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Abstract

We consider the full Navier–Stokes–Fourier system describing the motion of a
compressible viscous and heat conducting fluid driven by a time-periodic external
force. We show the existence of at least one weak time periodic solution to the prob-
lem under the basic hypothesis that the system is allowed to dissipate the thermal
energy through the boundary. Such a condition is in fact necessary, as energetically
closed fluid systems do not possess non-trivial (changing in time) periodic solutions
as a direct consequence of the Second law of thermodynamics.

1. Introduction

Time periodic or time almost periodic processes are frequently observed in
many real world applications of fluid mechanics. They are represented by the time
periodic solutions of their associated mathematical models. Considerable effort has
been exerted and a large variety of methods developed to prove the existence and
to study the qualitative properties of time periodic solutions to evolutionary partial
differential equations; see Vejvoda et al. [21].

Strangely enough, time periodic processes are forbidden for energetically
closed fluid systems by the Second law of thermodynamics. Indeed the total entropy
of such a system is always increasing in time and the mechanical energy is irrevers-
ibly converted into heat; see [5, Chapter 5, Section 5.2]. Thus the existence of time
periodic processes is strictly conditioned by the ability of the system to exchange
energy with its environment. Typical examples are reduced mathematical models, in
which the thermodynamic effects are neglected; for instance, the compressible and
incompressible Navier-Stokes system, where only the purely mechanical aspects
of the fluid motion are taken into account. We refer to Galdi and Silvestre [7],
Kobayashi [9], Iooss [8], Kučera [10], Maremonti [13], Yamazaki [22] and to
[3], among many others, for relevant recent mathematical results. In addition, there
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is a very interesting result by Ma et al. [12] for the full Navier–Stokes–Fourier sys-
tem considered, unfortunately, in a rather unrealistic space dimension N = 5. The
authors show the existence of non-trivial time periodic solutions to this apparently
conservative system in R

N , meaning there must be an energy leak at “infinity”.
In this paper, we focus on the full Navier–Stokes–Fourier system, where the

time evolution of the fluid density � = �(t, x), the velocity field u = u(t, x), and
the absolute temperature ϑ = ϑ(t, x) are governed by the following system of
partial differential equations:

∂t� + divx (�u) = 0 (1)

∂t (�u)+ divx (�u ⊗ u)+ ∇x p(�, ϑ) = divxS(ϑ,∇x u)+ �f (2)

∂t (�s(�, ϑ))+ divx (�s(�, ϑ)u)+ divx

(
q(ϑ,∇xϑ)

ϑ

)
= σ (3)

d

dt

∫
�

(
1

2
�|u|2 + �e(�, ϑ)

)
dx =

∫
�

�f · u dx −
∫
∂�

q · n dSx , (4)

where S is the Newtonian viscous stress,

S(ϑ,∇x u) = μ(ϑ)

(
∇x u + ∇ t

x u − 2

3
divx uI

)
+ η(ϑ)divx u I, (5)

q is the heat flux obeying Fourier’s law

q = −κ(ϑ)∇xϑ, (6)

and where the thermodynamic quantities—the pressure p, the specific entropy s,
and the specific internal energy e—are given numerical functions of the state vari-
ables �, ϑ interrelated through Gibbs’ equation

ϑDs(�, ϑ) = De(�, ϑ)+ p(�, ϑ)D

(
1

�

)
. (7)

Finally, the symbol σ � 0 denotes the entropy production rate satisfying

σ = 1

ϑ

(
S : ∇x u − q · ∇xϑ

ϑ

)
. (8)

The fluid is confined to a smooth bounded domain� ⊂ R
3, where the velocity

field satisfies the standard no-slip boundary conditions

u|∂� = 0. (9)

A crucial feature of our problem is that the heat flux through the boundary is
allowed, specifically,

q · n = d(x)(ϑ −	0), with d ∈ L∞(∂�), 	0 ∈ L1(∂�). (10)

The system is driven by a time-periodic force

f ∈ L∞(R1 ×�; R
3), f(t + L , ·) = f(t, ·) for all t ∈ R

1. (11)
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Our approach is based on the theory of weak solutions to the evolutionary
Navier–Stokes–Fourier system developed in the first part of the monograph [4],
although many ideas used below are more related to the associated stationary prob-
lems, see [14–16] and [18,19]. Our main goal is to show that problem (1–11)
possesses at least one time-periodic solution {�,u, ϑ} under certain restrictions
imposed on the constitutive relations similar to those required by the existence
theory (see [4, Chapter 3]). As already pointed out, in the light of the results pre-
sented in [5, Chapter 5, Section 5.2], the dissipative boundary condition (10) is
necessary, as otherwise the energy of any solution to the Navier–Stokes–Fourier
system blows up for t → ∞ as long as the fluid is energetically isolated, meaning,
q ·n|∂� = 0. A similar conclusion holds for the stationary problem, where the only
admissible solutions to the energetically isolated system are the so-called static
states � = �̃(x), u ≡ 0, ϑ = posi tive constant , corresponding to a potential
force f = ∇x F(x); see [5, Chapter 5].

The proof of the existence of the time periodic solutions is based on a priori
bounds derived in Section 2.4 below. It is interesting to note that the result is, in fact,
“better” than for the isentropic case studied in [3], where certain restrictions have
to be imposed on the value of the adiabatic coefficient. This rather surprising effect
of thermodynamics included in the present problem has also been observed in the
stationary case, see [18,19]. The fact that the transport coefficients depend effec-
tively on the temperature apparently brings more dissipation into the system, which
in turn “improves” the available a priori bounds.

The time periodic solutions are constructed by means of a direct method,
where the approximation scheme is solved in the spaces of time-periodic func-
tions. Accordingly, system (1–3) is replaced by an elliptic regularization, where
the leading coefficients of the extra time derivatives are sent to zero. This approach
allows us to overcome difficulties in proving sufficient smoothness of solutions
to the approximative system. As soon as the approximate solutions are available,
the main steps in the limit passage in the approximation scheme closely follow
their counterparts in the existence theory for the initial-value problem developed
in [4]. In order to conclude the introductory part, let us point out that we deal with
a genuine large data problem, where the framework of weak solutions is the only
one available.

The paper is organized as follows. In Section 2, we introduce the principal
hypotheses imposed on the constitutive relations and state our main result. Sec-
tion 2.4 is a collection of available a priori bounds on the family of time periodic
solutions. Although this piece of information is never used directly in the subsequent
sections, we feel it is quite useful for the reader as the estimates are free of addi-
tional technicalities imposed by the approximation scheme. Sections 3 and 4 form
the heart of the paper. Here we introduce the elliptic regularization and solve it via
a direct method. In this way a family of approximate solutions is obtained, together
with uniform bounds guaranteed by the available a priori estimates. Finally, in Sec-
tions 5, 6, 7, 8 and 9, we pass to the limit in the family of approximate solutions,
completing the construction of the desired time-periodic solutions to the original
system.
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2. Principal Hypotheses and Main Result

In this section, we list the principal hypotheses imposed on the constitutive
relations and state our main result. A prototype of the pressure law used in this
paper reads

p(�, ϑ) = a1�
5/3 + a2�ϑ + a

3
ϑ4, (12)

with the corresponding specific internal energy and specific entropy

e(�, ϑ) = 3

2
a1�

2/3 + cvϑ + a

�
ϑ4

s(�, ϑ) = cv ln ϑ − a2 ln � + 4a

3�
ϑ3,

(13)

with a, a1, a2 and cv positive. Thus the pressure is a sum of three components: the
cold (or degenerate) pressure due to the electron gas that may apply for degener-
ate gases, the standard perfect gas law and the contribution of radiation. Although
the pressure law introduced below is more “sophisticated” and fits better in the
underlying thermodynamic framework, one should always keep in mind its sim-
plified version (12). The interested reader may consult [4, Chapter 1] for physical
background and further extensions of the theory.

2.1. Constitutive Relations

We assume that the pressure p takes the form

p(�, ϑ) = ϑ5/2 P
( �

ϑ3/2

)
+ a

3
ϑ4, with a > 0, (14)

where P ∈ C1([0,∞)) ∩ C2(0,∞),

P ′(Z) > 0 for all Z � 0, lim
Z→∞

P ′(Z)
Z2/3 = p∞ > 0. (15)

In accordance with Gibbs’ equation (7), the specific internal energy can be taken as

e(�, ϑ) = 3

2
ϑ

(
ϑ3/2

�

)
P
( �

ϑ3/2

)
+ a

�
ϑ4, (16)

while the specific entropy reads

s(�, ϑ) = S
( �

ϑ3/2

)
+ 4a

3�
ϑ3, S′(Z) = −3

2

5
3 P(Z)− Z P ′(Z)

Z2 . (17)

In addition to (14–17), we assume that the specific heat at constant volume is
positive and uniformly bounded:

0 <
5
3 P(Z)− Z P ′(Z)

Z
< c for all Z > 0. (18)
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From (14–18) it follows that we may write

p(�, ϑ) = p0(�, ϑ)+ a

3
ϑ4

e(�, ϑ) = e0(�, ϑ)+ a

�
ϑ4

s(�, ϑ) = s0(�, ϑ)+ 4a

3�
ϑ3,

with

c1�ϑ � p0(�, ϑ) � c2�ϑ, for � � K0ϑ
3/2

c3�
5/3 � p0(�, ϑ) � c4

{
ϑ5/2, for � � K0ϑ

3/2

�5/3, for � > K0ϑ
3/2.

(19)

Further
∂p0(�, ϑ)

∂�
> 0 in (0,∞)2

p0(�, ϑ) = b0�
5/3 + pm(�, ϑ), b0 > 0,

with
∂pm(�, ϑ)

∂�
� 0 in (0,∞)2.

(20)

For the specific internal energy defined by (16) it follows that

3

2
p∞�2/3 � e0(�, ϑ) � c5(�

2/3 + ϑ)

∂e0(�, ϑ)

∂�
� � c5(�

2/3 + ϑ)

⎫⎪⎬
⎪⎭ in (0,∞)2. (21)

Moreover, for the specific entropy s(�, ϑ) defined by (17) we have, due to the Gibbs
relation (7),

∂s0(�, ϑ)

∂�
= 1

ϑ

(
− p0(�, ϑ)

�2 + ∂e0(�, ϑ)

∂�

)
= − 1

�2

∂p0(�, ϑ)

∂ϑ

∂s0(�, ϑ)

∂ϑ
= 1

ϑ

∂e0(�, ϑ)

∂ϑ
= 3

2

ϑ3/2

�

(
γ P

( �

ϑ3/2

)
− �

ϑ3/2 P ′( �

ϑ3/2

))
> 0.

(22)

We also have for suitable choice of the additive constant in the definition of the
specific entropy

|s0(�, ϑ)| � c6(1 + | ln �| + | ln ϑ |) in (0,∞)2

|s0(�, ϑ)| � c7(1 + | ln �|) in (0,∞)× (1,∞)

s0(�, ϑ) � c8 > 0 in (0, 1)× (1,∞)

s0(�, ϑ) � c9(1 + ln ϑ) in (0, 1)× (0, 1).

(23)

The transport coefficientsμ, η, and κ are supposed to be continuously differentiable
functions of the absolute temperature ϑ satisfying

0 < μ(1 + ϑ) � μ(ϑ), |μ′(ϑ)| � c for all ϑ � 0 (24)

0 � η(ϑ) � η(1 + ϑ) for all ϑ � 0, (25)

and

0 < κ(1 + ϑ3) � κ(ϑ) � κ(1 + ϑ3) for all ϑ � 0. (26)
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2.2. Weak Solutions

When dealing with time-periodic problems, it is convenient to consider all
quantities defined on a time “sphere”

S1 = [0, Tper]|{0,Tper}.
We will say that a triple {�,u, ϑ} is a time-periodic weak solution to the

Navier–Stokes–Fourier system (1–10) if the following holds:

– the solution belongs to the class � � 0, ϑ > 0 almost everywhere,

� ∈ L∞(S1; L5/3(�)), ϑ ∈ L∞(S1; L4(�)), u ∈ L2(S1; W 1,2
0 (�; R

3)),

ϑ3/2, ln ϑ ∈ L2(S1; W 1,2(�));
– equation of continuity (1) is satisfied in the sense of renormalized solutions,∫

S1

∫
�

(
b(�)∂tϕ + b(�)u · ∇xϕ + (

b(�)− b′(�)�
)

divx uϕ
)

dx dt = 0

for any b ∈ C∞[0,∞), b′ ∈ C∞
c [0,∞), and any test function ϕ ∈ C∞(S1 ×

�);
– momentum equation (2) holds in the sense of distributions:∫

S1

∫
�

(
�u · ∂tϕ + (�u ⊗ u) : ∇xϕ + p(�, ϑ)divxϕ

)
dx dt

=
∫

S1

∫
�

(
S(ϑ,∇x u) : ∇xϕ − �f · ϕ

)
dx dt

for any ϕ ∈ C∞
c (S

1 ×�; R
3);

– entropy equation (3) and the boundary condition (10) are satisfied in the sense
of the integral identity∫

S1

∫
�

(
�s(�, ϑ)∂tψ + �s(�, ϑ)u · ∇xψ + q(ϑ,∇xϑ)

ϑ
· ∇xψ

)
dx dt

=
∫

S1

∫
∂�

d

ϑ
(ϑ −	0)ψ dSx dt − 〈σ ;ψ〉

(27)

for any ψ ∈ C∞(S1 ×�), where σ ∈ M+(S1 ×�) is a non-negative measure
satisfying

σ � 1

ϑ

(
S(ϑ,∇x u) : ∇x u − q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
; (28)

– the total energy balance∫
S1

(
∂tψ

∫
�

(1

2
�|u|2 + �e(�, ϑ)

)
dx

)
dt

=
∫

S1
ψ

(∫
∂�

d(ϑ −	0) dSx −
∫
�

�f · u dx

)
dt

holds for any ψ ∈ C∞(S1).

It is not difficult to see that the entropy production inequality (28) reduces to
(8) as soon as the solution is smooth enough.
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2.3. Main Result

Our aim is to show the following result:

Theorem 1. Let � ⊂ R
3 be a bounded domain with a boundary of class C2+ν .

Suppose that the thermodynamic functions p, e, and s satisfy hypotheses (14–18),
while the transport coefficientsμ, η, and κ comply with (24–26), and d ∈ L∞(∂�),
	0 ∈ L1(∂�),

d(x) � d0 > 0, 	0(x) � 	 > 0 for all x ∈ ∂�. (29)

Finally, let f ∈ L∞(S1 ×�; R
3).

Then for any M0 > 0 the Navier–Stokes–Fourier system (1–10) possesses at
least one time-periodic-solution {�,u, ϑ} in the sense specified in Section 2.2 above
such that ∫

�

�(t, ·) dx = M0 for all t ∈ S1.

The rest of the paper is devoted to the proof of Theorem 1. It is worth-noting that
the result is in fact “better” than for the corresponding isentropic system established
in [3], where the pressure satisfies p(�) = a�γ , γ > 5/3 in contrast with (15).
Indeed it is easy to check that Theorem 1 holds true also for the pressure, specific
energy and specific entropy from (12) and (13).

2.4. A Priori Bounds

Before starting the technical part of the proof of Theorem 1, we establish a
priori bounds available for (smooth) time-periodic solutions of problem (1–11).

Lemma 1. Let (�,u, s) be sufficiently smooth solutions to (1–4), then

sup
t∈S1

∫
�

(
�u2 + �5/3 + ϑ4) dx

+
∫

S1

∫
�

(
|∇x u|2 + (

1 + ϑ3) |∇xϑ |2
ϑ2 + �5/3+1/9

)
dx dt � Data.

(30)

The proof of this lemma is naturally split into two parts concerning bounds resulting
from the energy estimates and improvement of integrability of the density.

2.4.1. Energy Estimates. To begin, observe that the total mass of the fluid is a
constant of motion, meaning∫

�

�(t, ·) dx = M0, in particular, � ∈ L∞(S1; L1(�)). (31)

Next step is to integrate the entropy balance equation (3) over the time-space
cylinder S1 ×�, or, equivalently, to take ψ ≡ 1 in (27), to obtain∫

S1

∫
�

(1

2

μ(ϑ)

ϑ

∣∣∣∇x u + ∇x ut − 2

3
divx u I

∣∣∣2 + κ(ϑ)|∇xϑ |2
ϑ2

)
dx dt

+
∫

S1

∫
∂�

d

ϑ
	0 dSx dt �

∫
S1

∫
∂�

d dSx dt � c.
(32)
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Consequently, by virtue of (24), (26), combined with the standard Korn inequality,
we deduce that

u ∈ L2(S1; W 1,2
0

(
�; R

3)), (33)

∇xϑ
3/2 ∈ L2(S1 ×�; R

3), and ∇x ln ϑ ∈ L2(S1 ×�; R
3). (34)

Inequality (32) is the heart of the analysis as it yields, almost for granted, impor-
tant a priori bounds for the velocity field and the temperature gradient. Similar
observation was exploited in [18,19] for solving the stationary problem.

Next, we integrate the total energy balance (4) over S1 to obtain∫
S1

∫
∂�

d(ϑ −	0) dSx dt =
∫

S1

∫
�

�f · u dx dt,

where, in accordance with (31), (33), and the embedding W 1,2 ↪→ L6,
∣∣∣
∫

S1

∫
�

�f · u dx dt
∣∣∣ � c

(
1 + ‖�‖L2(S1;L6/5(�))

)
.

Consequently, by virtue of (29), ‖ϑ‖L1(S1×∂�) � c
(
1 + ‖�‖L2(S1;L6/5(�))

)
. Thus,

as a consequence of (34) and Poincaré’s inequality,

‖ϑ‖L1(S1;L6(�)) � c
(
1 + ‖�‖L2(S1;L6/5(�))

)
. (35)

Furthermore, by (31),

‖�‖2
L2(S1;L6/5(�))

� c
∫

S1

(∫
�

�5/3 dx

)1/2

dt,

which, together with (35) implies that

‖ϑ‖L1(S1;L6(�)) � c

⎛
⎝1 +

(∫
S1

(∫
�

�5/3 dx

)1/2

dt

)1/2
⎞
⎠ . (36)

Next observe that, by virtue of hypotheses (14–17), there exist two positive
constants c1, c2 such that

c1
(
�5/3 + ϑ4) � �e(�, ϑ) � c2

(
�ϑ + �5/3 + ϑ4). (37)

Denoting E(t) = ∫
�

( 1
2�|u|2 + �e(�, ϑ)

)
dx the total energy we deduce from the

energy balance (4) that E(t) � E(s)+c
(

1+∫
S1 E(z) dz

)
for any t � s. By means

of the mean value theorem, we therefore obtain that

sup
t∈S1

E(t) � c

(
1 +

∫
S1

E(s) ds

)
. (38)

Seeing that, in accordance with (33),∫
S1

∫
�

1

2
�|u|2 dx dt � c‖�‖L∞(S1;L3/2(�)),
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formula (38) reads

sup
t∈S1

E(t) � c

(
1 +

∫
S1

∫
�

�e(�, ϑ) dx dt

)

� c

(
1 +

∫
S1

∫
�

�5/3 dx dt +
∫

S1

∫
�

ϑ4 dx dt

)
.

(39)

Now, we write ‖ϑ‖4
L4(�)

� ‖ϑ‖L6(�)‖ϑ‖3
L4(�)

� c‖ϑ‖L6(�) supt∈S1 E3/4(t),
therefore, in view of (39),

sup
t∈S1

E(t) � c

[
1 +

∫
S1

∫
�

�5/3 dx dt +
(∫

S1
‖ϑ‖L6(�) dt

)4
]
.

Using (36) we conclude that

sup
t∈S1

E(t) � c

(
1 +

∫
S1

∫
�

�5/3 dx dt

)
. (40)

2.4.2. Pressure Estimates. Having established the crucial relation (40), the
remaining a priori bounds can be derived in the same way as in [3]. We multi-
ply momentum equation (2) on

B
[
�α − {�α}�

]
for a certain (small) α > 0,

where

{g}� = 1

|�|
∫
�

g dx, (41)

and B ≈ div−1
x is the operator constructing a vector field with zero traces and

prescribed divergence, that is,

divxB[g] = g in �, B[g]|∂� = 0, for
∫
�

g dx = 0, (42)

see [1]. The mapping B: L p(�) �→ W 1,p
0 (�; R

3) is bounded for any 1 < p < ∞.
If, moreover, g = divx w, where w ∈ Lr (�; R

3) and w · n = 0 in the sense of

W
− 1

p′ ,p′
(∂�), then

‖B[g]‖Lr (�;R3) � c(r)‖w‖Lr (�;R3) for any 1 < r < ∞;
for the proof, see also [6].

We get, due to (40),

∫
S1

∫
�

�
5
3 +α dx dt � c

⎛
⎝1 +

5∑
j=1

|I j |
⎞
⎠ ,
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where

I1 =
∫

S1

∫
�

S : ∇xB
[
�α − 1

|�|
∫
�

�α dx
]

dx dt

I2 =
∫

S1

∫
�

[�u ⊗ u] : ∇xB
[
�α − 1

|�|
∫
�

�α dx
]

dx dt

I3 =
∫

S1

∫
�

�f · B
[
�α − 1

|�|
∫
�

�α dx
]

dx dt

I4 =
∫

S1

∫
�

�u · B
[
divx (�

αu)
]

dx dt

I5 =
∫

S1

∫
�

�u · B
[
�αdivx u − 1

|�|
∫
�

�αdivx u dx
]

dx dt.

To begin, we observe that I3 is bounded, provided α is small enough. Next, by
virtue of Hölder’s inequality

|I1| � c
∫

S1

(
1 + ‖ϑ‖L4(�)‖∇x u‖L2(�;R9)

)
dt � c

(
1 + sup

t∈S1
E1/4(t)

)
.

Similarly, in accordance with (33) (for α sufficiently small),

|I2| + |I4| � c sup
t∈S1

‖�‖L5/3(�)

∫
S1

‖u‖2
L6(�;R3)

dt � c sup
t∈S1

E3/5(t).

Finally, by the same token,

|I5| � sup
t∈S1

‖�‖L5/3(�)

∫
S1

‖u‖L6(�;R3)‖divx u‖L2(�) dt � c sup
t∈S1

E3/5(t).

Combining (40) with the estimates obtained in this section, we conclude that

sup
t∈S1

E(t) � c. (43)

Relation (43) closes the circle of a priori bounds that are the same as for the ini-
tial-value problem, see [4, Chapter 2]. In Section 9 we will show that we may take
α = 1

9 . Lemma 1 is proved. ��

3. The Full Approximation

We aim to solve the following approximation of the original problem. Assume
N ∈ N, τ, l, ε, δ > 0. We look for unknown triplet (�,uN , ϑ), fulfilling the fol-
lowing approximation:

Continuity equation:

∂t� + divx (�uN )− ε�� + ε� = εh in S1 ×�,
∂�

∂n
= 0 at S1 × ∂�,

(44)

where h = M0|�| .
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Momentum equation:
∫

S1

∫
�

(
l∂t uN · wi + ∂t (�uN ) · wi − �uN ⊗ uN : ∇x wi

)
dx dt

+
∫

S1

∫
�

S(ϑ,∇x uN ) : ∇x wi dx dt

−
∫

S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
divx wi dx dt

=
∫

S1

∫
�

(
− ε∇x� · ∇x uN wi + 1

2
ε(h − �)uN · wi + �f · wi

)
dx dt

(45)

for i = 1, . . . , N , where {wi (t, x)}i∈N form a basis in the Hilbert space
L2(S1; W 1,2

0 (�; R
3)), orthonormal with respect to the scalar product

(wi ,w j )L2(S1;W 1,2
0 (�;R3))

=
∫

S1

∫
�

∇x wi : ∇x w j dx dt. (46)

We take the basis functions sufficiently smooth, so finite combination of basis
vectors is always smooth in time and space.

We take wi (t, x) = ak(t)bl(x) with i = i(k, l), functions ak(·) are sin/cos
giving the basis over the time circle, and bl(·) are the basis in W 1,2

0 (�; R
3). We

keep in mind that the index i hides two integers k and l; this will be important in
Section 6 within the procedure of the limit.

Energy equation:

−τ∂2
t �(ln ϑ)+ l∂tϑ + τ�(ln ϑ)+ ∂t (�e)− divx∇�(ln ϑ)+ divx (�euN )

= S(ϑ,∇x uN ) : ∇x uN − p(�, ϑ)divx uN + εδ(���−2 + 2)|∇x�|2 + δϑ−1

(47)

in S1 ×�,

(
κ(ϑ)+ δϑ B + δϑ−1

) ∂ϑ
∂n

+ d(ϑ −	0) = 0 (48)

at S1 × ∂�, where

�(w) =
∫ w

0
[κ(ez)ez + δe(B+1)z + δ] dz. (49)

The energy equation has just an auxiliary character, in the final result, so instead
we will consider the entropy equation. We now rewrite (47) in the form of the
entropy; we divide (47) by ϑ and use (44).

Entropy equation:

−τ∂t

(�′(ln ϑ)∂t (ln ϑ)

ϑ

)
− τ

�′(ln ϑ)(∂tϑ)
2

ϑ3 + l∂t ln ϑ + ∂t (�s)

+τ �(ln ϑ)
ϑ

+ [divx (�uN )+ ∂t�] 1

�ϑ
(�e + p − �ϑs)+ divx (�suN )
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−divx

(
(κ(ϑ)+ δϑ B + δϑ−1)

∇xϑ

ϑ

)
= 1

ϑ
S(ϑ,∇x uN ) : ∇x uN

+(κ(ϑ)+ δϑ B + δϑ−1)
|∇xϑ |2
ϑ2 + δϑ−2 + εδ

ϑ
(���−2 + 2)|∇x�|2 (50)

in S1 ×�, where the specific entropy fulfills (17).

4. Existence for Fixed Parameters

In this part we show the existence of a solution for fixed approximation parame-
ters, particularly as the approximation level of the Galerkin method is fixed. Namely
we consider system (44, 45, 47, 48).

The proof will follow from an application of the Leray–Schauder theorem to
the following map

T : R
N × W 1,p(S1 ×�) �→ R

N × W 1,p(S1 ×�) (51)

and

T (̃uN , ln ϑ̃) = (uN , ln ϑ) (52)

such that:
Momentum equation:∫
S1

∫
�

(
l∂t uN · wi + ∂t (�ũN ) · wi − (�ũN ⊗ ũN ) : ∇x wi

)
dx dt

+
∫

S1

∫
�

S(ϑ̃,∇x uN ) : ∇x wi dx dt

−
∫

S1

∫
�

(p(�, ϑ̃)+ δ(�� + �2))divx wi dx dt

=
∫

S1

∫
�

(
− ε∇x� · ∇x ũN wi + 1

2
ε(h − �)̃uN · wi + �f · wi

)
dx dt (53)

for i = 1, . . . , N ;
Energy equation:

−τ∂2
t �(ln ϑ)+ l∂t ϑ̃ + ∂t (̃�ẽ)+ τ�(ln ϑ)+ divx (�ẽ̃uN )− divx∇�(ln ϑ)

= S(ϑ̃,∇x ũN ) : ∇x ũN − p(�, ϑ̃)divx ũN + εδ(���−2 + 2)|∇x�|2 + δϑ̃−1

(54)

in S1 ×�,

∂�(ln ϑ)

∂n
+ d(ϑ̃ −	0) = 0 (55)

at S1 × ∂�, where �(w) = ∫ w
0 [κ(ez)ez + δe(B+1)z + δ] dz, and � solves
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Continuity equation:

∂t� + divx (�ũN )− ε�x� + ε� = εh in S1 ×�,
∂�

∂n
= 0 at S1 × ∂�.

(56)

First let us observe that by definition uN is a smooth function in space and time,
since it is a finite combination of basis vectors. Subsequently, � is also smooth.

More precisely:

Lemma 2. Let ũN ∈ Lin{wi }N
i=1, ε > 0. Then there exists a unique solution to (56).

Moreover, � ∈ C∞(S1; W 2,p(�)) (provided � ∈ C2) and the mapping ũN �→ �

is continuous and compact from R
N �→ W 1,p(S1 ×�). In addition, � � 0.

Proof. We give just the main steps of the proof:

Step 1 Fix the density � in the nonlinear term and construct the solution to the
linear problem by means of the Galerkin method.
Step 2 Show that the mapping � �→ � has a fixed point in W 1,p(S1 × �), via
the Schauder fixed point theorem.
Step 3 Show that the solution fulfills

∫
�
�(t, ·) dx = M0. To this aim, integrate

over � the equation:

∂t

∫
�

� dx + ε

∫
�

� dx = εM0, so
∫
�

�(x, t) dx = M0. (57)

Step 4 Show that the density is non-negative (if h is so). We examine the set
{� < 0}. Assume that the set {� = 0} is a regular submanifold; then we have

∂t

∫
{�<0}

� dx + 0−ε
∫
∂{�<0}

∂�

∂n
dSx + ε

∫
{�<0}

� dx =ε
∫

{�<0}
h dx . (58)

Since ∂�
∂n |∂{�<0} � 0, we find ε

∫
S1

∫
�
�χ{�<0} dx dt � εh|{� < 0}|, so |{� <

0}| = 0. In case {� = 0} is not a regular submanifold, we may construct a
sequence of εn → 0− for which {� = εn} is a regular submanifold and pass
with εn to zero.
Step 5 It follows that the solution is unique (for the zero right-hand side it must
be zero). ��
Next consider the momentum equation.

Lemma 3. For any N ∈ N, l > 0, ε > 0, δ > 0, � ∈ W 1,p(S1 × �), ũN ∈
Lin{wi }N

i=1, ϑ̃ ∈ W 1,p(S1 × �) there is a unique solution to (53). Moreover,
uN ∈ C∞(S1 ×�; R

N ).

Proof. We solve the system of linear algebraic equations, its solvability being
guaranteed by Korn’s inequality and the Brower fixed point theorem. The regularity
follows from the regularity of the basis functions, the uniqueness is straightforward.

��
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Last problem is the energy equation.

Lemma 4. For l, ε, τ and δ > 0, � ∈ W 1,2p(S1 × �), ũN ∈ Lin{wi }N
i=1 and

ϑ̃ ∈ W 1,p(S1 × �) there is a unique solution to (54) such that ln ϑ and ϑ ∈
W 2,p(S1 ×�). In addition ϑ > 0 on S1 ×�.

Proof. Solving the system for ln ϑ , setting ϑ := eln ϑ implies strict positiveness of
the temperature, which is a very important step in our examination; it guarantees
that our final temperature will be positive almost everywhere. The following is the
scheme of solvability in order to control uniqueness and continuity. We solve the
system

−τ∂2
t Z − divx∇Z + τ Z = −l∂t ϑ̃ − ∂t (�ẽ)− divx (�ẽ̃uN )

+ S(ϑ̃,∇x ũN ) : ∇x ũN − p(�, ϑ̃)divx ũN +εδ(���−2+2)|∇x�|2 + δϑ̃−1 (59)

in S1 ×�,

∂Z

∂n
+ d(ϑ̃ −	0) = 0 (60)

at ∂S1 ×�, and then we define

ln θ = �−1(Z). (61)

Due to the definition | d
dt�

−1| � δ−1—see (49)—and the sought ln ϑ is well
defined. The regularity of ϑ is straightforward. ��

Hence our operator T is a compact operator from R
N × W 1,p(S1 × �) into

itself. Its continuity is also straightforward. Moreover, the solution has the regu-
larity from previous lemmas. To conclude, we have to show that the possible fixed
points

λT (uN , ϑ) = (uN , ϑ) for λ ∈ [0, 1], (62)

are bounded in R
N × W 1,p(S1 ×�). To this aim, we show

Lemma 5. Let (uN , ϑ) be a solution to (62). Then for λ ∈ [0, 1]

(1 − λ)

∫
S1

∫
�

S(ϑ,∇x uN ) : ∇x uN dx dt + τ

∫
S1

∫
�

�(ln ϑ) dx dt

+ λ

∫
S1

∫
∂�

d(ϑ −	0) dSx dt + εδλ

∫
S1

∫
�

( �

� − 1
�� + 2�2

)
dx dt

= λ

∫
S1

∫
�

(
�f · uN + εδ

�

� − 1
h��−1 + 2εδh� + δϑ−1

)
dx dt (63)
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and

∫
S1

∫
�

[(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 + τ�′(ln ϑ)(∂tϑ)
2

ϑ2

]
dx dt

+ λ

∫
S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx dt

+ λεδ

∫
S1

∫
�

( �

� − 1
�� + 2�2

)
dx dt

+ εδλ

∫
S1

∫
�

1

ϑ
|∇x�|2(���−2+2) dx dt+τ

∫
S1

∫
�

(ϑ B+1 + κ(ϑ)ϑ) dx dt

+ λ

∫
S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx dt � C

(
1 + λ

∣∣∣
∫

S1

∫
�

�f · uN dx dt
∣∣∣), (64)

where C is independent of approximative parameters and of λ.

Proof. Our system reads

∫
S1

∫
�

(
l∂t uN · wi + λ∂t (�uN ) · wi + S(ϑ,∇x uN ) : ∇x wi

)
dx dt

−λ
∫

S1

∫
�

(
(�uN ⊗ uN ) : ∇x wi +(p(�, ϑ)+δ(��+�2))divx wi ) dx dt

= λ

∫
S1

∫
�

(
− ε∇x� · ∇x uN wi + 1

2
ε(h − �)uN · wi + �f · wi

)
dx dt (65)

for i = 1, . . . , N ,

− τ∂2
t �(ln ϑ)+ lλ∂tϑ + λ∂t (�e)+ τ�(ln ϑ)

+ λdivx (�euN )− divx∇�(ln ϑ) = λS(ϑ,∇x uN ) : ∇x uN

− λp(�, ϑ)divx uN

+ λεδ(���−2 + 2)|∇x�|2 + λδϑ−1

(66)

in S1 ×�,

(
κ(ϑ)+ δϑ B + δϑ−1)∂ϑ

∂n
+ λd(ϑ −	0) = 0 (67)

at S1 × ∂�, where �(w) = ∫ w
0 [κ(ez)ez + δe(B+1)z + δ] dz, and � solves

∂t� + divx (�uN )− ε�x� + ε� = εh in S1 ×�,
∂�

∂n
= 0 at S1 × ∂�.

(68)

Step 1 Total energy estimate
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a) Use as test function uN in (65):
∫

S1

∫
�

S(ϑ,∇x uN ) : ∇x uN dx dt

= λ

∫
S1

∫
�

((
p(�, ϑ)+ δ(�� + �2)

)
divx uN + �f · uN

)
dx dt. (69)

b) Integrate (66) over S1 ×�. This reads

τ

∫
S1

∫
�

�(ln ϑ) dx dt + λ

∫
S1

∫
∂�

d(ϑ −	0) dSx dt

= λ

∫
S1

∫
�

(
S(ϑ,∇x uN ) : ∇x uN − p(�, ϑ)divx uN + δϑ−1

)
dx dt

+ λδε

∫
S1

∫
�

|∇x�|2(���−2 + 2) dx dt. (70)

We use (68) to get its renormalized version for β = 2 and �

εβ

∫
S1

∫
�

( 1

β − 1
�β + �β−2|∇x�|2

)
dx dt

+
∫

S1

∫
�

�βdivx u dx dt = ε
β

β − 1

∫
S1

∫
�

h�β−1 dx dt. (71)

c) Thus, summing up (69–71) yields the total energy balance

(1 − λ)

∫
S1

∫
�

S(ϑ,∇x uN ) : ∇x uN dx dt + τ

∫
S1

∫
�

�(ln ϑ) dx dt

+
∫

S1

∫
∂�

λd(ϑ−	0) dSx dt+εδλ
∫

S1

∫
�

( �

� − 1
�� + 2�2

)
dx dt

= λ

∫
S1

∫
�

(
�f · uN + εδ

�

� − 1
h��−1 + 2εδh� + δϑ−1

)
dx dt. (72)

Step 2 Entropy estimate

We recall the entropy identity

− τ∂t

(�′(ln ϑ)∂t (ln ϑ)

ϑ

)
− τ

�′(ln ϑ)(∂tϑ)
2

ϑ3 + lλ∂t ln ϑ + λ∂t (�s)

+ τ
�(ln ϑ)

ϑ
+ λ[divx (�uN )+ ∂t�] 1

�ϑ
(�e + p − �ϑs)+ divx (�suN )

− divx

(
κ(ϑ)+ δ(ϑ B + ϑ−1)

∇xϑ

ϑ

)
= λ

1

ϑ
S(ϑ,∇x uN ) : ∇x uN

+ λδϑ−2 + (κ(ϑ)+ δ(ϑ B + ϑ−1))
|∇xϑ |2
ϑ2 + λ

εδ

ϑ
(���−2 + 2)|∇x�|2, (73)
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in S1 ×�. We integrate (73) over S1 ×� to get
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx dt

+ τ

∫
S1

∫
�

�′(ln ϑ)(∂tϑ)
2

ϑ3 dx dt + λ

∫
S1

∫
∂�

1

ϑ
d	0 dSx dt

+ λ

∫
S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx dt

+ εδλ

∫
S1

∫
�

1

ϑ
|∇�|2(���−2 + 2

)
dx dt

= λ

∫
S1

∫
∂�

d	0 dSx dt + τ

∫
S1

∫
�

�(ln ϑ)

ϑ
dx dt

+ λ

∫
S1

∫
�

1

�ϑ

(
�e(�, ϑ)+ p(�, ϑ)− �ϑs(�, ϑ)

)[divx (�u)+ ∂t�] dx dt.

(74)

We need to estimate the last term on the right-hand side. Using (44), we get that it
is equal to

ε

∫
�

1

�ϑ

(
�e(�, ϑ)+ p(�, ϑ)− �ϑs(�, ϑ)

)
(h − � +�x�) dx .

We will try to find parts of the integral above having a “good” sign and put them
to the left-hand side. The rest will be estimated using the left-hand side of (74) and
(72), see [18] for similar calculations. We have

−ε
∫

S1

∫
�

1

�ϑ

(
�e(�, ϑ)+ p(�, ϑ)− �ϑs(�, ϑ)

)
�x� dx dt

= ε

∫
S1

∫
�

|∇x�|2 ∂
∂�

(e(�, ϑ)

ϑ
+ p(�, ϑ)

�ϑ
− s(�, ϑ)

)
dx dt

+ε
∫

S1

∫
�

∇x� · ∇xϑ
∂

∂ϑ

(e(�, ϑ)

ϑ
+ p(�, ϑ)

�ϑ
− s(�, ϑ)

)
dx dt

= ε

∫
S1

∫
�

|∇x�|2 1

�ϑ

∂p(�, ϑ)

∂�
dx dt

−ε
∫

S1

∫
�

∇x� · ∇xϑ
1

ϑ2

(
e(�, ϑ)+ �

∂e(�, ϑ)

∂�

)
dx dt.

Thus we consider the first term on the left-hand side, while the other term can be
bounded from above by

ε

∫
S1

∫
�

∇x� · ∇xϑ
1

ϑ2

(
�2/3 + ϑ

)
dx dt

� εδ

4

∫
S1

∫
�

1

ϑ

(
|∇x�|2 + |∇x�|2��−2

)
dx dt

+ C(δ)ε
∫

S1

∫
�

( |∇xϑ |2
ϑ3 + |∇xϑ |2

ϑ

)
dx dt
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and all terms are estimated using terms on the left-hand side, provided � � 10/3.
The other terms can be treated exactly as in [18] and we get∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx dt

+
∫

S1

∫
�

τ�′(ln ϑ)(∂tϑ)
2

ϑ3 dx dt

+ λ

∫
S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx dt

+ λ

∫
S1

∫
∂�

1

ϑ
d	0 dSx dt + εδλ

∫
S1

∫
�

1

ϑ
|∇x�|2

(
���−2 + 2

)
dx dt

� C
(

1 + τ

∫
S1

∫
�

�(ln ϑ)

ϑ
dx dt + ελ

∫
S1

∫
�

�s(�, ϑ) dx dt
)
, (75)

where C is independent of approximation parameters.

Step 3 Estimates

Thus, summing up the energy inequality (72) and the entropy inequality (75) we
end up with∫

S1

∫
�

((
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 + τ�′(ln ϑ)(∂tϑ)
2

ϑ2

)
dx dt

+ λ

∫
S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx dt

+ 1

2
εδλ

∫
S1

∫
�

( �

�−1
��+2�2

)
dx dt + τ

∫
S1

∫
�

(
ϑ B+1+κ(ϑ)ϑ) dx dt

+ λεδ

∫
S1

∫
�

1

ϑ
|∇x�|2(���−2 + 2) dx dt + λ

∫
S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx dt

� C
(

1 + λ

∣∣∣
∫

S1

∫
�

�f · uN dx dt
∣∣∣ + λε

∣∣∣
∫

S1

∫
�

�s(�, ϑ) dx dt
∣∣∣). (76)

Again, C in (76) is independent from approximation parameters. As

ε

∫
�

�s(�, ϑ) dx � εδ

4

∫
�

�2 dx

+ 1

2

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx +

∫
�

κ(ϑ)
|∇xϑ |2
ϑ2 dx + C,

after integrating over the time period we get (64) provided ε � δ. ��
Estimating the other term on the right-hand side as below∣∣∣

∫
�

�f · uN dx
∣∣∣ � C‖uN ‖L6(�;R3)‖�‖L6/5(�)

� 1

2

∫
�

1

ϑ
S(ϑ,∇x uN ) : ∇x uN dx + C‖�‖2

L6/5(�)

� 1

2

∫
�

1

ϑ
S(ϑ,∇x uN ) : ∇x uN dx + εδ

2

∫
�

�2 dx + C(ε, δ),
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we get bounds of the approximative solution, that is, solutions to (62). Using them
together with the bootstrap method applied on our system we finish the proof of
the existence of a solution. Note that we can estimate the right-hand side in (64) by
a constant, which is independent of τ , N and l.

Theorem 2. Let p be sufficiently large, N be fixed and τ > 0, then there exists at
least one solution to (44, 45, 47) such that

(�,uN , ln ϑ) ∈
(

W 1,p(S1 ×�) ∩ L p(S1; W 2,p(�))
)

× Lin{wi }N
i=1 × W 2,p(S1 ×�),

(77)

ϑ := eln ϑ is strictly positive, and � � 0.

5. Limit τ → 0

From (64) we have the following estimates independent of τ and N :

‖∇x uN ‖L2(S1;L2(�;R9)) + ‖∇xϑ‖L2(S1;L2(�;R3)) + ‖∇xϑ
B/2‖L2(S1;L2(�;R3))

+‖ϑ‖L1(S1;L3B (�)) + ‖∇xϑ
− 1

2 ‖L2(S1;L2(�;R3)) + ‖ϑ−2‖L2(S1;L2(�))

+‖�‖L�(S1;L3�(�)) � C(ε, δ). (78)

The continuity equation yields

‖∇2
x�‖Lq (S1;Lq (�;R9)) + ‖∂t�‖Lq (S1;Lq (�)) � C(ε, δ) (79)

for some 1 < q < 2. In case C = C(ε, δ, N ) we are allowed to take any q < ∞.
Moreover, due to the fact that the velocity is contained in a finite dimensional

space, it is evidently relatively compact. To conclude, we consider the energy equa-
tion. We have to find some other extra information which may depend on l.

Testing the energy equation by �(ln θ) and ∂t�(ln ϑ), we can get

τ‖∂t�(ln ϑ)‖2
L2(S1;L2(�))

+ τ‖�(ln ϑ)‖2
L2(S1;L2(�))

+‖∇x�(ln ϑ)‖2
L2(S1;L2(�;R3))

+l‖�′(ln ϑ)
(
(∂tϑ)

2

ϑ
+ϑ(∂tϑ)

2
)

‖L1(S1;L1(�))

� C(ε, δ, N ). (80)

Additionally, �′(ln ϑ)ϑ−1 � const , thus the form of � delivers us the following
bound

l‖∂tϑ‖L2(S1;L2(�)) + ‖∇xϑ‖L2(S1;L2(�;R3)) � C(ε, δ, N ). (81)

So we control the strong and pointwise convergence of the temperature, thus we
can pass with τ → 0+.

Additionally high regularity of the right-hand side of (59)—we remember that
N is finite and uN and � are smooth—allows us to divide the equation by ϑ getting
the entropy form.
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Theorem 3. Let p be sufficiently large, N fixed, then there exists at least one solu-
tion to (44,45,47, 48) with τ = 0 such that

(�,uN , ln ϑ) ∈ (W 1,p(S1 ×�) ∩ L p(S1; W 2,p(�)))× Lin{wi }N
i=1

×(W 1,p(S1 ×�) ∩ L p(S1; W 2,p(�)))
(82)

and ϑ := eln ϑ is strictly positive. Moreover, the entropy equality (50) with τ = 0
holds true together with (63) and (64) with τ = 0, λ = 1. In addition,

∫
S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN +δϑ−2

)
dx dt+

∫
S1

∫
∂�

	0d

ϑ
dSx dt

+εδ
∫

S1

∫
�

1

ϑ
|∇x�|2

(
���−2 + 2

)
dx dt � C

(
1 + ε

∫
S1

∫
�

�s(�, ϑ) dx dt
)
,

(83)

where C is independent of N , l, δ, ε, depends only on data for the original problem,
and ∫

S1

∫
�

[(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2

]
dx dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx dt

+εδ
∫

S1

∫
�

( �

2(� − 1)
�� + �2 + 1

ϑ
|∇x�|2(���−2 + 2)

)
dx dt

+
∫

S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx dt � C(ε, δ), (84)

where C(ε, δ) is independent of N , l and it depends only on δ, ε and the data of the
original problem.

6. Limit N → ∞

We are ready to pass to the limit in the momentum equation. However, we
divide this operation into two steps. First we recall that basis vectors in the Galer-
kin approximation are in the form wi (t, x) = ak(t)bl(x). Our approach requires
that we first pass to the limit in the time approximation. Let us denote uN = uNt ,Nx ,
that is 1 � k � Nt and 1 � l � Nx . By the estimate (84) we find a subsequence

uNt ,Nx ⇀ uNx in L2(S1; R
3Nx ) as Nt → ∞. (85)

Moreover, looking once more at the momentum equation (65) we easily get the
estimate of the time derivative of uN in L1(S1; R

3Nx ) which gives the estimate
of uN in L∞(S1; R

3Nx ), hence we get the estimate of the time derivative in any
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Lq(S1; R
3Nx ), q < ∞. The other terms are harmless and the limit fulfills the

following identity∫
S1

∫
�

(
l∂t uNx · φwi + ∂t (�uNx ) · φwi + S(ϑ,∇x uNx ) : φ∇x wi

)
dx dt

−
∫

S1

∫
�

(�uNx ⊗ uNx ) : φ∇x wi +
(

p (�, ϑ)+δ
(
�� + �2

))
divxφwi dx dt

=
∫

S1

∫
�

(
− ε∇x� · ∇x uNxφwi + 1

2
ε(h − �)uNx · φwi + �f · φwi

)
dx dt

(86)

for any φ ∈ C∞(S1) and i = 1, . . . , Nx .
From now on we write uNx = uN and we analyze the limit N → ∞, that is,

we pass to the limit in the space approximation. Note that we have bounds (78),
(79), (83) and (84), in addition equality (86) is valid.

Step 1 Total energy estimate

a) Use as test function uNψ in (65), where ψ ∈ C∞
c (S

1):

−
∫

S1

( ∫
�

(
l
1

2
|uN |2 + 1

2
�|uN |2

)
dx
)
∂tψ dt

+
∫

S1

∫
�

S(ϑ,∇x uN ) : ∇x uN dx ψ dt

=
∫

S1

∫
�

((
p(�, ϑ)+ δ(�� + �2)

)
divx uN + �f · uN

)
dx ψ dt. (87)

b) Integrate (66) with τ = 0 over �, multiply by a smooth in time function ψ
and integrate over S1. This reads

−
∫

S1

∫
�

(lϑ + �e(�, ϑ)) dx ∂tψ dt +
∫

S1

∫
∂�

d(ϑ −	0) dSx ψ dt

=
∫

S1

∫
�

(
S(ϑ,∇x uN ) : ∇x uN − p(�, ϑ)divx uN

+ δϑ−1 + δε|∇x�|2(���−2 + 2)
)

dx ψ dt. (88)

We use (68) to get its renormalized version for β = 2 and � in the form

−
∫

S1

∫
�

1

β − 1
�β dx ∂tψ dt+εβ

∫
S1

∫
�

( 1

β−1
�β+�β−2|∇x�|2

)
dx ψ dt

+
∫

S1

∫
�

�βdivx u dx ψ dt = ε
β

β − 1

∫
S1

∫
�

h�β−1 dx ψ dt. (89)

c) Thus, summing up (87)–(89) yields the total energy balance

−
∫

S1

∫
�

( l

2
|uN |2 + lϑ + 1

2
�|uN |2 + �e + δ

( ��

� − 1
+ �2

))
dx ∂tψ dt

+
∫

S1

∫
∂�

d(ϑ−	0) dSx ψ dt+εδ
∫

S1

∫
�

( �

� − 1
��+2�2

)
dx ψ dt

=
∫

S1

∫
�

(
�f · uN + εδ

�

� − 1
h��−1 + 2εδh� + δϑ−1

)
dx ψ dt. (90)
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Step 2 Entropy estimate

We integrate (73) with τ = 0 over�, multiply by the same functionψ and integrate
over S1 to get

∫
S1

∫
�

(
l ln ϑ + �s

)
dx ∂tψ dt +

∫
S1

∫
∂�

1

ϑ
d	0 dSx ψ dt

+
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx ψ dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx ψ dt

+εδ
∫

S1

∫
�

1

ϑ
|∇�|2(���−2 + 2

)
dx ψ dt =

∫
S1

∫
∂�

d	0 dSx ψ dt

+
∫

S1

∫
�

1

�ϑ

(
�e(�, ϑ)+ p(�, ϑ)− �ϑs(�, ϑ)

)[divx (�u)+ ∂t�] dx ψ dt.

(91)

Next, we repeat considerations from Section 4—after (74), getting

∫
S1

∫
�

(
l ln ϑ + �s

)
dx ∂tψ dt

+
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx ψ dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx ψ dt

+
∫

S1

∫
∂�

1

ϑ
d	0 dSx ψ dt + εδ

∫
S1

∫
�

1

ϑ
|∇x�|2

(
���−2 + 2

)
dx ψ dt

� C
(

1 + ε

∫
S1

∫
�

�s(�, ϑ) dx ψ dt
)
, (92)

where C is independent of approximation parameters.

Step 3 Estimates

Thus summing up the energy equality (90) and the entropy inequality (92) we end
up with
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−
∫

S1

∫
�

( l

2
|uN |2 + lϑ + 1

2
�|uN |2

+�eδ
( 1

� − 1
�� + �2

)
− l ln ϑ − �s

)
dx ∂tψ dt

+
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx ψ dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + δϑ−2

)
dx ψ dt

+1

2
εδ

∫
S1

∫
�

( �

� − 1
�� + 2�2

)
dx ψ dt

+
∫

S1
εδ

∫
�

1

ϑ
|∇x�|2(���−2 + 2) dx ψ dt+

∫
S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx ψ dt

� C
(

1 +
∣∣∣
∫

S1

∫
�

�f · uN dx ψ dt
∣∣∣ + ε

∣∣∣
∫

S1

∫
�

�s(�, ϑ) dx ψ dt
∣∣∣). (93)

The above estimates are not enough to guarantee strong convergence of the
velocity and the temperature, more specifically, the compactness of the velocity
and the temperature in time; we need an additional piece of information. Let us
define

E(t)=
∫
�

( l

2
|uN |2 + l(ϑ−ln ϑ)+ 1

2
�|uN |2 + �(e−s)+ δ(

��

�−1
+ �2)

)
dx .

(94)

Note that

E(t) �
∫
�

( l

2
|uN |2 + 1

2
�|uN |2 + l

2
(ϑ + | ln ϑ |)+ δ

( ��

� − 1
+ �2

)

+ �γ

γ − 1
+ �| ln �| + 1

2
ϑ4 + �| ln ϑ |

)
(t) dx .

(95)

We get from (93), taking a sequence ψn → ψt,s with

ψt,s(τ ) =
⎧⎨
⎩

0, 0 < τ < t
1, t � τ � s < Tper
0, s < τ � Tper,

that

sup
t∈S1

E(t) � C(ε, δ)
(

1 +
∫

S1
E(s) ds

)
. (96)
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Due to (78) it suffices to consider just two terms, that is, �|uN |2 and ϑ4. But

�|uN |2 � |√�uN ||√�uN |,
√∫

�
�|uN |2 dx � C E1/2(t),

√
� ∈ L2�(S1 × �),

uN ∈ L2(S1; L6(�; R
3)). Hence for � > 3/2 we easily find

∫
S1

∫
�

�|uN |2 dx dt � C(ε, δ) sup
t∈S1

E
1
2 (t).

Next we consider the temperature. As the heat conductivity κ(ϑ) ∼ (1 + ϑ3) and
the temperature in L1(S1; L9(�)), we find

∫
S1

∫
�

ϑ4 dx dt �
∫

S1

(∫
�

ϑ9 dx

)1/9 (∫
�

ϑ3· 9
8 dx

) 8
9

dt

� C(ε, δ) sup
t∈S1

E3/4(t).
(97)

Thus we get

sup
t∈S1

E(t) � C(ε, δ). (98)

Together with (78) we also have

‖ϑ‖L B (S1;L3B (�)) � C(ε, δ). (99)

Hence we may improve the bounds in the continuity equation to

‖∇2
x�‖L3/2(S1;L3/2(�;R9)) + ‖∇x�‖L3(S1;L3(�;R3))

+‖∂t�‖L3/2(S1;L3/2(�)) � C(ε, δ).
(100)

The bound on ‖∇x�‖L3(S1;L3(�;R3)) can be obtained provided � � 30
( 3

10 + 1
30 =

1
3

)
.
We may now use these estimates to control the time derivative of the velocity.

As the main terms in the estimate of (l + �)∂t u are �t u and divx (�|u|2), we get
that particularly

l‖∂t u‖
(L30(S1;W 1,5

0 (�;R3)))∗ � C(ε, δ). (101)

The space in (101) is not optimal, but sufficient. Note that due to (78) and (98), �
is bounded in L5/3�(S1 ×�). This point is crucial since it allows us to pass to the
limit in the term with �� .

The limit N → ∞ shows the first serious difficulty appearing in our analy-
sis. This is a problem related to definition of the term S(ϑ,∇x uN ) : ∇x uN in the
limit. Since we have no uniform control of this sequence, we shift considerations
on the level of the entropy equation (50). Then we consider S(ϑ,∇x uN ):∇x uN

ϑ
, which

is bounded by (64) in L1 space. This information is weak but sufficient.
Finally, we need compactness in time of the temperature. Since compactness in

space follows from boundedness of the gradient of the temperature, we find some
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information about the time derivative of the temperature in some negative space.
From (50) with τ = 0 we find

( l + �

ϑ
+ ϑ2

)
∂tϑ = −s∂t� + ∂t�

−[divx (�uN )+ ∂t�] 1

�ϑ
(�e + p − �ϑs)+ divx (�suN )

− divx

(
κ(ϑ)+ δ(ϑ B + ϑ−1)

∇xϑ

ϑ

)

+ 1

ϑ
S(ϑ,∇x uN ) : ∇x uN + (

κ(ϑ)+ δ(ϑ B + ϑ−1)
) |∇xϑ |2
ϑ2

+ δϑ−2 + εδ

ϑ
(���−2 + 2)|∇x�|2 in S1 ×�. (102)

By our previous analysis we are able to show that at least
( l + �

ϑ
+ ϑ2

)
∂tϑ ∈ L1(S1; (W 3,3

0 (�))∗). (103)

This information is sufficient to obtain the pointwise convergence of the approxi-
mative temperature for N → ∞.

We can easily pass to the limit in the continuity and momentum equations.
However, we cannot pass to the limit in the internal energy balance, due to the
presence of the term S(ϑ(N ),∇x uN ) : ∇x uN which is not equi-integrable with
respect to N . Hence, instead of examination the energy equation (47) we consider
the entropy equation (50). However, we cannot pass to the limit directly since

S(ϑ(N ),∇x uN ) : ∇x uN

ϑ(N )
+

(
κ(ϑ(N ))+ δ(ϑ(N )

B + ϑ(N )
−1)

)|∇xϑ(N )|2
ϑ(N )

2 ,

S(ϑ,∇x u) : ∇x u)
ϑ

+
(
κ(ϑ)+ δ(ϑ B + ϑ−1)

)|∇xϑ |2
ϑ2 ∈ L1(S1; L1(�)).

(104)

Thus, the only information obtained from the uniform estimate of the above
sequence is (up to a subsequence)

S(ϑ(N ),∇x uN ) : ∇x uN

ϑ(N )
+

(
κ(ϑ(N ))+ δ(ϑ(N )

B + ϑ(N )
−1)

)|∇xϑ(N )|2
ϑ(N )

2 ⇀ σ

(105)

weakly in M(S1 ×�). Additionally, we deduce that (for a chosen subsequence)

lim
N→∞

S(ϑ(N ),∇x uN ) : ∇x uN

ϑ(N )
+

(
κ(ϑ(N ))+ δ(ϑ(N )

B + ϑ(N )
−1)

)|∇xϑ(N )|2
ϑ(N )

2

� S(ϑ,∇x u) : ∇x u
ϑ

+
(
κ(ϑ)+ δ(ϑ B + ϑ−1)

)|∇xϑ |2
ϑ2 .

Hence σ is a positive measure.
Finally, we pass to the limit in the total energy balance (90). We have shown
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Theorem 4. There exists a solution

(�,u, ϑ) ∈ (W 1, 3
2 (S1 ×�) ∩ L

3
2 (S1; W 2,p(�)))× L2(S1; W 1,2

0 (�; R
3))

×L2(S1; W 1,2(�))

to the following problem:

∂t� + divx (�u)− ε�x� + ε� = εh in S1 ×�
∂�

∂n
= 0 at S1 × ∂�; (106)

∫
S1

∫
�

(
l∂t u · ϕ + ∂t (�u) · ϕ − (�u ⊗ u) : ∇xϕ + S(ϑ,∇x u) : ∇xϕ

)
dx dt

−
∫

S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
divxϕ dx dt

=
∫

S1

∫
�

(
− ε∇x� · ∇x u ϕ + 1

2
ε(h − �)u · ϕ + �f · ϕ

)
dx dt (107)

for any ϕ ∈ C∞
c (S

1 ×�; R
3);∫

S1

∫
�

−(l ln ϑ + �s)∂tψ dx dt −
∫

S1

∫
�

�su · ∇xψ dx dt

+
∫

S1

∫
�

[divx (�u)+ ∂t�] 1

�ϑ
(�e + p − �ϑs)ψ dx dt

+
∫

S1

∫
�

(
κ(ϑ)+ δ(ϑ B + ϑ−1)

)∇xϑ

ϑ
· ∇xψ dx dt

+
∫

S1

∫
∂�

1

ϑ
(ϑ − θ0)dψ dSx dt = 〈σ,ψ〉M(S1×�)

+
∫

S1

∫
�

δϑ−2ψ dx dt +
∫

S1

∫
�

εδ

ϑ
(���−2 + 2)|∇x�|2ψ dx dt (108)

for any ψ ∈ C∞(S1 ×�), where σ is a positive measure such that

σ � 1

ϑ
S(ϑ,∇x u) : ∇x u + (

κ(ϑ)+ δ(ϑ B + ϑ−1)
) |∇xϑ |2
ϑ2 , (109)

together with the total energy balance

−
∫

S1
∂tψ

∫
�

[
1

2
�|u|2 + �e(�, ϑ)+ l

(
1

2
|u|2 + ϑ

)

+ δ

(
1

� − 1
�� + �2

)]
dx dt

= −
∫

S1
ψ
( ∫

∂�

d(ϑ −	0) dSx +
∫
�

(�f · u + δϑ−1) dx
)

dt

+εδ
∫

S1

∫
�

( �

� − 1
h��−1h − �

� − 1
�� + 2h� − 2�2

)
dx ψ dt (110)
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for any ψ ∈ C∞(S1). In addition, we have (63), (64) with τ = 0, λ = 1 and (92)
with u instead of uN .

7. Higher Regularity of Density ε > 0

In this section we show additional regularity of the density which will allow
us to pass to the limit ε → 0. The structure of the pressure implies that p(�, θ) ∼
�5/3 + �θ + θ4.

Introduce

E = sup
t∈S1

E(t) = sup
t∈S1

∫
�

l

2

[
|uN |2 + l(ϑ − ln ϑ)

+1

2
�|uN |2 + �(e − s)+ δ

(
��

� − 1
+ �2

)]
dx .

(111)

We prove

Theorem 5. Let (�,u, ϑ) be a solution given by Theorem 4, then

E +
∫

S1

∫
�

(
�

5
3 +1 + δ(��+1 + �3)

)
dx dt � C(δ), (112)

where C(δ) is independent of ε.

Proof. In order to prove inequality (112) we find a bound on E . Noting first that
integrating (93), we conclude

E � C
(

1 +
∫

S1
E(s) ds +

∫
S1

∫
�

|�f · u| dx dt + ε

∫
S1

∫
�

�s(�, ϑ) dx dt
)
.

(113)

The structure of E allows us to put the last two terms in the right-hand side of (113)
into the left-hand side, with the constant independent of approximation parameters.

The most rigorous terms on the right-hand side are the terms with powers of �
and ϑ4. To estimate the density we apply the Bogovskii operator, see (42) that is,
for each t ∈ S1 we test the momentum equation by

� = B[� − M0/|�|].
Then∫

S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
� dx dt

=
∫

S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
M0 dx dt +

∫
S1

∫
�

(l + �)u · ∂t� dx dt

+
∫

S1

∫
�

(�u ⊗ u) : ∇x� dx dt +
∫

S1

∫
�

S(ϑ,∇x u) : ∇x� dx dt



772 Eduard Feireisl et al.

+
∫

S1

∫
�

�f · � dx dt − ε

∫
S1

∫
�

∇x� · ∇x u � dx dt

+1

2
ε

∫
S1

∫
�

(h − �)u · � dx dt. (114)

We consider here only a few terms, the most difficult ones. First take∫
S1

∫
�

(�u ⊗ u) : ∇x� dx dt � C‖u‖2
L2(S1;L6(�;R3))

‖�‖2
L∞(S1;L3(�))

� C
(

1 + ε

∫
S1

∫
�

(�| ln �| + �| ln ϑ |) dx dt
)2

E2/� � C(1 + E2/�+η),

(115)

for arbitrarily small η > 0, since∫
S1

∫
�

(�| ln �| + �| ln ϑ |) dx dt � C(δ)(1 + Eη), (116)

(recall that the total mass is fixed). Before considering the other terms, we multiply
the continuity equation by the density, and after integration over time and space we
have

ε

∫
S1

∫
�

(|∇�|2 + �2) dx dt � ε

∫
S1

∫
�

h� dx dt +
∣∣∣
∫

S1

∫
�

divx (�u)� dx dt
∣∣∣;

(117)

however, the last term is bounded as follows∫
S1

∫
�

�2divx u dx dt � ‖∇x u‖L2(S1;L2(�;R9))‖�‖2
L∞(S1;L4(�))

� Cδ−1/2(1 + Eη)
(

sup
t∈S1

∫
�

�4dx
)1/2

� Cδ−1/2(1 + E2/�+η).
(118)

We find

ε‖∇x�‖2
L2(S1;L2(�;R3))

� C
(
1 + δ−1/2 E2/�+η), so

ε‖∇x�‖L2(S1;L2(�;R3)) � Cε1/2
(
1 + δ−1/4 E1/�+η). (119)

Next we write

divx∂t� = ∂t�t = ε�x� − divx (�u)+ ε(h − �);
we set ∂t� = ∂t�

1 + ∂t�
2 with

divx∂t�
1 = ε�x� in �, ∂t�

1 = 0 at ∂�. (120)

We are able to construct this field since ∂�
∂n = 0. Thus

∫
S1

∫
�

(l + �)u · ∂t� dx dt � C(1 + E2/�+η)+
∫

S1

∫
�

(l + �)u · ∂t�
1 dx dt.

(121)
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The estimate for the constructed field fulfilling (120) gives the following bound

‖∂t�
1‖L2(S1;L2(�;R3)) � Cε‖∇x�‖L2(S1;L2(�;R3)). (122)

But we know that ε1/2‖∇x�‖L2(S1;L2(�;R3)) � C(δ)(1+E1/�+η), see (118). Hence

∫
S1

∫
�

|�u · ∂t�
1| dx dt � ε1/2‖u‖L2(S1;L6(�;R3))‖�‖L∞(S1;L3(�))

×ε1/2‖∇x�‖L2(S1;L2(�;R3)) � C(δ)ε1/2(1 + E1/�+η)2.
(123)

At the end, we estimate the last nontrivial integral with �, that is ε
∫

S1

∫
�

∇x� ·
∇x u · � dx dt . Since � ∈ L∞(S1; L∞(�; R

3)) and ∇x u ∈ L2(S1; L2(�; R
9))

so we reduce our task to an estimate of ε‖∇x�‖L2(S1;L2(�;R9)) and we proceed as
above.

Finally, we consider the term with highest power of ϑ

∫
S1

∫
�

ϑ4 dx dt �
∫

S1

(∫
�

ϑ9 dx

)1/9 (∫
�

ϑ3· 9
8 dx

) 8
9

dt (124)

and from (93) with N → ∞ we find

‖ϑ‖L1(S1;L9(�)) � C
(

1 + ‖�‖2
L2(S1;L6/5(�))

+ε
∫

S1

∫
�

�s(�, ϑ) dx dt
)

� C(δ)(1 + E2/�).
(125)

So
∫

S1

∫
�
ϑ4 dx dt � C(1+E 3

4 + 2
� ). Thanks to the structure of E , see (95), we find

that ∫
S1

E(s) ds � C
(

1 + E1−a
)

(126)

for some a > 0, provided � is sufficiently large.
In all estimations, the right-hand sides (115), (121), (123), (118) and (125)

depend on E in powers less than 1. Summing up, we conclude (112). ��
Hence, we have the following estimates independent of ε:

sup
t∈S1

∫
�

( l

2
|∇x u|2 + lϑ + 1

2
�|u|2 + �eδ

( 1

� − 1
�� + �2

)
− l ln ϑ − �s

)
dx

+
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇xϑ |2

ϑ2 dx dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,∇x u) : ∇x u + δϑ−2

)
dx dt

+
∫

S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx dt +

∫
S1

∫
�

�
5
3 +1 dx dt � C(δ). (127)
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8. Limit ε → 0

The uniform bounds established in the previous section are exactly the same as
in [4, Chapter 3, Section 3.6], therefore the limit passage for ε → 0 can be carried
over by means of the arguments therein, with only one modification concerning
the strong pointwise convergence of the densities. Indeed the proof in [4, Chapter
3, Section 3.6] is based on the hypothesis that the initial densities �0,ε = �ε(0, ·)
converge strongly in Lγ (�), while this is not a priori known in the time-periodic
case. Still, the argument can be modified in the same way as in [3]. As this step is
the same for both ε → 0 and δ → 0 limit, we provide the details only in the latter
case.

Letting ε → 0 in (106–110) we obtain a family of approximate solutions
satisfying

– equation of continuity in the weak sense and in the sense of renormalized
solutions:

∫
S1

∫
�

(
b(�)∂tϕ + b(�)u · ∇xϕ + (

b(�)− b′(�)�
)

divx u ϕ
)

dx dt = 0

(128)

for any b ∈ C∞([0,∞)), b′ ∈ C∞
c ([0,∞)), and any test function ϕ ∈

C∞(S1 ×�);
– momentum equation in the sense of distributions:

∫
S1

∫
�

[
lu · ∂tϕ + �u · ∂tϕ + (�u ⊗ u) : ∇xϕ

+
(

p(�, ϑ)+ δ(�� + �2)
)

divxϕ
]

dx dt

=
∫

S1

∫
�

(S(ϑ,∇x u) : ∇xϕ − �f · ϕ) dx dt

(129)

for any test function ϕ ∈ C∞
c (S

1 ×�; R
3);

– approximate entropy balance in the form:

∫
S1

∫
�

[
(l ln ϑ + �s(�, ϑ)) ∂tψ + �s(�, ϑ)u · ∇xψ

]
dx dt

−
∫

S1

∫
�

(
(κ(ϑ)+ δϑ−1 + δϑ B)

∇xϑ

ϑ

)
· ∇xψ dx dt

+
∫

S1

∫
�

1

ϑ

[
S(ϑ,∇x u) : ∇x u + (κ(ϑ)+δϑ−1+δϑ B)

|∇xϑ |2
ϑ2

]
ψ dx dt

−
∫

S1

∫
∂�

d

ϑ
(ϑ −	0)ψ dSx dt +

∫
S1

∫
�

δϑ−2ψ dx dt � 0 (130)

for any ψ ∈ C∞(S1 ×�), ψ � 0;
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– the (modified) total energy balance:∫
S1
∂tψ

∫
�

[1

2
�|u|2 + �e(�, ϑ)

+l
(1

2
|u|2 + ϑ

)
+ δ

( 1

� − 1
�� + �2

)]
dx dt

=
∫

S1
ψ
( ∫

∂�

d(ϑ −	0) dSx −
∫
�

(�f · u + δϑ−1) dx
)

dt (131)

for any ψ ∈ C∞(S1).

We remark that introducing a (positive) Radon measure

〈σδ,l ; ψ〉 = −
∫

S1

∫
�

[
(l ln ϑ + �s(�, ϑ)) ∂tψ + �s(�, ϑ)u · ∇xψ

]
dx dt

+
∫

S1

∫
�

[((
κ(ϑ)+ δϑ−1 + δϑ B

) ∇xϑ

ϑ

)
· ∇xψ

]
dx dt

−
∫

S1

∫
∂�

d

ϑ
(ϑ −	0)ψ dSx dt, (132)

ψ ∈ C∞(S1 ×�), formula (130) rewrites

〈σδ,l ; ψ〉 �
∫

S1

∫
�

1

ϑ

[
S(ϑ,∇x u) : ∇x u

+
(
κ(ϑ)+ δϑ−1 + δϑ B

) |∇xϑ |2
ϑ

]
ψ dx dt +

∫
S1

∫
�

δϑ−2ψ dx dt

for any ψ ∈ C∞(S1 ×�), ψ � 0.

9. Limit δ → 0

We now set l = δ and σδ,l = σδ . Our ultimate goal is to pass to the limit for
δ → 0+. First we show additional estimates independent of δ which determine the
regularity of solutions to the original full Navier–Stokes–Fourier system. Second
we show the strong convergence of approximations of the temperature and density
which is the most difficult task in our limit passage.

9.1. Uniform Bounds

The total mass of the fluid is a constant of motion, in particular,

sup
δ>0

‖�δ‖L∞(S1;L1(�)) < ∞. (133)

Further, the approximate entropy balances (130), (132) with ψ ≡ 1 yield

sup
δ>0

σδ[S1 ×�] < ∞
sup
δ>0

‖uδ‖L2(S1;W 1,2(�;R3)) < ∞
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sup
δ>0

‖∇xϑ
3/2
δ ‖L2(S1×�;R3) < ∞

sup
δ>0

‖∇x ln ϑδ‖L2(S1×�;R3) < ∞

sup
δ>0

‖ϑ−1
δ ‖L2(S1;L1(�)) < ∞, (134)

and

δ

[∫
S1

∫
�

∣∣∣∇xϑ
(B+1)/2
δ

∣∣∣2 dxdt +
∫

S1

∫
�

1

ϑ2
δ

dxdt

]
� c, (135)

where we have used the Korn type inequality [4, Theorem 10.17] to estimate uδ .
We observe that

∫
S1

∫
∂�

d(x)ϑδ dSx dt =
∫

S1

∫
�

(
�δf · uδ + δϑ−1

δ

)
dx dt

+
∫

S1

∫
∂�

d(x)	0 dSx dt � c
(

1 + ‖�δ‖L2(S1;L6/5(�))

)
.

Closely following Section 2.4.1, we deduce from the modified total energy balance

Eδ(t) � Eδ(s)+ c
(

1 +
∫

S1
Eδ(z) dz

)

for almost all t � s, where we have denoted

Eδ(t) =
∫
�

(1

2
�δ|uδ|2 + �δe(�δ, ϑδ)

+ δ(1

2
|uδ|2 + 1

2
(ϑδ + | ln ϑδ|)+ �2

δ + 1

� − 1
��δ

))
(t) dx .

Again as in Section 2.4.1, we conclude that

sup
t∈S1

Eδ(t) � c

(
1 +

∫
S1

∫
�

�
5/3
δ dx dt + δ

∫
S1

∫
�

(�2
δ + ��δ ) dx dt

)
. (136)

For Eδ(t) we show the following results determining us the final regularity of
constructed weak solutions to the original system. Recall E is defined by (111).

Theorem 6. Let (�,u, ϑ) be a solution to (128, 129, 130, 131); then

E +
∫

S1

∫
�

(
�

5
3 + 1

9 + δ(ϑ�+ 1
9 + �2+ 1

9 )
)

dx dt � C, (137)

where C is independent of the approximation parameters.
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Proof. Within the proof we use the information given by (134). Particularly, recall
that the norm ‖u‖L2(S1;W 1,2(�;R3)) is uniformly bounded.

Take

� = B[�5/3a − {�5/3a}�] (138)

with a = 1
15 . Since � ∈ L∞(S1; W 1,9(�); R

3) we are allowed to use � as a test
function in (129), yielding

∫
S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
�1/9 dx dt

=
∫

S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

){�1/9} dx dt

+
∫

S1

∫
�

(δ + �)u · ∂t� dx dt +
∫

S1

∫
�

(�u ⊗ u) : ∇� dx dt

+
∫

S1

∫
�

S(ϑ,u) : ∇� dx dt +
∫

S1

∫
�

�f · � dx dt. (139)

The structure of the pressure implies

∫
S1

∫
�

(
p(�, ϑ)+ δ(�� + �2)

)
�1/9 dx dt

∼
∫

S1

∫
�

(
�5/3+1/9 + �1+1/9ϑ + ϑ4�1/9 + δ(��+ 1

9 + �2+ 1
9 )
)

dx dt.

(140)

Now we will estimate the terms step by step; we will mainly be concerned with
the temperature. From (64) we get

∫
S1

∫
�

κ(ϑ)|∇ϑ |2
ϑ2 dx dt +

∫
S1

∫
∂�

(
1

ϑ
+ ϑ

)
dSx dt

� C
(

1 +
∣∣∣
∫

S1

∫
�

�f · u dx dt
∣∣∣).

(141)

Since κ(ϑ) ∼ ϑ3, we control ∇ϑ ∈ L2(S1; L2(�; R
3)), but the informa-

tion on the trace gives only ϑ ∈ L1(S1 × ∂�). Furthermore | ∫S1

∫
�
�f ·

u| � C‖�‖L2(S1;L6/5(�))‖u‖L2(S1;L6(�;R3)). We keep in mind that the norm
‖u‖L2(S1;L6(�;R3)) is bounded. We find

‖ϑ‖L1(S1;L9(�)) � C(1 + ‖�‖L2(S1;L6/5(�))). (142)

Our analysis will deliver that � ∈ L16/9(S1; L16/9(�)), so we are able to interpolate
the norm in L2(S1; L16/9(�)) between L16/9(S1; L16/9(�)) and L∞(S1; L1(�)),
which is nothing but the balance of mass. Hence we get

‖�‖L2(S1;L6/5(�)) � C(1 + C‖�‖8/21
L16/9(S1;L16/9(�))

), (143)
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since 5
6 = (1 − 8

21 )+ 8
21 · 9

16 and 1
2 >

3
14 . Thus

‖ϑ‖L1(S1;L9(�)) � C
(

1 +
[ ∫

S1

∫
�

�16/9 dx dt
]3/14)

. (144)

As 3/14 < 1/4, we will get the final estimation. So we start with the estimates.
First

∫
S1

∫
�
�5/3{�1/9}� dx dt can be easily controlled since {�1/9} is bounded in

L∞(S1; L∞(�)),
∫

S1

∫
�

�ϑ{�1/9}� dx dt � C
∫

S1

∫
�

�ϑ dx dt

� C‖�‖L∞(S1;L5/3(�))‖ϑ‖L∞(S1;L4(�)) � CE3/5E1/4 = CE17/20,

(145)

since 3
5 + 1

4 < 1. An important element is the estimate on the temperature part

∫
S1

∫
�

ϑ4{�1/9}� dx dt � C
∫

S1

∫
�

ϑ4 dx dt. (146)

Let us observe that∫
�

ϑ4 dx �
( ∫

�

ϑ9 dx
)1/9( ∫

�

ϑ3· 9
8 dx

)8/9
(147)

and

( ∫
�

ϑ3· 9
8 dx

)8/9
� C

( ∫
�

ϑ4 dx
) 3

4 · 9
8 · 8

9 � CE3/4. (148)

Using (144) we find that

∫
S1

∫
�

ϑ4 dx dt � C
(

1 +
∫

S1

∫
�

�16/9 dx dt
)3/14

E3/4. (149)

So we have∫
S1

∫
�

ϑ4 dx dt � 1

10

[ ∫
S1

∫
�

�16/9 dx dt
]

+ C
(

1 + E 3
4 · 14

11

)
. (150)

It is important to note that 3
4 · 14

11 = 21
22 < 1. We will see that (146) is the most

restrictive term in this consideration. Next we estimate∫
S1

∫
�

(�u ⊗ u) : ∇� dx dt �‖u‖2
L2(S1;L6(�;R3))

‖�∇�‖L∞(S1;L3/2(�;R9))

� C‖�‖L5/3(S1×�)‖∇�‖L15(S1×�;R9) � CE2/3,

(151)

since 2
3 = 3

5 + 1
15 , note that this point determines the condition a = 1

15 . Looking
at the term with the time derivative we can use the renormalized equation

(�b)t = −bdivx (�
bu)− b�bdivx u in C∞

c (S
1 ×�). (152)
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Observe that the part with divx (�
au) can be bounded as in (151). So we concentrate

our attention on the second term, namely on
∫

S1

∫
�

�uB[�1/9divx u − {�1/9divx u}�] dx dt

� ‖�u‖L2(S1;L30/23(�;R3))‖B[�1/9divx u − {�1/9divx u}�]‖L2(S1;L30/7(�;R3)),

(153)

but we see that

‖B[�1/9divx u − {�1/9divx u}�]‖L2(S1;L30/7(�;R3))

� C‖�1/9divx u‖L2(S1;L30/17(�)) � C‖�1/9‖L∞(S1;L15(�)) � CE1/15, (154)

since 3p
3−p = 30

7 implies that p = 30
17 and 1

15 + 1
2 = 17

30 .

Keeping in mind that � ∈ L∞(S1; W 1,9(�; R
3)), we get that � ∈

L∞(S1; L∞(�; R
3));

‖�u‖L2(S1;L30/23(�;R3)) � ‖�‖L∞(S1;L5/3(�))‖u‖L2(S1;L6(�;R3))�CE3/5 (155)

and 3
5 + 1

15 < 1.
Altogether we find
∫

S1

∫
�

[
�

16
9 + ϑ4�1+ 1

9 +δ(��+ 1
9 +�2+ 1

9 )+ ϑ4
]

dx dt � C
(

1+E 21
22

)
. (156)

To get (137) we repeat considerations from the beginning of Section 7 to show

E � C

(
1 +

∫
S1

E(s) ds +
∣∣∣
∫

S1

∫
�

�f · u dx dt
∣∣∣
)

� C
(

1 + E 21
22

)
. (157)

But∣∣∣∣
∫

S1

∫
�

�f · u dx dt

∣∣∣∣ � C‖√�u‖L∞(S1;L2(�;R3))‖
√
�‖L∞(S1;L2(�)) � CE 1

2 ;
(158)

whence (137) is proved. ��
We end up with the following bounds for the solutions

sup
t∈S1

∫
�

( δ
2
|∇u|2 + lϑ + 1

2
�|u|2 + �e + δ

(
1

� − 1
�� + �2

)
− δ ln ϑ − �s

)
dx

+
∫

S1

∫
�

(
κ(ϑ)+ δϑ B + δϑ−1) |∇ϑ |2

ϑ2 dx dt

+
∫

S1

∫
�

( 1

ϑ
S(ϑ,uN ) : ∇uN + δϑ−2

)
dx dt

+
∫

S1

∫
∂�

d
(	0

ϑ
+ ϑ

)
dSx dt +

∫
S1

∫
�

�
5
3 + 1

9 dx dt � C. (159)
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Returning to (134), we conclude by the Poincaré inequality that

sup
δ>0

(
‖ logϑδ‖L2(S1;W 1,2(�)) + ‖ϑαδ ‖L2(S1;W 1,2(�))

)
< ∞, where 0 � α � 3/2.

(160)

From bounds (134), (137), (160) we deduce the existence of (�,u, ϑ, σ ) such
that

�δ ⇀
∗ � in L∞(S1, L5/3(�)) and in L p(S1 ×�) for some p > 1

uδ ⇀ u in L2(S1; W 1,2(�; R
3))

ϑδ ⇀
∗ ϑ in L∞(S1, L4(�)) and in L2(S1; W 1,2(�)),

σδ ⇀
∗ σ in [C(S1 ×�)]∗ = M(S1 ×�).

(161)

In addition, due to (128) and (129) we have

�δ → � in Cweak(S1; L5/3(�))

�δuδ → �u in Cweak(S1; L5/4(�; R
3))

b(�δ) → b(�) in Cweak(S1; L p(�)),

(162)

provided (�δ,uδ) satisfy the renormalized continuity equation with b ∈ C1(0,∞)

and the sequence b(�δ) is bounded in L∞(S1; L p(�)). Here and hereafter, we
denote by b(�, ϑ,u) a weak limit in L1(S1 × �) (provided it exists) of the
sequence b(�δ, ϑδ,uδ). Recall that fδ → f in Cweak(S1; L p(�)) means that
limδ→0

∫
�

fδ(t, x)ϕ(x) dx=
∫
�

f (t, x)ϕ(x) dx in C(S1) for all ϕ ∈ L p′
(�).

9.2. Convergence of Temperatures

The proof closely follows [4, Section 3.7.2]. To begin, we will need a version
of the div-curl lemma due to Tartar [20], Murat [17] (in the form for example
[4, Theorem 10.21]) that reads

Lemma 6. (Div-curl lemma) Let Uδ ⇀ U in L p(R4; R
4), Vδ ⇀ V in Lq(R4; R

4),
where

1

p
+ 1

q
= 1

s
< 1.

Let div Vδ be precompact in W −1,r (R4; R) and curl Uδ be precompact in
W −1,r (R16; R

4) for r ∈ (1,∞). Then

Vδ · Uδ ⇀ V · U

in Ls(R4).

We will apply this lemma to the 4-dimensional vector fields

Vδ ≡
[
δ logϑδ + �δs(�δ, ϑδ), �δs(�δ, ϑδ)uδ −

(
κ(ϑδ)+ δ

ϑδ
+ δϑ B

δ

) ∇xϑδ

ϑδ

]
,

Uδ ≡ [Tk(ϑδ), 0, 0, 0] ,
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where

Tk(z) = kT
( z

k

)
, T (z) =

⎧⎨
⎩

z for 0 � z � 1
concave on (0,∞)

2 for z � 3.

In view of (23), estimates (134), (135), (137) and (160) yield uniform bounds of
�δs(�δ, ϑδ), �δs(�δ, ϑδ)uδ , κ(ϑδ)

∇xϑδ
ϑδ

in L p(S1 × �) and in L p(S1 × �,R3),
respectively, with some p > 1. Moreover, all terms in the entropy balance (130)
which are proportional to δ, disappear as δ → 0 in weak convergence L p(�),
p > 1. In view of (132) and estimates (133–135), (137) and (160), we easily verify
that vector fields Vδ , Uδ satisfy the requested hypotheses of Lemma 6. We thus
obtain

Tk(�) s0(�, ϑ)+ aTk(ϑ) ϑ3 = Tk(ϑ) s0(�, ϑ)+ aTk(ϑ) ϑ3.

Essentially due to monotonicity of ϑ �→ s0(�, ϑ),

Tk(ϑ) s0(�, ϑ) � Tk(ϑ) s0(�, ϑ),

whence

Tk(ϑ) ϑ3 � Tk(ϑ) ϑ3.

Letting k → ∞ in the last identity, and using monotonicity of the map ϑ �→ ϑ3

(see for example [4, Theorem 10.19]) we conclude that

ϑ3 = ϑ3,

which means that

ϑδ → ϑ a.e. in S1 ×�. (163)

Consequently, due to (160), in particular

logϑ ∈ L2(S1; W 1,2(�)).

9.3. Convergence of Densities

9.3.1. Effective Viscous Flux. Using the same arguments as in [4, Chapter 3,
Section 3.7] we can show that

Tk(�)divx u−Tk(�)divx u= 1
4
3μ(ϑ)+ η(ϑ)

(
p0(�, ϑ)Tk(�)− p0(�, ϑ) Tk(�)

)
.

(164)

Recall that this effective viscous flux identity was discovered and exploited by Lions
[11] in the case of constant viscosity coefficients. To get it, one needs to subtract the
limit δ → 0 of the momentum equation (129) tested by ϕ = ζ∇�−1[Tk(�δ)1�],
ζ ∈ C∞

c (S
1 ×�) from the limit δ → 0 of (129) tested by ϕ = ζ∇�−1[Tk(�)1�];
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in what follows R denotes the Riesz operator, (R[v])i j = (∇ ⊗ ∇�−1)i jv =
F−1

[
ξi ξ j

|ξ |2 F(v)(ξ)
]

with F the Fourier transform. This procedure yields

lim
δ→0+

∫
S1

∫
�

ζ(t, x)
(

p(�δ, ϑδ)Tk(�δ)− S(ϑδ,uδ) : R[1�Tk(�δ)]
)

dx dt

=
∫

S1

∫
�

ζ(t, x)
(

p(�, ϑ) Tk(�)− S(ϑ,u) : R[1�Tk(�)]
)

dx dt

+ lim
δ→0+

∫
S1

∫
�

ζ(t, x)
(

Tk(�δ)uδ · R[1��δuδ]

−�δ(uδ ⊗ uδ) : R[1�Tk(�δ)]
)

dx dt

−
∫

S1

∫
�

ζ(t, x)
(

Tk(�)u · R[1��u] − �(u ⊗ u) : R[1�Tk(�)]
)

dx dt.

(165)

At this stage, we will need the following lemma, see [4, Theorem 10.27].

Lemma 7. (Commutators I) Let Uδ ⇀ U in L p(R3; R
3), vδ ⇀ v in Lq(R3), where

1

p
+ 1

q
= 1

s
< 1.

Then

vδR[Uδ] − R[vδ]Uδ ⇀ vR[U] − R[v]U
in Ls(R3; R

3).

Combining this lemma with the convergence established in (162), we get∫
S1

∫
�

ζ(t, x)uδ ·
(

Tk(�δ)R[1��δuδ] − �δR[1�Tk(�δ)]uδ
)

dx dt

→
∫

S1

∫
�

ζ(t, x)u ·
(

Tk(�)R[1��u] − �R[1�Tk(�)]u
)

dx dt.

Thus (165) yields∫
S1

∫
�

ζ(t, x)
(

p(�, ϑ)Tk(�)− p(�, ϑ) Tk(�)
)

dx dt

=
∫

S1

∫
�

ζ(t, x)
(
S(ϑ,u) : R[1�Tk(�)] − S(ϑ,u) : R[1�Tk(�)]

)
dx dt.

(166)

In the sequel we will need another another commutator lemma in the spirit of
Coifman and Meyer [2], see [4, Theorem 10.28].

Lemma 8. (Commutators II) Let w ∈ W 1,r (R3), z ∈ L p(R3; R
3), 1 < r < 3,

1 < p < ∞, 1
r + 1

p − 1
3 <

1
s < 1. Then for all such s we have

‖R[wz] − wR[z]‖a,s,R3 � C‖w‖1,r,R3‖z‖p,R3 ,

where a
3 = 1

s + 1
3 − 1

p − 1
r . Here, ‖ ·‖a,s,R3 denotes the norm in the Sobolev–Slobo-

detskii space W a,s(R3).
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We can write∫
S1

∫
�

ζ(t, x)S(ϑ,u) : R[1�Tk(�)] dx dt = lim
δ→0+

∫
S1

∫
�

ω(ϑδ,uδ) dx dt

+ lim
δ→0+

∫
S1

∫
�

ζ(t, x)
(4

3
μ(ϑδ)+ ξ(ϑδ)

)
divx uδ Tk(�δ) dx dt, (167)

where

ω(ϑδ,uδ) = Tk(ϑδ)
(
R
[
ζ(t, x)μ(ϑδ)

(∇uδ + (∇uδ)T
)]

− ζ(t, x)μ(ϑδ)R : [∇uδ + (∇uδ)T
])
.

Due to Lemma 8, ω(ϑδ,uδ) is bounded in L1(S1; W a,s(�; R
3)) with some a ∈

(0, 1), s > 1; whence we may apply the div-curl lemma to 4-dimensional vectors

Vδ ≡ [Tk(�δ), Tk(�δ)uδ], Uδ ≡ [ω(ϑδ,uδ), 0, 0, 0]
to get

ω(ϑδ,uδ) Tk(�δ) ⇀ ω(ϑ,u) Tk(�),

where, due to (163),

ω(ϑ,u) = ω(ϑ,u).

This result in combination with (166) and (167) yields the effective viscous flux
identity (164).

9.3.2. Oscillations Defect Measure and Renormalized Continuity Equation.
We have

b0 lim sup
δ→0

∫
S1

∫
�

ζ(t, x)|Tk(�δ)− Tk(�)|8/3 dx dt

� b0 lim sup
δ→0

∫
S1

∫
�

ζ(t, x)
(
(Tk(�δ)− Tk(�)

)
(�

5/3
δ − �5/3) dx dt

�
∫

S1

∫
�

ζ(t, x)
(
�5/3 Tk(�)− �5/3 Tk(�)

)
dx dt

�
∫

S1

∫
�

ζ(t, x)
(

p0(�, ϑ) Tk(�)− p0(�, ϑ) Tk(�)
)

dx dt,

where ζ ∈ C∞
c (S

1 ×�), ζ � 0. The first inequality is an algebraic one. To derive
the second one, we have used convexity of � �→ �5/3 and concavity of � �→ Tk(�),
and finally, to derive the third one, we have employed (20).

The right-hand side of the last inequality can be calculated from (164). Conse-
quently, with help of bounds (134), (160) for sequences uδ , ϑδ , Hölder inequality
and interpolation, one concludes that

oscq[�δ → �](S1 ×�) ≡ sup
k>0

lim sup
δ→0

∫
S1

∫
�

|Tk(�δ)− Tk(�)|q dx dt < ∞,

(168)
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with some q > 2. The expression at the right-hand side is called oscillations defect
measure, see [4, Chapter 3, Section 3.7.5].

On the other hand, relation (168) implies that the limit quantities �, u satisfy
the renormalized equation of continuity (128), see [4, Lemma 3.8] that reads

Lemma 9. (Renormalized continuity equation) Let � ⊂ R
3 be open and let

�δ ⇀ � in L1(S1 ×�)

uδ ⇀ u in Lr (S1 ×�; R
3)

∇uδ ⇀ ∇u in Lr (S1 ×�; R
9), r > 1.

Let

oscq[�δ → �](�) < ∞ (169)

for 1
q < 1 − 1

r , where (�δ,uδ) solve the renormalized continuity equation (128).

Then the limit functions �, u solve (128) for all b ∈ C1([0,∞)) ∩ W 1,∞(0,∞).

Since in our case, the validity of the renormalized continuity equation can
be extended via a Lebesgue dominated convergence theorem for example to any
b ∈ C1[0,∞) with growth z|b′(z)| + |b(z)|/zγ /2 ∈ L∞(1,∞), equations (128)
with (�δ,uδ) and (�,u), respectively, yield, in particular

lim
δ→0

∫
S1

∫
�

Tk(�δ)divx uδ dx dt =
∫

S1

∫
�

Tk(�)divx u dx dt = 0 (170)

for any k > 0, where we have taken ϕ = 1 and

b(�) = �

∫ �

1

Tk(z)

z2 dz.

Combining (164), (170) we obtain that

lim
k→0

∫
S1

∫
�

(
4

3
μ(ϑ)+ η(ϑ)

)−1 (
p0(�, ϑ)Tk(�)− p0(�, ϑ) Tk(�)

)
dx dt = 0,

therefore, by virtue of hypotheses (15–18),

lim
k→0

∫
S1

∫
�

(
4

3
μ(ϑ)+ η(ϑ)

)−1 (
�5/3Tk(�)−�5/3 Tk(�)

)
dx dt =0. (171)

Relation (171) yields the desired conclusion

�δ → � a.e. in S1 ×�,

which completes the proof of Theorem 1.
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