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Abstract. We consider the steady Navier-Stokes equations in a two
dimensional bounded domain with multiply connected boundary with non-
homogeneous slip boundary conditions. Under a geometrical constraint, re-
stricting the shape of the domain, we construct an a priori bound of solu-
tions for arbitrary large data, including fluxes through each component of
the boundary. Our result is an exception to the general theory of the flux
problem.
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In this note we study the steady Navier-Stokes equations in two dimen-
sional domains with multiply connected boundaries. Boundary problems
for such system are still a source of open questions. Difficulties are related
to fluxes described by boundary data on each connected component of the
boundary. For the Dirichlet problem, if fluxes are zero (or sufficiently small
compared them to the viscosity) or the domain is simply connected, using
the Hopf extension [6], we are able to prove existence of solutions [2,5,7,9].
However for the general case the question is still open. In some special cases,
if we assume a symmetry of the whole system (including data and domain)
the problem is solvable for arbitrary data [1]. However this symmetry re-
duces the system to the case of simply connected domains. Other interesting
examples were studied in [3,10,11], where special forms of Dirichlet boundary
data were chosen.

Here we investigate the Navier-Stokes equations with the slip boundary
conditions (known also as the Navier relations). For a certain class of domains
we find a priori bounds for solutions with no restrictions on flow data. In
particular, fluxes through each components of the boundary can be arbitrary
large. The class of domains is characterized by a geometrical constraint
which depends on the curvature of the boundary and the constant in the
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Poincare inequality. It is worthwhile to note that the direct application of
Hopf’s technique for the system with the slip boundary conditions does not
work even for simply connected domains.

The studied system reads:

v · ∇v − ν∆v + ∇p = F in Ω,
div v = 0 in Ω,
n · T(v, p) · τ + fv · τ = 0 on ∂Ω,
n · v = d on ∂Ω,

(1)

where v = (v1, v2) is the velocity, p - the pressure, F - the external force,
f - the friction coefficient, n and τ - the normal and tangent vectors to the
boundary ∂Ω, d - the inflow datum, T(v, p) - the stress tensor, T(v, p) =
{ν(vi

,j + vj
,i) − pδij}i,j=1,2, where ν > 0 is the viscosity coefficient.

Our system is investigated in a domain with non trivial geometry. We
assume that the first group of the homotopy of domain Ω is Z. We admit
one “hole”.

Ω

Γ0

Γ1

Figure 1.

Under this assumption, boundary ∂Ω consists of two connected parts Γ0

and Γ1 - see Fig. 1. We skip other cases (when the domain has more than
one hole), since it is not obvious if a geometrical constraint given by the
main result admits richer geometry. To describe properties of domain Ω, let
us introduce the following quantity

A0 = ||∇φ||C(Ω), (2)

where function φ is a solution to the following elliptic problem

∆φ = 1, φ|∂Ω = 0. (3)

By the scaling method we see that

A0 ∼ sup
x∈Γ0

dist(x, Γ1), (4)
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where the last quantity is proportional to the constant in the Poincare in-
equality. Relation (4) says that A0 is small if the r.h.s. of (4) is sufficiently
small, too.

By (1)2 it is required to assume a compatibility condition
∫

∂Ω d dσ = 0.
Since boundary ∂Ω = Γ0 ∪ Γ1 - see Fig. 1., we have

∫

Γ0

d dσ = −
∫

Γ1

d dσ = D. (5)

The main result describes the class of domains for which we are able to
construct an a priori bound for the solutions with no restrictions on D. This
bound guarantees the existence, too.

Theorem. Let ∂Ω ∈ C2, F ∈ L2(Ω), d ∈ W 1
∞(∂Ω) and

∫

∂Ω d dσ = 0. If

A0||2χ − f/ν||L∞(∂Ω) < 1, (6)

where χ is the curvature of boundary ∂Ω and A0 is given by (2), then there
exists at least one weak solution to problem (1) such that

rot v ∈ L∞(Ω) + H1
0 (Ω) and v ∈ Ca(Ω)

for any 0 < a < 1. Moreover the following bound is valid

||rot v||L∞(Ω)+H1

0
(Ω) + ||v||Ca(Ω) ≤ B(||d||W 1

∞
(∂Ω) +

1

ν
||F ||L2(Ω)), (7)

where B is independent of the viscosity coefficient.

Condition (6) defines a class of admissible domains. Since f/ν is always
nonnegative and f -friction may be described independently, thus condition
(6) implies the following geometrical constraint

A0 inf
x∈∂Ω

2χ > −1. (8)

(We set for Ω = B(0, 1) curvature χ = 1.) To point an example of a domain
satisfying (8) it is enough to consider an annulus {x ∈ R2 : R1 < |x| < R2},
then we see that the l.h.s. of (8) is proportional to − 1

R1

(R2 − R1), hence
taking suitable R1 and R2 we obtain (8). Some straightforward calculations
enable to show explicite formula on A0 for this set (A0 = 1/4(R2 − R1)[1 +
(1 + R1/R2)((lnR1/R2)

−1 + (1 − R1/R2)
−1)]). Of course, a perturbation of

this domain fulfills condition (8), too. It is not clear if condition (8) can be
fulfilled by a domain with more than one “hole”.
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Estimate (7) has a linear character similar to the standard energy esti-
mate for the problem with homogeneous boundary data. It is a consequence
of the fact that we are able to apply the maximum principle and neglect
influence of the nonlinear term and get a bound on the vorticity. Hence an
analogical estimate for the Stokes system is exactly the same. Of course, for
the linear problem one can show the result with no restriction on the shape
of domain using the standard approach. However the geometrical constraint
enables application of the maximum principle, which does not hold for the
linear system in general case. Another interesting feature of bound (7) is
independence from the viscosity coefficient if F ≡ 0. This property is a
motivation to study in [12] the inviscid limits for solutions to problem (1).

A similar result for a symmetric three dimensional case of the system has
been considered in [14].

The sense of obtained solutions is given by the following formulation.

Weak formulation. We say that v is a weak solution to problem (1)
iff n · v|∂Ω = d, v ∈ C(Ω), α = rot v ∈ L∞(Ω) + H1

0 (Ω) and the following
identity

ν
∫

Ω
α∆φdx−ν

∫

∂Ω
((2χ−f/ν)v ·τ−2d,s)

∂φ

∂n
dσ+

∫

Ω
αv ·∇φdx =

∫

Ω
F ·∇⊥φdx

holds for any φ ∈ C2(Ω) ∩ {φ|∂Ω = 0}.

The regularity of the solutions guarantees us the following result.

Corollary. Let the assumptions of Theorem be fulfilled, moreover addi-
tionally ∂Ω ∈ C∞, F ∈ C∞(Ω) and d ∈ C∞(∂Ω), then v ∈ C∞(Ω).

To obtain Corollary it is enough to increase the regularity of the solutions
fulfilling the weak formulation using standard techniques [4,8].

The proof of Theorem is based on a reformulation of the problem. Let us
consider the vorticity

α = rot v = v2
,1 − v1

,2 (9)

which in the two dimensional case is a scalar function. From (1) we deduce
the following system

v · ∇α − ν∆α = rot F in Ω,
α = (2χ − f/ν)v · τ − 2d,s on ∂Ω,

(10)

where s is the length parameter of curve ∂Ω. To obtain (10)1 we take the
rotation of (1)1 and apply (1)2. To get (10)2 we differentiate (1)4 with respect
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to s and combine it with (1)3 using also the Frenet formula n,s = χτ - see [3,
Lemma 2.1].

To obtain information about the velocity we consider the following elliptic
problem

rot v = α in Ω,
div v = 0 in Ω,
n · v = d on ∂Ω.

(11)

Since Ω is not simply connected, the kernel of the elliptic operator from
(11) in not trivial and all solutions to the l.h.s. of (11) can be represented as
follows (see [8])

v = Vd + Vr + tVk (12)

for arbitrary parameter t ∈ R, where Vd = ∇φd and φd satisfies

∆φd = 0,
∂φd

∂n

∣

∣

∣

∣

∣

∂Ω

= d,
∫

Ω
φddx = 0; (13)

vector Vr = ∇⊥φr and φr is a solutions to the following problem

∆φr = α, φr|∂Ω = 0; (14)

and Vk = ∇⊥φk and φk satisfies

∆φk = 0 φk|Γ1
= 1, φk|Γ0

= 0. (15)

In general, for more complex domains the kernel is of higher order.
To keep uniqueness in definition (12) we put t = 0.
Solutions of the coupled system (10)-(11) define solutions to the Navier-

Stokes equations (1) in the sense of definition of Weak formulation. We
neglect the kernel of operator rot-div.

A priori bound. We investigate the vorticity problem using a modifi-
cation of the maximum principle. Introduce

(α − K∗)+ = max{α − K∗, 0}, (16)

where K∗ = ess supx∈∂Ω(2χ − f/ν)v · τ − 2d,s. This definition guarantees
that (α − K∗)+ has zero trace at the boundary, thus

v · ∇(α − K∗)+ − ν∆(α − K∗)+ = rot F in the weak sense in Ω. (17)
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Multiplying (17) by (α − K∗)+ we get

ν
∫

Ω
|∇(α − K∗)+|

2dx =
∫

Ω
F · ∇⊥(α − K∗)+dx. (18)

From (18) we obtain the following bound

||∇(α − K∗)+||L2(Ω) ≤
1

ν
||F ||L2(Ω). (19)

The same we have for

(α − K∗)− = min{α − K∗, 0} (20)

with K∗ = ess infx∈∂Ω(2χ − f/ν)v · τ − 2d,s, i.e.

||∇(α − K∗)−||L2(Ω) ≤
1

ν
||F ||L2(Ω). (21)

Estimates (19) and (21) give

||ΠH1

0

α||H1

0
(Ω) ≤

2

ν
||F ||L2(Ω), (22)

where
ΠH1

0

α = (α − K∗)+ + (α − K∗)−

is the H1
0 -part of α ∈ L∞(Ω) + H1

0 (Ω).
The norm of the L∞-part of α, i.e. ΠL∞

α = α − ΠH1

0

α, is bounded by

K = max{K∗, |K∗|}. (23)

To estimate the above quantity, we find a bound on v given by (12) (with
t = 0). Since d ∈ W 1

∞(∂Ω), the theory of the Laplace operator implies that
the solutions to (13) satisfies (0 < a < 1, constants γ0 and γa depend on
features of the domain)

||∇φd||C(Ω) ≤ γ0||d||W 1
∞

(∂Ω), ||∇φd||Ca(Ω) ≤ γa||d||W 1
∞

(∂Ω). (24)

For φr-solution to (14), the classical theory (for dim Ω = 2) guarantees the
following bounds

||∇φr||C(Ω) ≤ A0||ΠL∞
α||L∞(Ω) + A1||ΠH1

0

α||H1

0
(Ω),

||∇φr||Ca(Ω) ≤ Aa||α||L∞(Ω)+H1

0
(Ω).

(25)
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Constant A0 in (25)1 is defined by (2). Taking the definition of K we obtain

K ≤ ||2χ − f/ν||L∞(∂Ω)||v||C(Ω) + 2||d||W 1
∞

(∂Ω). (26)

To finish the estimation we note that

||ΠH1

0

α||H1

0
(Ω) + ||ΠL∞

α||L∞(Ω) ≤
2

ν
||F ||L2(Ω) + K. (27)

Recalling the form of v given by (12), taking into account (22)-(27), we
conclude the following inequality

||ΠH1

0

α||H1

0
(Ω) + ||ΠL∞

α||L∞(Ω) ≤ A0||2χ − f/ν||L∞(∂Ω)||ΠL∞
α||L∞(Ω)+

2A1/ν||2χ − f/ν||L∞(∂Ω)||F ||L2(Ω) + 2/ν||F ||L2(Ω) + A2||d||W 1
∞

(∂Ω). (28)

Hence inequality (28) implies the following a priori bound (if condition (6)
is satisfied)

||α||L∞(Ω)+H1

0
(Ω) ≤ (1 − A0||2χ − f/ν||L∞(∂Ω))

−1·

·
(

2/ν(1 + A1||2χ − f/ν||L∞(∂Ω))||F ||L2(Ω) + A2||d||W 1
∞

(∂Ω)

)

, (29)

since ||α||L∞(Ω)+H1

0
(Ω) = inf{||a1||L∞(Ω) + ||a2||H1

0
(Ω) : a1 ∈ L∞(Ω), a2 ∈

H1
0 (Ω) and a1 + a2 = α} and we have α = ΠL∞

α + ΠH1

0

α.

Bounds (24), (25) and (12) imply that v ∈ Ca(Ω) for any 0 < a < 1,
what finishes the proof of estimate (7).

Existence. A proof for the problem in a simply connected domain can
be found in [13, Theorem 3.1], hence we show only main ideas of the proof
of existence of solutions to (1), because it is almost the same as in [13]. The
easiest approach to this issue is an application of the Leray-Schauder fixed
point theorem. We construct a map Φ : Ca(Ω) → Ca(Ω) such that Φ(ṽ) = v,
where v is the solution of (11) with α fulfilling (10) with ṽ instead of v.
Existence for these linear problems follows form the classical techniques as
the Galerkin method and the Green function for the Laplace operator. Map
Φ is compact, since a > 0 and Ω is bounded. Boundedness of set Φ(v) = λv
for λ ∈ [0, 1] is obtained in the same way as a priori estimate (29). Thus,
we conclude existence of at least one fixed point of map Φ which define the
weak solution to system (1). Theorem has been proved.
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