
7 : Var — D there is a permutation matrix P, such that for all x € Var, a € D,
Pr(z,a) =1if n(z) = o, and Pr(z, ) = 0 otherwise. Formulating a mode as a
permutation matrix has the advantage that A(t) o7 ~! is captured by A(t) - P,.
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Ezample 2. In the UDPN N from Example 1, if D = {red, blue, green, black}
then the initial marking ¢ can be represented by the matrix ¢ below and the
function A(t) by the matrix A(t)

red blue green black T Yy z

1 0 1 0 D1 0 —-10 P1
i= 0 1 0 0 D2 A(t) -1 0 0]peo

2 0 0 0 |ps 0 2 0ps

1 1 0 0 / ps 1 0 1/ py

If we fire transition ¢ with the assignment = = blue,y = green,z = black, we
get the following net depicted below (left), with marking f (below center). The
permutation matrix corresponding to the mode of fired transition is given by P
matrix on the right. Note that the matrix f — ¢ is indeed the matrix A(¢) - P.

p1 P2
red blue green black red blue green black
y X 1 0 0 0 P1
0 0 0 0 z/ 0 1 0 0
f= P2p_ylo 0o 1 0
2 0 2 0 D3
2y 1 9 0 1 z\0 0 0 1
b3 X,z ba

€ &)

Using the representations developed so far we can represent an X-run p as
{(ci, ti, Pi)}p) where (cq,t;, P;) denotes the it" X-step fired with coefficient c¢;
using transition t; with a mode corresponding to permutation matrix P;. The
sum of the matrices (Z‘f:‘l ciA(t;) - P;) gives us the effect of the run i.e. A(p) =

f — i where 3 Sx f. Effect of an X-run p on a data value o is A(p)(e,a). Also,
for an X-run p = {(c;, t;, Ps)} |, define kp = {(ke;, ti, Pi)}p where k € XT.

5 Bounding Number of Data Values Used in Q, QT-run

We now prove the first main result of the paper, namely, Theorem 1, which shows
a linear upper bound on the number of data values required in a Q*-run and a
Q-run. Theorem 1 is an immediate consequence of the following lemma, which
states that if more than a linearly bounded number of data values are used in a
Q or QT run, then there is another such run in which we use at least one less
data value.

Lemma 1. Let X € {Q,Q7}. If there exists an X-run o such that i Zx f and
|dval(c)| > |dval (i) U dval(f)| + 1+ maxier (|vars(t)]), then there exists an X-run

p such that i Lx f and |dval(p)| < |dval(c)| — 1.
By repeatedly applying this lemma, Theorem 1 follows immediately. The rest of

this section is devoted to proving this lemma. The central idea is to take any Q
or QT-run between i, f and transform it to use at least one less data value.
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5.1 Transformation of an X-run

The transformation which we call decrease is defined as a combination of two
separate operations on an X-run; we name them wuniformize and replace and
denote them by U and R respectively.

— uniformize takes an X-step and a non-empty set of data values E as input
and produces an X-run, such that in the resultant run, the effect of the run
for each data value in E is equal.

— replace takes an X-step, a single data value «, and a non-empty set of data
values E as input and outputs an X-step which doesn’t use data value a.

The intuition behind the decrease operation is that we would like to take two
data values a and (8 used in the run such that effect on both of them is 0
(they exists as the effect on every data value not present in the initial of final
configuration is 0) and replace usage of « by 3. However, such a replacement can
only be done if both data are not used together in a single step (indeed, a mode
7 cannot assign the same data values to two variables). Unfortunately we cannot
guarantee the existence of such a (8 that may replace « globally. We circumvent
this by applying the replace operation separately for every step, replacing o with
different data values in different steps.

But such a transformation would not preserve the effect of the run. To repair
this aspect we uniformize i.e. guarantee that the final effect after replacing « by
other data values is equal for every datum that is used to replace a. As the effect
on « was 0 then if we split it uniformly it adds 0 to effects of data replacing «,
which is exactly what we want. We now formalize this intuition below.

The Uniformize Operator. By (© we denote an operator of concatenation of
two sequences. Although the data set D is unordered, the following definitions
require access to an arbitrary but fixed linear order on its elements. The definition
of the uniformize operator needs another operator to act on an X-step, which
we call rotate and denote by rot.

Definition 4. For a non-empty finite set of data values E C D and an X-step,
w = (¢, t,P), define rot(E,w) = (¢, t,P’") where P’ is obtained from P as follows.

- Va € col(P)\E, P'(e,a) = P(e, ).
~Va €E, P'(o,a) = P(e,nextg(a)), where nextg(a) = min({5 € E | 8 > a})
if {B€E|B>a}] >0 and min(E) otherwise.

For a fixed set E, we can repeatedly apply rot(E,e) operation on an X-step,
which we denote by rot*(E,w), where k is the number of times we applied the
operation (for example: rot?(E,w) = rot(E, (rot(E,w))).
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Definition 5. For a finite and non-empty set of data values E C D and an
X-step w = (c,t,P), we define uniformize as follows

M(va) = TOtO(]Ev ﬁﬁ) @ TOtl(Evﬁ) @ TOtQ( vﬁf‘) @ @ TOtIElil(E7ﬁ)-

An important property of uniformize is its effect on data values.

Lemma 2. For a finite and non-empty set of data values E C D and an X-step

w=(c.t,P), i S £ if i LE 1 then

1. Ya € dval(w)\E, f'(e,a) — i (e, a) = fle,a) — i(e, )

2.Va €E, ,f'(e,a) —i(e,a) = Zﬂgm(ﬂ"ﬁ)_i(.’ﬂ)).

This lemma tells us the effect of the run on the initial marking is equalized
for data values in E by the U/ operation, and is unchanged for the other data
values.

The Replace Operator. To define the replace operator it is useful to introduce
swapq,3(P) which exchanges columns « and g in the matrix P.

Definition 6. For a finite set of data values E, an X-step w = (¢, t,P), and

a € E we define replace as follows

(C,L’P) if (F(t, .) : P)(.7a) = (F(.7t) : P)(.va) =0

(¢, t, swapa,g(P)) else, if B is the smallest datum in E s.t.,
(F(t,®)-P)(e, ) = (F(e,1) - P)(e, 8) = 0

unde fined otherwise.

R(o,E,w) =

After applying the replace operation « is no longer used in the run, which reduces
the number of data values used in the run. Observe that replace can not be always
applied to an X-step. It requires a zero column labelled with an element from E
in the permutation matrix corresponding to the X-step.

The Decrease Transformation. Finally, we define the transformation on an
X-run between two markings which we call decrease and denote by dec.

Definition 7. For two X-markings i, f, and an X-run o such that i Zx f and
|dval(o)| > |dval(i) U dval(f)] + 1 + maxier(Jvars(t)]), let {a} UE = dval(o) \
(dval(i) U dval(f)) and oo ¢ E. We define decrease by, dec(E,a,0) =

UE,R(a, E,0(1))) © UE,R(a, E,5(2))) © ... © UE,R(,E,a(|a])))-
where o(j) denotes the j*" X-step of o.

Observe that the required size of dval(c) guarantees existence of a § € E
which can be replaced with «, for every application of the R operation. Note
that the exchanged data value 8 could be different for each step. Finally, we
can analyze the decrease transformation and show that if the original run allows
for the decrease transformation (as given in the above definition), then after
the application of it, the resulting sequence of transitions is a valid run of the
system.
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Lemma 3. Let 0 be an X-run such that i Zsx f and |dval(o)| > |dval(i) U
dval(f)| + 1 + maxeer(|dval(t)]). Let o € dval(o) \ (dval(z) U dval(f)) and E =

dval(0) \ (dval(3) U dval(f) U {a}). Then for p = dec(E,a, o), we obtain i L>x f.

Proof. Suppose ¢ = 0103 ...0; where each o; = (¢;,t;,P;), for 1 < j <1

is an X-step. Then p = p1©... ©p;, where each p; is an X-run defined by

p; =UE,R(a, E,0,)). It will be useful to identify intermediate X-markings
i=mo g mi oy ma oy ... by m=f (1)

) U(E,R(aE,01)) / UE,R(a,E,02)) / U(E,R(ov,E,07)) Pl (o
=m, Q My Qmy... ———Somy=f' (2)

We split the proof: first we show that f = f’ and then p is X-fireable from 3.

Step 1: Showing that the final markings reached are the same. We
prove a stronger statement which implies that f = f’, namely:

Claim 1. For all0 < j <,

1. mj(e,a) =0
2. Vv € dval(i) U dval(f), m/;(e,v) = m;(e,7)

J
5.y € B mi(0,7) = i (Ssenuia) mi(e:9))

The proof is obtained by induction on j. Intuitively, point 1 holds as we
shift effects on « to [, point 2 holds as the transformation does not touch
v € dval(i) U dval(f). The last and most complicated point follows from the

fact that the number of tokens consumed and produced along each segment
UE,R(a,E,05)) . . .
A((—QJJ—)L is the same as for o, but uniformized over E.

Step 2: Showing that p is an X-run. If X = Q then the run p is fireable, as
any Q-run is fireable, so in this case this step is trivial. The case when X = QF
is more involved. As we know from Claim 1, each m;- is a QT-marking, so it

suffices to prove that for every j, m;- MQ+ mgﬂ. Consider a data
vector of tokens consumed along the Q" -run U (E, R(o, E, 0;)). If we show that
it is smaller than or equal to m/; (component-wise), then we can conclude that
U(E,R(a,E,0;)) is indeed Q*-fireable from m;. To show this, we examine the

consumed tokens for each datum ~ separately. There are three cases:

(i) v = «. For this case, every step in U(E,R(a,E,0;)) does not make any
change on « so tokens with data value a are not consumed along the Q-
run U(E, R(e, E, 0;)).

(ii) v € dval(3) U dval(f). This is similar to the above case. Consider any data
value v € (dval(0)\E) \ {a}. Since v does not change on rotate operation,
the U operation causes each Q-step in U (E, R(«,E,0;)) to consume \fll of

the tokens with data value v consumed when o; is fired. This is repeated

|E| times and hence the vector of tokens with data value « consumed along

U(E,R(e, E,05)) is equal to the vector of tokens with value v consumed
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by step o;. But we know that, it is smaller than m;(e,7) and concluding
smaller than m’ (e, 7). The last inequality is true as m;(e,7) = m/(e,7)
according to Claim 1.

(i) v € E. Let w be a triple (¢, F'(e,t;),P;) where (c;,t;,P;) = ;. w simply
describes tokens consumed by o;. We slightly overload the notation and
treat a triple w like a step, where F(e,t;) represents a transition “ for
which F(e,_) = F(e,t;) and F(_,e) is a zero matrix. We calculate the

vector of consumed tokens with data value v as follows: consumed(e,~) =

- Bl
E 2 Al (E.R(0.Ew)(e.) = g5 3 Alrot* (B {a}w)(e.7)
o k=0

the first equality is from definition and the second by the replace operation,

E] .
= % Z(mtk(EU{a}, (1, F(e,t;).P;)))(e,7) = E? Z (F(e,t;)-P;)(e,0)
| | k=0 ‘ | SeEEU{a}

Further, observe that as o; can fired in m;
c;(F'(e,t;) - P;)(e,0) < mj(e,9) for all 6 € D,

summing up over ¢ € E U {a} and multiplying with ﬁ we get

@cj T <F<-,tj>-7>j><-,6>s|% S my(e,6) = m5(6,7),

d€EU{a} | deEU{a}

where the last equality comes from Claim 1 point 3. Combining inequalities
we get consumed(e,y) < m/(e,7).

Proof (of Lemma 1). Now the proof of Lemma 1 (and hence Theorem 1) fol-
low immediately, since we can use the decrease transformation, to decrease the
number of data values required in an X-run. We simply take o € dval(o) \
(dval() U dval(f)) and E = dval(o) \ (dval(i) U dval(f)) \ {a}. Next, let
p = dec(E, a, o). Due to Lemma 3 we know that ¢ L f. Moreover, observe that
dval(p) C dval(o). But in addition, o & dval(p) as due to the one of properties of
the decrease operation « does not participate in the run p. So dval(p) C dval(o).
Therefore |dval(p)| < |dval(o)| — 1.

6 Q-reachability is in PTime

We recall the definition of histograms from [22].

Definition 8. A histogram M of order g € Q is a Var x D matriz having non-
negative rational entries such that,
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1.3 wecoiny M(z, ) = q for all v € row(M).
2. werowiny M(@,@) < g for all a € col(M).

A permutation matrix is a histogram of order 1.
In the following lemma, we state two properties of histograms. We say that a
histogram of order a is an [a/-histogram if the histogram has only {0, a} entries.

Lemma 4. Let H, Hy, Hs, .., H, be histograms of order q,q1,q2,...,qn TESpEC-
tively and of same row dimensions then (i) Y., H; is a histogram of order
>t qi, (i) H can be decomposed as a sum of [a; [-histograms such that Y, a; = q.

Using histograms we define a representation Hist(p) for an X-run p, which
captures A(p). From an X-run p = {(¢;,t;,P;)}|,| we obtain Hist(p) as follows.
For all transitions ¢ € T, define the set I, = {j € [1..|p|]| t; = t}. Then calcu-
late the matrix H; = Zie I, ¢;P;. Observe that since permutation matrices are
histograms and histograms are closed under scalar multiplication and addition,
H,; is a histogram. If I; is empty, then H; is simply the null matrix. We define
Hist(p) as a mapping from T to histograms such that ¢ is mapped to Hy.

Analogous to an X-run we can represent Hist(p) simply as {(¢;, Hy;)}, unlike
an X-run we don’t indicate the length of the sequence since it is dependent on
the net and not the individual run itself.

Proposition 1. Let N = (P, T, F, Var) be a UDPN, 14, f X-markings, and o an
X-run such that 1 Zox f. Then for each t € T there exists Hy such that:

1 f—i=) cp At) - Hy,
2. col(Hy) C dval(o) for everyt € T.

A PTime Procedure. We start by observing that from any Q-marking 1,
every Q-step (c,t,P) is fireable and every Q run is fireable. This follows from
the fact that rationals are closed under addition, thus ¢ + ¢ - F(e,t) - P is a
marking in Mgq. Thus if we have to find a Q-run p = {(c;,t;,P;)} |, between
two Q-markings, ¢, f it is sufficient to ensure that f — i = Z‘jpzll c; At;) - Pj.
Thus for a Q-run all that matters is the difference in markings caused by the
Q-run which is captured succinctly by Hist(p) = {t;, Hy,}. This brings us to
our characterization of Q-run.

Lemma 5. Let N = (P,T,F, Var) be a UDPN, a marking f is Q-reachable
from i iff there exists set E of size bounded by |E| < |dval(z) U dval(f)| + 1 +
maxser (|vars(t)|) and a histogram Hy for eacht € T such that f—i =, A(t)-
H; and vt € T col(H;) C E.

Using this characterization we can write a system of linear inequalities to
encode the condition of Lemma 5. Thus, we obtain our second main result,
namely, Theorem 2, with detailed proofs in [27].
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7 QT-reachability is in PTime

Finally, we turn to Q" -reachability for UDPNs and to the proof of Theorem 3. At
a high level, the proof is in three steps. We start with a characterization of Q-
reachability in UDPNs. Then we present a polytime reduction of the continuous
reachability problem to the same problem but for a special subclass of UDPN,
called loop-less nets. Finally, we present how to encode the characterization for
loop-less nets into a system of linear equations with implications to obtain a
polytime algorithm for continuous reachability in UDPNs.

7.1 Characterizing Q1 -reachability

We begin with a definition. For an X-run we introduce the notion of the
pre and post sets of X—run. For an X-run, p = {(c;,ts,Pi)}|, we define
Pre(p) = {(p,a)| 3 t;,3 = : F(p,t;)(z) < 0AP;(x,a) = 1}. We also define
Post(p) = {(p,a)| 3 t;,3 = : F(t;,p)(x) > 0 A Pi(z,a) = 1}. Intuitively,
Pre(p), Post(p) denote the set of (p,a) (place, data value) pairs describing
tokens that are consumed, produced respectively by the run p.

Throughout this section, by a marking we denote a QT -marking.

Lemma 6. Let N' = (P,T,F, Var) be an UDPN and 4,f are markings. For
any QT -run o such that 1 LQ+ f there exist markings i’ and f' (possibly on a
different run) such that

1. 7 is Q*-reachable from i in at most |P| - |dval(c)| QF-steps
2. There is a run o’ such that dval(c") C dval(c) and © Z-g f'
3. fis QT -reachable from f' in at most |P| - |dval(c)| QT -steps
4. ¥(p, ) € Pre(a’),i(p,a) >0

5. Y(p,a) € Post(a’), f'(p,a) >0

Remark 1. If in conditions 1 and 3 we drop the requirement on the number of
steps then the five conditions still imply continuous reachability.

Note that if there exist markmgs i’ and f’ and Q1 -runs p, p/, p’ such

that L@Jr i’ i p—>Q+ . f —>Q+ f then there is a QT-run ¢ such that

7 —>@+ f- The above characterization and its proof are obtained by adapting to
the data setting, the techniques developed for continuous reachability in Petri
nets (without data) in [11] and [12].

7.2 Transforming UDPN to Loop-less UDPN

For a UDPN N = (P, T, F, Var), we construct a UDPN A’ which is poly-
nomial in the size of A/ and the Q%-reachability problem is equivalent. We
define PrePlace(t) = {p € P|Fv € Var s.t. F(p,t)(v) > 0} and PostPlace(t)
= {p € P|3v € Var s.t. F(t,p)(v) > 0}, where ¢ € T. The essential property
of the transformed UDPN is that for every transition the sets of PrePlace and
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PostPlace do not intersect. A UDPN N = (P, T, F, Var) is said to be loop-less
if for all ¢ € T, PrePlace(t) N PostPlace(t) = (.

Any UDPN can easily be transformed in polynomial time into a loop-less
UDPN such that QT -reachability is preserved, by doubling the number of places
and adding intermediate transitions. Formally, For every net A and two mark-
ings %, f in polynomial time one can construct a loop-less net N’ and two mark-
ings 4', f’ such that ¢ —g+ f in the net N iff i’ —g+ f' in A”. Now, the
following lemma which describes a property of loop-less nets will be crucial for
our reachability algorithm:

Lemma 7. In a loop-less net, for markings 1, f, if there exist a histogram H,
and a transition t € T such that i+ A(t) - H = f, then there exist a Qt-run p

such that iLQ+ f

7.3 Encoding Qt-reachability as Linear Equations with Implications

Linear equations with implications, as we use them, are defined in [23], but were
introduced in [12]. A system of linear equations with implications, also denoted
a = system, is a finite set of linear inequalities over the same variables, plus
a finite set of implications of the form z > 0 = y > 0, where x, y are variables
appearing in the linear inequalities.

Lemma 8 [12]. The Q" solvability problem for a = system is in PTime.

We then reduce the Q*-reachability problem to checking the solvability of a sys-
tem of linear equations with implications, using the characterization established
in Lemma 6 in the following lemma.

Lemma 9. Q" -reachability in a UDPN N = (P, T, F, Var) between markings
2, f can be encoded as a set of linear equations with implications in P-time.

Finally, we obtain Theorem 3 as a consequence of Lemmas 8 and 9.

8 Conclusion

In this paper, we provided a polynomial time algorithm for continuous reacha-
bility in UDPN, matching the complexity for Petri nets without data. This is in
contrast to problems such as discrete coverability, termination, where Petri nets
with and without data differ enormously in complexity, and to (discrete) reach-
ability, where decidability is still open. As future work, we aim to implement
the continuous reachability algorithm developed here, to build the first tool for
discrete coverability in UDPN on the lines of what has been done for Petri nets
without data. The main obstacle will be performance evaluation due to lack of
benchmarks for UDPNs. Another interesting avenue for future work would be
to tackle continuous reachability for Petri nets with ordered data, which would
allow us to analyze continuous variants of Timed Petri nets.
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