On a problem for the Navier-Stokes equations
with the infinite Dirichlet integral

Piotr B. Mucha

Institute of Applied Mathematics and Mechanics, Warsaw University
ul. Banacha 2, 02-097 Warszawa
E-mail: mucha@hydra.mimuw.edu.pl
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1 Introduction

In the paper a model of motion of a viscous incompressible Newtonian fluid
in a two space dimensional domain with an unbounded boundary is studied.
To describe the phenomenon we apply the following evolution problem

v +v-Vo—vAv+Vp=0 in  Qx[0,7T],
dive =0 in  Qx][0,7T],
n-v=0, n-T(v,p)-7+ fv-7=0 on 09N x[0,T], (1.1)
v 0O as Y = +oo in QO x [0,T],
V]t=0 = Vin. on Q,

where v = (vl,v?) is the velocity of the fluid, p is the pressure, v - the
constant positive viscous coefficient, n and 7 - the normal and tangent vectors



to boundary 0€2, f > 0 - the friction coefficient on the boundary and the
stress tensor

T(v,p) = vD(v) — pld = {v(v} + v}) — pdij}ij=1.-

Condition (1.1); models a case when the tangential part of the velocity on
the boundary can be nonzero and describes an influence of the boundary by
involving the friction f which in general can be nonconstant. Such relations
are called slip boundary conditions or Navier ones.

About domain €2 - see picture 1 - we require it to be simply connected,
moreover )

Q=] (1.2)
i=0
where Q) is bounded and the rest are infinite pipes which in their local
coordinates y(i) can be described as follows

={",5)) e R* 19" e Ry € (0,HV)}, (1.3)
where H() is the height of the i-th pipe. We also denote components of 99
U ' = aQ, (1.4)

i=1,2

where I'™) is a upper connected part of boundary 992 and I'® is a lower one.
For simplicity we assume that friction coefficient f on boundaries of Q™) and
Q® is constant.

)
/ Picture 1.



v are velocities on the inlet and outlet of domain 2 and they are pro-
portional to a flow w; and in our considerations they are time independent.
Velocity w; is a solution to equations (1.1);23 in a straight pipe and in a
model case (the height of the pipe is equal to 1, i.e. 2 =R x (0,1)) one can
easily check that

AR
wrlm) = (7 |- Lo e Lams 75 0). a9

where F' is the value of the flux of the flow. We see that if f = 0 then we
obtain the constant flow (F)0) and if f — oo we get the Poiseuille flow. In
the second case our condition (1.1)3 changes to the zero Dirichlet boundary
datum. So v{) and o) = rot v{¥) satisfy (1.1)1234 for @ = R x (0, H?), in
particular we see that

v .Va =0, A =0 in R x (0, HY) (1.6)
and ' ' ,
o) =y .7(—f) on Rx{0,H?}. (1.7)

To complete the statement of the problem we need to add a compatibility
condition on the total flux which must hold by (1.1)s, i.e. we require

T O 0 @
2/0 v (y5”)dys” = 0. (1.8)
=1

The aim of this paper is to analyze the existence of solutions to problem
(1.1). We prove two results. The first one is the following.

Theorem A. Let div v;, =0 and
Vin.|a@ € La(QY),  vin lgw — vl € Lo(QY) (1.9)

fori=1,2, moreover f —2x > —B(Q), where x is the curvature of boundary
0Q and B(R?) is a constant depending on Q. Then there exists unique weak
global in time solution of problem (1.1) such that

v € Hyd (2 % (0,00)) M Loo(ioc) (0, 003 Lata) (2)), (1.10)

C

satisfying the following estimate

2
Z (||U - U&)HLOO(O,T;LQ(Q("))) + [V — VUSO)HLAQ(")X(O,T)))
i=1



2
< Ce™)(||vin || y@) + D [in. = 8|00y + c(vo)), (1.11)
i=1

where c(vy) 18 a constant depending on the data at infinity.

Theorem A is proved by the standard Galerkin method applied to a re-
formulation of the original problem. A proof is given in section 3 and the
sense of the weak solution follows from (3.4) and (3.15). It gives us well
posedness of the problem for large data for all times. This result is as an
auxiliary theorem for the next one which will concern some global features
of the solutions. Also the following corollary can be easily concluded.

Corollary of Theorem A. Let assumptions of Theorem A be fulfilled,
moreover 0 € C. If initial data are smooth (vi, |o© € H™(QW), viy oo —
v € H™(QW) with m > 1), then solutions of (1.1) are also smooth (V™v €
Vied(Q2 x (0,T)) with estimates analogous to (1.11)).

The proof of Corollary will be omitted. Since €2 is a two dimensional
domain and (1.11) holds, by the standard technique [7, 12] one can conclude
thesis of the Corollary assuming sufficient regularity of the boundary.

Finally we have.

Theorem B. Let assumptions of Theorem A be fulfilled and additionally
r0t Vip. € Loo(2). If

A /v = 2x|[Leion) < 1, (1.12)

where X 1is the curvature of boundary 02 and A(QY) is a constant depending
only on the constant form the Poincare inequality for domain Q - see (2.7),
then

rot v € Lo (2 x (0,00)) and v € C*°(Q2 x (0,00))

for 0 < a <1 and the following estimate holds
|70t || £oo(@x(0,00)) + [Vl can@x o0y < (1 =A@ f/v = 2x]| (o)) ™"

(A /v = 2| Lao(90)(V0) + |10t Vin. || Lo(@)- (1.13)

Theorem B delivers us a new estimate for solutions to the Navier-Stokes
equations in pipe-like domains. Estimate (1.13) is a generalization of the L .-
bound for the vorticity which is well known for domains without boundaries.
This technique works if we assume the geometrical constraint (1.12).
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It is worth to underline that to prove it, no energy method has been
applied. Estimate (1.13) does not give any information about convergence
to data at infinity, but if Theorem A holds bound (1.11) control condition
(1.1)4 for all times.

In our considerations we will not examine system (1.1). Since in the
studied case the Dirichlet integral [, Vv : Vuvdr = oo, there is a need to
find a different approach. Applying a property of boundary conditions (1.1)3
we describe completely the Dirichlet problem on the vorticity of the velocity,
which in two dimensions is a scalar function

a =rot v = v} — vy (1.14)
satisfying the following problem
a+v-Va—vAa=0 in Qx][0,7],

a=v-7(2x — f/v) on 0N x [0,7], (115)
a—=a® as ¥ 500 in QO x[0,7], '
lt=0 = Qin. = 10t Vipy, on Q,

where x is the curvature of the boundary 9Q and o)) = rot v{) - see (1.5).
To obtain (1.15), it is enough to differentiate the first condition of (1.1)3
with respect to the length parameter and use the second one (see [2]).

Problem (1.15) has better properties then (1.1). First of all we have here
the maximum principle which is the crucial tool in our proof. To complete
problem (1.5) we need to describe the velocity by the vorticity and this
information is given by the following problem

rot v =« in Q,
dive=0 in 11
n-v=>0 on 0f), (1.16)

vi(y®) — vgl(y(i)) as 11 500 in Q0.
Since we require to domain {2 be simply connected, by the Poincare Lemma
and (1.7), vector v can be described by a scalar function ¢ in the following
way
v=Vro = (=000, 00, 9)- (1.17)

In the mathematical fluid dynamics slip boundary conditions are not so
popular as the problems with Dirichlet or Neumann type [3, 6, 11]. In general
this relation can be treated as an alternative approach to describe phenomena
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in rigid domains which for some cases it seems to be more natural. This type
of boundary conditions, in particular cases of small effective friction f/v, has
good properties to investigate system (1.1) as an approximation of motion of
a perfect fluid |2, 9].

In this paper we present interesting properties of these flows. For small
friction and small curvatures of the boundary (by (1.12) we require only
smallness of the negative curvatures, because for positive ones we can choose
suitable f to (1.12) be satisfied) we are able to find the maximum principle
for the equation on the vorticity system. From the mathematical point of
view this property is quite unusual for problems dealing with Navier-Stokes
equations in domains with boundaries. But our result holds only in two
dimensions, in three dimensional case there appears an extra term vVa in
(1.15); which destroys the structure of the problem, although slip conditions
still define boundary data of the vorticity [13].

System (1.1) is a modification of Leray’s problem concerning the Navier-
Stokes equations (1.1); 2 with nonslip boundary conditions and the Poiseuille
flow at infinity [5 chap-XI]. Questions of the existence in the steady case or
long time behavior for nonsteady equations for large data are still open. We
have results just for small fluxes [1, 4, 5 chap-XI, 10]. The difficulty is hidden
in the total energy. For such problems the Dirichlet integral [, Vv : Vudz =
oo. An approach to such problem was presented in [8], but without conditions
in infinity.

If f > 0 then also by (1.5) rot v{) # 0, hence the Dirichlet integral is also
infinite. To avoid difficulties similar to those appearing in Leray’s problem
we study the reformulation of (1.1) given by the coupled system (1.15) and
(1.16). Then if condition (1.12) is fulfilled we obtain an a priori estimate
(1.13) which is uniform in time and is not connected with the energy of the
system.

2 Notation

In the paper we try to use the standard notations [7, 12]. We recall

£ ey = 3 [ 102f1d (2.1)
0<|af<m ¢
for m € N, where o = (o, a2) € N?, |a| = oy + ap and 9% = 921052,
oy = 12 saxomy + 1V T axom); (2.2)
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where V = (0,,, 04, );

2 _ 2 2
||fHV1’0(Q><(O,T)) = o?f% Hf('at)HLg(Q) + ||Vf||L2(Q><(0,T))a (2.3)

f Z‘,t _f yat
| fllcaoxory = I1fllc@x@om) + sup  sup [l t) = S )|. (2.4)

t€(0,T) z, yeQ;z#y |$ - y|a

In the statement of Theorems A and B there are two constants A(£2) and
B(£2), which depend only on properties of domain 2 and they are defined by
the following problem

Ap=f in €,
=0 on 09, (2.5)
¢ —>0 as |z| = o0

And constants come from the below estimates for solutions to problem (2.5)

dp
||%||%2(ag) < B(Q)|| 17, (2.6)
Vellew < A f]]Lw@)- (2.7)

The constants depend on heights of pipes and diam Q). Estimate (2.6) fol-
lows from the energy method, the Schauder estimates and the trace theorem.
Inequality (2.7) is proved section 4 - estimate (4.13) for solutions of problem
(4.5).

In proofs by letter ¢ we denote a generic constant. By A, B, ... we denote
constants fixed in each proof of lemmas and by

2
c(vso) < €3 [ llwa 0,50 (2.8)

=1

3 Proof of Theorem A

To prove the existence, we need the following lemma.

Lemma 3.1. There exists a smooth vector field v : Q — R? satisfying
(1.16)2,3.4 such that

7=v9 in QO (3.1)
and
17200y < e(voo)- (3.2)
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Proof. Let us construct o = V¢ which satisfies (1.16)2,34. In each pipe
QU for i =1, ..., K we define

Bgw = Vélgn = vl = Ve, (3.3)

where ¢{¥) - potential of v{¥) - is defined up to a constant. By condition (1.16)3
we see that ¢ is constant along each I'™ so ¢ in one pipe uniquely defines
potential in the next one. Let ¢ = 0 on 'V, By (3.3) we have ¢ on QW)
This causes that constant of ¢{?) is defined uniquely. So by (3.3) function ¢
is defined also in Q®. In particular, ¢ has been defined on I'®. Note that
this procedure is well defined since the total flux - see assumption (1.8) -
is conserved (¢ on I'® defined by ¢ on I'™) gives zero as we assumed). To
complete the construction we need to describe ¢ in Q) since this part is
bounded the extension can be any, but smooth and conserving norms. Thus
we get U = V*¢ satisfying (1.16)234 and [|7]|c2(q) < ¢(vs). Lemma 3.1 is
proved.

To obtain an estimate guaranteeing existence for all times we need to
modify solutions to be integrable in Ly-norms. To achieve this we postulate

a=a+p and v=v+u, (3.4)

where & = rot v and they are defined by Lemma 3.1. Having such forms,
using (1.15), (1.16) and (1.17) we state the following problem for 5 and u

fi+v-VB—vAf=—-u-Va—v-Va+vAa in Qx]|[0,T],

]
B=u-r@x—f)+ 072 - ) —al on 09 x (0.7,
Ap = in  Qx][0,7T], (3.5)
=0 on 09 x [0,T], '
o, =0 as |z]— o0
ﬁ|t:0 = Qip, — Q= Bm on Qa

where u = V4.
Lemma 3.2. If solutions to problem (3.5) are sufficiently regular then
they satisfy the following inequality

T
sup ([Vo( Dty + [ [ Pt < CE0=) (| Wigia |01 + (o)
0<t<T 0 Ja
(3.6)



for all T > 0 and C independent of T'.
Proof. We multiply (3.5); by ¢ and integrate over €2, getting

—Jo Vo - Vode — [qv-Vepdr+v [ VE-Vedr =

— Jou-Vapdr — [ov-Vapdr — v [ Aapdz. (3.7)
The second term of the Lh.s. of (3.7) is equal to
—/Q(u+17) VBds = —/Qﬁ-chBdm— /QVLQO-Vgoﬁdx. (3.8)
The last term of (3.8) vanishes, so it can be bound as follows
‘/Qv -VpBdx| < %/Bde+c(voo)/(2|V<p\2dx. (3.9)

The third one takes the form
1// V/B-Vgoda::—y/ ﬁQdm-i—u/ BV - ndo;
Q 0 a0

but by (3.5) we get;

—I//Q,Bde—V/(99(f—2x)(u-7)2da—y/ (v-7(—f) —a)u-7do. (3.10)

o)
The first term of the r.h.s. of (3.7) vanishes, because
—/ Ve Vapds = / Ve Voads = 0.
Q Q
To bound the last two terms of the r.h.s. of (3.7), note that v - Va,
Aa € Ly(Q) and v-7(—f) —a € Ly(0N). It follows from properties of v,
Qoo - see (1.6), (1.7) and the construction of ¥ - Lemma 3.1, which guarantees

supp v-Va, Aa € QO and supp v-7(—f) —a C 92NN, Hence, since
@]l Loy < cl|B]|La(n) we have

\/ v - Vapdr| + 1/|/ Aapdz| < Z/ B2dx + c(veo)- (3.11)
Q Q 4 Jo
This way equality (3.7) gives the following inequality

%/Q V|*dr + I//QB2da: + u/m(f —2x)(u - 7)*do <
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|/{m(@-7<—f) —@)u-7d0|+c(voo)/Q|Vg0|2da:+c(Uoo), (3.12)

but [[ul|7,a0) < B(Q)|Bl[Z,) (here we need to assume that f—2x > —B(Q)
- see (3.12)). So by the Gronwall inequality from (3.12) we conclude

/Q V(- 1) 2de < exp {tc(va)} /Q Vi |2da + c(va) exp {te(ves)}. (3.13)

Using this information again to (3.12) we get

T
[ [ Bdvdt < T[Ty + ) (314)

By (3.5)3 |[Vein.llL@) < cl|Bllu-1()- From (3.13) and (3.14) we obtain
Lemma 3.2.

Weak formulation for problem (3.5)

We say that ¢ satisfies (3.5) in the weak sense if and only if

p € Hy'(Q % (0,T)), Vi € Loo(0,T; Lo(€2))
and the following identity

Ja Vi - Vibdz + v fo ApAipdz + [o0(f — QX)%%CZU + Jov - VYApde
= Jqu-Vaydx + [0 - Vaydr — [qrAapde — v [yol0- 7(f — 2x) — &]ydo
(3.15)
holds for any v € Hy'(Q x (0,T)) in distributional sense on time integral
[0,T) (i.e. ¥(-,T)=0), where u =V=+p and v =10+ u.
Next we prove.

Lemma 3.3. If Vi, € Lo(QQ) then there exists unique weak solution on
time interval [0, 1].

Proof. Having a priori estimate (3.6) it is enough to show existence for
short time. To prove it we apply a standard technique - the Galerkin method.
Since HZ(Q) is Hilbertian and separable, we introduce a base {w;}%,

H'||H2(Q)

HZ(Q) = span{w:, wy, ..., Wy, ...} ,
also by the Gramm-Schmidt procedure we require to
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And we define a finite dimensional subspace of HZ()

VN = span{w, ..., wy}. (3.17)

The next step is the construction of approximations of solutions. Introduce
N

eN(x,t) =Y di (tyw;(x). (3.18)
j=1

To find coefficients {d;V }i=1,..~v we solve the following ordinary differential
system

DAV (t) + fovApN Awgdz + v [oo(f — 2x) 22 2 do
+ [ovV - VurApNdz = [qu - Vawdz + [o ¥ - Vawgdr
— JovAawgdr — v [4olv - T(f — 2x) — @lwydo,
d¥(0) = [ Vi - Vurdz, oM =v+u?, oV =ViV
for k=1,...,N.

The above problem has unique solution on time interval T > 0. Next,
following the standard procedure we need to find an estimate to control 7Ty
independently of N. To bound ¢y we repeat all steps as for (3.13) and (3,14),
but with ¢ - instead of ¢. And we obtain the same bound

T
sup Ve[, + [ [ V26" e < O (| Vi |12, 0 + (o).
0<t<T 0 Q

(3.20)
Hence for fixed T, say T = 1, we have uniform bound for V" in V10(Q x
(0,1)). Thus there exists a subsequence {©™¥}2°, such that

oM — o, weakly in H*(Q x (0,1)),
VM = Vo, *-weakly in Ly (0,1; Ly(Q))

(3.19)

as k — oo.

Limit ¢, is a solution to (3.5) in the sense of formulation (3.15). By classi-
cal results for the 2D Navier-Stokes equations [12] we control the convergence
for the nonlinear term in (3.15). Also this theory guarantees uniqueness of
the solutions obtained in this way. Lemma 3.3 is proved.

To finish the proof of Theorem A it is enough to note that the estimate
given by Lemma 3.2 guarantees boundedness of norms of weak solutions for
any time 7" > 0 and by Lemma 3.3 the solution can be extended on time
interval [0, T+ 1], so we get existence for all T > 0.

Theorem A gives insufficient information about behavior of solutions for
t — 0o. This question will be partially addressed in the next section.
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4 Proof of Theorem B

First, we consider the problem on the vorticity (1.14) to find the L.,-bound.
To obtain it we apply the maximum principle for system (1.15). By a straight-
forward application of this method we get

ol Loo(@x(0,7)) < || Cin.|| Loo(e) + sup oL 0.0

=1,

Hf = 2X]| oo 00250, [ |V] | Lo (0025 (0,7)) - (4.1)

To prove (4.1) it is enough to multiply (1.15); by (o — k)4 = max{a — k,0}
and integrate over () with

k = max {sup i (z);sup( sup o®);  sup  v-T(2x — f)} . (4.2)
zEN 1=1,2 yc(0,H®) edNx(0,T)

Since cross-sections of domain €2 are uniformly bounded we easily conclude

that ||(a — k)+||z,(2) = 0. The same we have for (a — k)_ with a suitable k.

This way we obtain (4.1).

Next we study the elliptic problem (1.16). To solve it we note that for
simplification nonhomogenity from (1.16)4 should be removed. By (1.16), it
is enough to consider a potential (stream function) of the velocity. So we
search for v as follows

v =0+ u, (4.3)

where ¥ is defined by Lemma 3.1 and u satisfies

rot u =« —rot v in Q,
divu=20 in Q,
n-u=>0 on 01, (4.4)
Wy >0 as y? 500 in QO
Using the potential (u = V+¢), problem (4.4) takes the form
Ap=a—rot v in
=0 on 012, (4.5)

¢ —0 as |z|— oo

It is important to underline that here we do not study the existence to
problem (4.5) - this information is already done by Theorem A. We just look
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for a suitable estimate for them. To find a L,-bound on V¢ we have to
localize the problem, because the domain is unbounded.
Introduce a decomposition of domain 2

Q=00y ( U w@j)) , (4.6)

(4,5)={1,2} xN

where w®) = [jL,(j + 1)L] x [0, H®] in local coordinates Q). where L is
a parameter and will be specified later. Next we define a smooth functions
n®7) . Q — [0, 1] such that for j > 1

) =1 for zew®™  supp n®) WY Y)Yt (4.7)

and |V < ¢/L°l. And we define n(%% in the following way

n®0 =1 for z€Q@cQOuy ( U w(i,0)> 7
i=1,2

supp 7% c Q@ y (

w(i,0) Uw(i, 1)
i=1,2
and [Ven®0| < ¢/Llel.
Now we localize problem (4.5). We examine 7). By (4.7) we see that
A(n®p)=Fy in  supp 79, (48)
o =0 on (supp 7)), '

where N N N
Fy; = 0% (a —rot v) + 2Vt Ve + (Anti))e.

By the theory of the Laplace operator problem (4.8) is ill posed in the
L -space, so we choose a large p < oo and we consider it in L,-spaces. In
this approach we get the following estimate

[ ellwaeuen) < e(L) (1% (a — rot )|l @)+

12V75 9V 1,0 + (A7) |, 0) - (4.9)

By the standard energy method constant ¢(L) for p = 2 is independent of L
and depends on the constant from the Poincare inequality. We show that

¢(L) < cLV* 1P, (4.10)
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For general p the Schauder estimates give the following bound

HVZU(Z’])(M |Lp(supp7](i’j)) < C<| ‘A(Tl(w)‘/’) | |Lp(supp7](i’j)) + ||77(Z’J)(p| |Lp(supp7](<i’j))) )
4.11
where the constant is independent of diameters of the domain and depends
only on the shape of it.
To find the L,-bound we apply the energy estimate to solutions to (4.8).
We have

Hn(i’j)‘P‘|Hé(suppn“’j)) < || Fijl| o (suppnten): (4.12)
but
i Lasuppnisny < cL!/27HP | Fy) L supprtia): (4.13)
The imbedding theorem says that
1701 suppniry < €l |13 (suppmtian)- (4.14)
Hence N
||n(l,])¢||Lp(8uppn(i,j)) < CL1/2_1/p||Ej‘|Lp(8uppn(i’j)) (4.15)

which with (4.11) shows (4.10). Let us underline that all above constants
depend on the constant from the Poincare inequality.
Introduce the following quantity

M = sup [|ollwse), (4.16)
(4,7)€I

where I = {(0,0),{1,2} x N}}.
By properties of functions 1) we easily deduce that second and third
terms of the r.h.s. of (4.9) can be estimated as follows
12V IV |y + (A1 D)ol L) S (L)L M (4.17)
for sufficiently large L. Hence (4.17) with (4.9) and (4.10) give
M < A, LY*||a — rot 9| ) + BLY* YPLt M (4.18)

and if we choose L so large that BL~'/>~'/? < 1, then by the imbedding
theorem if p > 2, (4.18) implies

[Vollew) < Aslla —rot v|[L, () (4.19)
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Recalling (4.3) and Lemma 3.1 we obtain
vl < AQ)aLo() + c(voo)- (4.20)
Inserting (4.20) to (4.1) we get
ol | (@x(0,1)) < [1F/V = 2X]| o 0) A ([ ]| Lo (@x (0,7) + (Vo))
+C(Uoo) —+ ||am||Lw(Q) <421)
Hence if || f/v — 2x||L.(00)A(£2) < 1 then we obtain a priori estimate
llel|za@x o) < (1= A f/v = 2x]|Lecon))
(AIf /v = 2x| Leo(o2)c(Voo) + |[in. || Loo() + (Vo)) (4.22)
Theorem B has been proved.
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