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ABSTRACT. We generalize a theorem of Coifman, Lions, Meyer
and Semmes to higher-order differential operators (also with vari-
able coefficients). Moreover, we present a direct, elementary proof
of a duality inequality which is a special case of the duality of
Hardy spaces and BMO. The tools used in this proof come from
standard Sobolev space theory; no knowledge of Hardy spaces is
required.

1. INTRODUCTION

Coifman, Lions, Meyer and Semmes in their celebrated paper [5] have proved that
if two vector fields in conjugate Lebesgue spaces,

B ∈ Lq(Rn)n, E ∈ Lq/(q−1)(Rn)n, where q ∈ (1,∞) ,

satisfy the equations rotB = divE = 0 in the sense of distributions, then their
scalar product E · B—which a priori, by Hölder inequality, is just integrable—
belongs to the Hardy space H 1(Rn), a strict subspace of L1(Rn). It would be
impossible to quote here all applications of this result in the theory of nonlin-
ear PDE, so let us just mention the fundamental work of Hélein [11], [12] on
the regularity of weakly harmonic maps from surfaces into arbitrary compact Rie-
mannian manifolds, which gave rise to a stream of generalizations. The reader can
consult [5], [12], [17], and their lists of references for more details (see also [10]).

The paper of Coifman, Lions, Meyer and Semmes contains a lot of examples
of various nonlinear quantities which—due to some cancellations—have slightly
better regularity than one might a priori expect (typically, H 1(Rn) instead of
L1(Rn)). The aim of this note is twofold. First of all, in Theorem 1 below, we
give another straightforward example of this type, with higher-order differential
operators replacing the divergence and rotation. This result follows in an implicit
way from earlier work of Coifman and Grafakos [4, 8], but we give a direct proof,
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avoiding the theory of singular integrals and pseudodifferential operators. Second,
we present a direct and relatively simple proof of an inequality which can be viewed
as a special case of the duality of Hardy space and BMO. This proof is modelled
on the proof of a duality lemma in [10], completely bypasses the theory of Hardy
spaces, and—although our tools are definitely not new—seems to be of some
independent interest even for k = 1.

To obtain these results, we use a mixture of ideas from [5], [17], and [10]. All
necessary tools come from fairly standard Sobolev space theory. We hope that the
theorems presented in this note can find applications in the theory of higher-order
nonlinear PDE. The search for such applications (like, possibly, interpretation
and extensions of the result of Chang, Wang, and Yang [3] on the regularity of
biharmonic maps) shall be object of a future study.

2. STATEMENT OF RESULTS

2.1. The notation. Throughout this note the notation is fairly standard. For
open sets Ω ⊂ Rn, the Sobolev space of functions having all their distributional
derivatives up to order m in Ls is denoted by Wm,s(Ω). Greek letters α, β and γ
denote multiindices in Rn. We employ the commonly used abbreviations: |α| =
α1+α2+· · ·+αn is the length of a multiindex α = (α1, α2, . . . , αn), where allαi
are nonnegative integers; we write α! = α1!α2! · · ·αn! and xα = xα1

1 x
α2
2 . . . xαnn

for x ∈ Rn. For a measurable set A and a function v, the barred integral denotes
the mean value of v on A, i.e.

∫
Av(x)dx = |A|−1

∫
A v(x)dx; sometimes we

also write vA =
∫
Av dx. For v ∈ Wm,1loc we write

Tmz v(y) =
∑
|β|≤m

Dβv(z)
(y − z)β
β!

to denote the Taylor polynomial of v; moreover,

TmA v(y) : =
∫

ATmz v(y)dz

denotes the averaged Taylor polynomial of v. We often write p′, q′, r ′, etc. to
denote Hölder conjugates of various exponents p,q, r , etc. ∈ (1,+∞). In all
computations, C denotes a general constant whose value is not really important
(and may change even in one string of inequalities). IfA,B ≥ 0, thenA ≈ B means
that c(n)−1A ≤ B ≤ c(n)A for some positive constant c(n) which depends only
on the dimension, n.

2.2. Hardy spaces. Let us recall first that a measurable function f ∈ L1(Rn)
belongs to the Hardy space H 1(Rn) if and only if

f∗ : = sup
ε>0
|ϕε ∗ f | ∈ L1(Rn).
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Here, ϕε(x) := ε−nϕ(x/ε), and ϕ is a fixed function of class C∞0 (B(0,1)) with∫
ϕ(y)dy = 1. It turns out that the definition does not depend on the choice of
ϕ (see [7]).

Equivalently, one can defineH 1(Rn) as the space of those elements of L1(Rn),
for which all the Riesz transforms Rjf , j = 1,2, . . . , n, are also of class L1(Rn).
The reader is referred to [17] and [18, Chapters 3 and 4] for more details. Let us
just mention here thatH 1(Rn) is a Banach space with the norm

‖f‖H 1 = ‖f‖L1 + ‖f∗‖L1 .

Moreover, the condition f ∈H 1(Rn) implies
∫
f(y)dy = 0.

C. Fefferman [6], [7] proved that the dual ofH 1(Rn) is equal to the space of
functions of bounded mean oscillation, BMO(Rn). More precisely, there exists a
constant C such that∣∣∣∣∫

Rn
h(y)ψ(y)dy

∣∣∣∣ ≤ C‖h‖H 1‖ψ‖BMO(2.1)

for all h ∈ H 1(Rn) and ψ ∈ BMO(Rn). This inequality is highly nontrivial
since in general the integral on the left-hand side does not converge absolutely.

2.3. Assumptions and results. For sake of clarity, we state first the results
is their simplest form. Some rather straightforward generalizations (e.g. to oper-
ators with uniformly bounded coefficients and to subelliptic calculus) are briefly
discussed at the end of the paper.

Let u ∈ Wk,q(Rn) for some k = 1,2, . . . and q ∈ (1,∞), and let

E = (Eα)|α|=k ∈ Lq/(q−1)(Rn)N ,

where N denotes the number of all multiindices α of length k in Rn. We also
assume that ∇k · E = 0 in the sense of distributions, i.e.∑

|α|=k

∫
Rn
Eα(x)Dαϕ(x)dx = 0(2.2)

for allϕ ∈ C∞0 (Rn). Note that by a standard limit argument, identity (2.2) holds
in fact for all functions ϕ ∈ Wk,q(Rn).

Theorem 2.1. Under all assumptions listed above, the function

h =
∑
|α|=k

EαDαu

belongs to the Hardy spaceH 1(Rn) and

‖h‖H 1(Rn) ≤ C‖E‖Lq′ (Rn)‖∇ku‖Lq(Rn) ,(2.3)

where the constant C depends only on n, q and k.
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As we have already noted in the Introduction, this result follows in an im-
plicit way from the work of Coifman and Grafakos (see, in particular, [8, Theo-
rem II A (2)]) who considered multilinear expressions formed by scalar products
of two vectors of Calderon–Zygmund operators satisfying an additional ‘vanishing
moments’ condition. To translate the assumptions above to the somewhat differ-
ent setting of [4, 8], one may use the isomorphism of Sobolev spaces and Bessel
potential spaces (or other representation formulae for Sobolev functions). This
is not immediate, and since the explicit motivation of Coifman and Grafakos in
[4, 8] was to investigate expressions involving only second order derivatives, we
give an independent, direct proof in Section 3.

Theorem 2.2. Assume that n ≥ 2, u and E satisfy the above assumptions with
Rn replaced by a ball B(a,10%). There exists a constant C = C(n,q, k) such that
for all functions ψ ∈ W 1,n

0 (B(a, %)) we have∣∣∣∣∫
B(a,%)

ψ
∑
|α|=k

EαDαudx
∣∣∣∣ ≤ C‖∇ψ‖Ln‖E‖Lq′ ‖∇ku‖Lq ;(2.4)

the norm of ∇ψ is taken on the smaller ball B(a,%), and two other norms, of E and
∇ku, on the larger ball B(a,10%).

Note that in dimension n = 1 such inequality follows immediately from the
imbedding of W 1,1(R) into absolutely continuous functions.

For k = 1 this Theorem has been applied to prove regularity of p-harmonic
maps in the borderline case, when p is equal to the dimension of the domain (see
[12] and [10]).

For n ≥ 2, as we have already mentioned, Theorem 2 follows easily from
Theorem 1 and Fefferman’s inequality (2.1): any function ψ ∈ W 1,n

0 (B(a, %))
belongs to BMO(Rn), since by Hölder and Poincaré inequalities

∫
Q|ψ−ψQ|dx ≤

(∫
Q|ψ−ψQ|n dx

)1/n
≤ C(n)

(∫
Q
|∇ψ|n dx

)1/n

for any cube Q ⊂ Rn, and hence

‖ψ‖BMO ≡ sup
Q⊂Rn

∫
Q|ψ−ψQ|dx ≤ C(n)‖∇ψ‖Ln(B(a,%)) .

However, our direct proof presented in Section 4 bypasses the burden of the full
proof of the duality of Hardy space and BMO and uses just the theory of Sobolev
spaces. This road seems to be shorter and simpler to follow.

At the end of the paper, in Section 5, we discuss some extensions of these
results to more general k-th order differential operators in Rn, and to a subelliptic
setting.



Hardy Space Estimates for Higher-Order Differential Operators 5

3. PROOF OF THEOREM 1

We follow closely the proof of Theorem II.1 in the paper of Coifman, Lions,
Meyer and Semmes, with some more or less obvious modifications which are nec-
cessary to take higher order derivatives into account.

Fix ε > 0. As ∇k · E = 0 in the sense of distributions, we have

∑
|α|=k

∫
Rn
Eα(y)Dαy

[
ϕε(x −y)

(
u(y)− Tk−1

Bε u(y)
)]
dy = 0 .(3.1)

Here, x ∈ Rn is arbitrary, and Bε ≡ B(x, ε). By the Leibniz formula,

Dαy
[
ϕε(x −y)

(
u(y)− Tk−1

Bε u(y)
)]

= ϕε(x −y)Dαu(y)+
∑

β+γ=α
|γ|<m

(
α
β

)
Dβyϕε(x −y)Dγ

(
u(y)− Tk−1

Bε u(y)
)

= ϕε(x −y)Dαu(y)

+
∑

β+γ=α
|γ|<m

(
α
β

)
Dβyϕε(x −y)

(
Dγu(y)− Tk−|γ|−1

Bε Dγu(y)
)

.

Therefore, identity (3.1) implies that h =∑|α|=k| EαDαu satisfies the equation

h∗ϕε(x) = −
∑
|α|=k

∑
β≤α
β6=0

(
α
β

)
Sεαβ(x) ,(3.2)

where

Sεαβ(x) =
∫
Bε
Eα(y)D

β
yϕε(x −y)

(
Dα−βu(y)− Tk−|α−β|−1

Bε Dα−βu(y)
)
dy .

We shall estimate each term Sεαβ(x) separately. To this end, fix α with |α| = k
and β ≤ α with |β| = m ≥ 1. Denoting Dα−βu = v, and applying triangle
inequality, we obtain the following estimate:

|Sεαβ(x)| ≤ ‖ϕ‖Ckε−m
∫

Bε |Eα|
∣∣∣v − Tm−1

Bε v
∣∣∣ dy

By the Hölder inequality, the right-hand side does not exceed

Cε−m
(∫

Bε |Eα|s
′
dy

)1/s′(∫
Bε

∣∣∣v − Tm−1
Bε v

∣∣∣s dy)1/s
.
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To estimate the second integral, we apply the classical higher-order Sobolev–
Poincaré inequality,(∫

Bε

∣∣∣v − Tm−1
Bε v

∣∣∣s dy)1/s
≤ Cεm

(∫
Bε |∇mv|s∗,m dy

)1/s∗,m
,(3.3)

where C = C(n,m, s) and s∗,m = ns/(n +ms) is an exponent whose m-th
Sobolev conjugate is equal to s. As |∇mv| = |∇m(Dα−βu)| ≤ |∇ku|, this gives

|Sεαβ(x)| ≤ C
(∫

Bε |Eα|s
′
dy

)1/s′(∫
Bε
∣∣∇ku∣∣s∗,m dy)1/s∗,m

(3.4)

≤ C
(∫

Bε |Eα|s
′
dy

)1/s′(∫
Bε
∣∣∇ku∣∣s∗ dy)1/s∗

Here, s∗ ≡ s∗,1 : = ns/(n + s) ≥ s∗,m for all m ≥ 1, and to obtain the second
line in (3.4), where both exponents do not depend on m any more, we simply
apply Hölder inequality. In order to deal with quantities which are integrable with
powers greater than 1, we want to have here s′ < q/(q − 1) = q′ and s∗ < p, or,
equivalently, s > q and 1/s +m/n > 1/q for all m = 1,2, . . . , k. To this end, it
is enough to choose

1
s
= 1
q
− δ for any fixed δ ∈

(
0,min

(
1
q
,

1
n

))
.

For such s, inequality (3.4) implies∣∣∣sup
ε>0
Sεαβ(x)

∣∣∣ ≤ C[M(|Eα|s′)(x)]1/s′[M(|∇ku|s∗)(x)]1/s∗ ,

where M(. . . ) denotes the classical Hardy–Littlewood maximal function. By the
Hardy–Littlewood maximal theorem,[

M(|Eα|s′)
]1/s′ ∈ Lq/(q−1)(Rn) ,

[
M(|∇ku|s∗)]1/s∗ ∈ Lq(Rn)

and their norms can be estimated by a constant times ‖E‖Lq/(q−1)(Rn) and ‖∇ku‖Lq(Rn),
respectively. Hence, we obtain∫

Rn

∣∣∣sup
ε>0
Sεαβ(x)

∣∣∣dx ≤ C‖E‖Lq/(q−1)(Rn)‖∇ku‖Lq(Rn) .

Recall that, by (3.2), h ∗ϕε is a linear combination of finitely many terms Sεαβ.
Therefore, we have∫

Rn

∣∣∣sup
ε>0
h∗ϕε(x)

∣∣∣dx ≤ C‖E‖Lq/(q−1)(Rn)‖∇ku‖Lq(Rn) .

This completes the proof of Theorem 1. ❐
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4. PROOF OF THEOREM 2

In this Section, we basically follow the proof of the duality Lemma 3.2 in [10],
introducing some necessary changes to cope with higher-order derivatives. Apart
from these, there is one major difference: we do not assume that |E|q′ ≤ const ·
|∇ku|q, and the proof from [10], which yields an estimate of a suitable integrand
by a single Riesz potential, simply does not work in this case. Therefore, we have
to use a product of two different, well-chosen Riesz potentials in the estimates—
and the proof contains a bit of novelty even in the case k = 1.

The overall strategy is as follows: first, we use a standard representation for-
mula to express ψ in terms of its gradient and to write the integral

∫
ψh, where

h =∑|α|=k EαDαu, in the form
∫
A∇ψ. Here, roughly speaking, A is a convolu-

tion of h times a cutoff function with the gradient of the fundamental solution of
Laplace’s operator. Next, employing the so-called Whitney decomposition and in-
tegrating by parts, we carefully estimate |A| by a product of two generalized Riesz
potentials (all these notions are defined below). Finally, we apply a version of frac-
tional integration theorem to obtain higher integrability of these two potentials
and to conclude that |A| belongs to Ln/(n−1). Since |∇ψ| is in Ln, the theorem
follows from the Hölder inequality.

Here are the details.

Step 1. It is enough to prove the theorem for ψ ∈ C∞0 (B(a, %)), and then to
use a density argument. Take a cutoff function η ∈ C∞0 (B(a, % + 2λ%); [0,1])
with η ≡ 1 on B(a,% + λ%) and

|∇mη(x)| ≤ const

%m
for all x and allm = 1, . . . , k.(4.1)

Here, λ ∈ ( 1
100 ,

1
3) is a number which shall be fixed later; because of the lower

bound 1
100 we may assume that the constant in the above inequality depends only

onm and k.
Since ψ ∈ C∞0 , we have

ψ(x) =
∫
Rn
∇ψ(y)K(x,y)dy ,

where

K(x,y) = 1
nωn

x −y
|x −y|n .

Using this formula and the Fubini theorem, we rewrite the left hand side of in-
equality (2.4) as
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B(a,%)

ψ(x)h(x)dx =
∫
Rn
η(x)ψ(x)h(x)dx(4.2)

=
∫
B(a,%)

A(y)∇ψ(y)dy ,

where, as before, h =∑|α|=k EαDαu, and

A(y) : =
∑
|α|=k

∫
Rn
η(x)K(x,y)Eα(x)Dαu(x)dx(4.3)

for y ∈ B(a,%).
We claim that

A ∈ Ln/(n−1)(B(a, %))(4.4)

and

‖A‖Ln/(n−1)(B(a,%)) ≤ C‖E‖Lq/(q−1)(B(a,10%))‖∇ku‖Lq(B(a,10%)) .(4.5)

Once these two statements are proved, Theorem 2 follows from formula (4.2) and
the Hölder inequality. We therefore proceed now to prove (4.4) and (4.5).

Step 2. Estimates of A, part 1: Whitney decomposition. Fix y ∈ B(a,%). We
take the Whitney decomposition of Rn \ {y}, i.e. a family of balls Bi ≡ B(xi, ri),
i ∈ I, such that

(i) Rn \ {y} = ⋃i∈I B(xi, ri) ,

(ii) B(xi, ri/3) are pairwise disjoint,

(iii) ri = 1
1000dist (xi,y) and B(xi,2ri) ⊂ Rn \ {y} for every i ∈ I,

(iv) each point of Rn\{y} belongs to at mostM =M(n) different balls
B(xi,2ri).

With such a family of balls one can associate a smooth partition of unity (ϑi)i∈I
which satisfies the following conditions:

(v) ϑi ∈ C∞0 (B(xi,2ri); [0,1]) for each i ∈ I,
(vi)

∑
i∈I ϑi ≡ 1 on Rn \ {y},

(vii) |∇mϑi| ≤ const · r−mi for allm = 1, . . . , k.

The construction of Bi and ϑi is standard and can be traced back to Whitney; see
[18, pages 14–16] and [15, Chapter 1, Lemma 3.1 and its proof ] for more details.

We use the identity
∑
ϑi ≡ 1 to write
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A(y) =
∑
i∈I

∫
2Bi
Φi(x,y)h(x)dx ,

where 2Bi : = B(xi,2ri) and Φi(x,y) = η(x)K(x,y)ϑi(x). Moreover, we can
assume that for all indices i ∈ I the ball 2Bi intersects the support of η. By triangle
inequality, this implies

⋃
i∈I 2Bi ⊂ B(a,% + 3λ%). Since ∇k · E = 0, we have, for

each i ∈ I, ∑
|α|=k

∫
2Bi
Eα(x)Dαx

[Φi(x,y)(u(x)− Tk−1
2Bi u(x)

)]
dx = 0 .(4.6)

(Note that y 6∈ 2Bi and therefore Φi is smooth with respect to x on 2Bi.) As in
the proof of Theorem 1, we use the Leibniz formula to obtain

Dαx
[Φi(x,y)(u(x)− Tk−1

2Bi u(x)
)] = Φi(x,y)Dαu(x)

+
∑
β≤α
β6=0

(
α
β

)
DβxΦi(x,y)(Dα−βu(x)− Tk−|α−β|−1

2Bi Dα−βu(x)
)
.

Therefore,

A(y) = −
∑
i∈I
Ai(y)

with

Ai(y) : =
∑
|α|=k

∑
β≤α
β6=0

(
α
β

)
Aαβi(y)

and

Aαβi(y) : =
∫

2Bi
Eα(x)D

β
xΦi(x,y)(Dα−βu(x)− Tk−|α−β|−1

2Bi Dα−βu(x)
)
dx .

We now estimate Aαβi(y) for fixed i ∈ I, and fixed α and β with |α| = k,
|β| = m. Note that for all x ∈ 2Bi we have |x − y| ≈ ri. Therefore, for any
multiindex γ of length |γ| ≤ k and for all points x ∈ 2Bi, we have the following
estimates:

|DγxK(x,y)| ≤ C(γ,n)
|x −y|n+|γ|−1 ≤

C(γ,n)
rn+|γ|−1
i

,

|Dγη(x)| ≤ C(γ,n)
%|γ|

≤ C(γ,n)
|x −y||γ| ≤

C(γ,n)
r |γ|i

.
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(To check the second one, notice that the derivatives of η do not vanish only on
the annulus % + λ% < |x − a| < % + 2λ%; this yields an estimate |x − y| from
below.) Hence, applying the Leibniz formula again and using the estimates (vii)
for derivatives of ϑi, we obtain

|DβxΦi(x,y)| ≤ C(n, k)rn+m−1
i

for all x ∈ 2Bi and all |β| =m.(4.7)

This implies the estimate

|Aαβi(y)| ≤
C(n, k)
rm−1
i

∫
2Bi|Eα(x)|

∣∣∣Dα−βu(x)− Tk−|α−β|−1
2Bi Dα−βu(x)

∣∣∣ dx .
Now, in order to obtain estimates below the natural exponents, we proceed as
in the proof of inequality (3.4) in the last section, in the proof of Theorem 1.
Applying the Hölder inequality with exponents s′ = s/(s − 1) and s, where

1
s
+ 1
n
= n+ q − 1

nq
,(4.8)

we separate here |Eα| from the terms depending on u. Next, we apply the
Sobolev–Poincaré inequality (3.3) to estimate the second integral, containing the
s-th power of the difference of Dα−βu(x) and its averaged Taylor polynomial.
Finally, we again apply Hölder inequality to this integral, to obtain an exponent
which does not depend onm. Summation with respect to α, β and i yields

(4.9) |A(y)| ≤ C(n, k, q)
∑
i∈I
ri
(∫

2Bi|E|p1 dx
)1/p1

×
(∫

2Bi

∣∣∣∇ku∣∣∣p2
dx

)1/p2

,

where, since s was defined by (4.8), we have

p1 = s′ =
nq

nq −n+ 1
< q′ and p2 =

ns
n+ s =

nq
n+ q − 1

< q .(4.10)

Step 3. Estimates of A, part 2: generalized Riesz potentials. In order to obtain
an estimate of |A| by a product of two potential operators, we next write

|A(y)| ≤ C(n, k, q) · Σ1 · Σ2 ,

where

Σ1 =
∑
i∈I
r νi

(∫
2Bi|E|p1 dx

)1/p1

,(4.11)

Σ2 =
∑
i∈I
r 1−ν
i

(∫
2Bi

∣∣∣∇ku∣∣∣p2
dx

)1/p2

.(4.12)
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Here, ν is some number in (0,1) which shall be fixed later. Note that the product
of Σ1 and Σ2 gives the whole sum on the right-hand side of (4.9), plus many extra
positive terms. Before proceeding further, let us pause for a while and recall one

4.1. Definition. For g ∈ Lp(B(a,10%)), the generalized Riesz potential
Jν,pg(y), where ν > 0, is given by

Jν,pg(y) =
[log2 9%]∑
`=−∞

2`ν
(∫

B(y,2`)|g(x)|p dx
)1/p

.

Here, y is an arbitrary point in B(a,%). For such y and for ` ≤ [log2 9%], we
have B(y,2`) ⊂ B(a,10%) and all the integrals in the above sum are well defined.

4.2. Remark. In [9], Hajłasz and Koskela have considered more sophisti-
cated variants of this definition. Lemma 4.1 below is a simplified version of The-
orem 5.3 (part 2) from their paper. It can be obtained in a rather straightfor-
ward manner, by mimicking Hedberg’s proof of the classical Hardy–Littlewood–
Sobolev fractional integration theorem. An interested reader may check that it is
also possible to estimate |A(y)| by a product of appropriate powers of two the
classical local Riesz potential, and obtain Theorem 2 via an application of the clas-
sical fractional integration theorem. This, however, would require a bit more care
in the last piece of the reasoning below.

Lemma 4.1. Assume that g ∈ Lq(B(a,10%)) and that 0 < p < q < n/ν.
Then, Jν,pg ∈ Lq∗(B(a, %)), where q∗ = nq/(n− νq), and we have the estimate

‖Jν,pg‖Lq∗ (B(a,%)) ≤ C(n,p, q, ν)‖g‖Lq(B(a,10%)) .

To estimate each of the sums Σ1 and Σ2 by an appropriate generalized Riesz
potential, we proceed as follows. Fix an integer ` and set

I` : = {i ∈ I : 2`−2 ≤ dist (xi,y) < 2`−1} .

As xi ∈ B(a,% + 3λ%) and y ∈ B(a,%), we only have to consider ` ≤ `max,
where `max is defined by the inequalities

2`max−2 < 2%+ 3λ% ≤ 2`max−1 .

(For ` > `max the set I` is just empty.) If i ∈ I`, then 2Bi ⊂ B(y,2`) and ri ≈ 2`;
hence, fixing λ = 1

12 , we see that for each ` and each i ∈ I`,

2Bi ⊂ B(y,2`) ⊂ B(y,2`max) ⊂ B(a,10%) .
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Moreover, we have card I` ≤ K(n), where K(n) is some universal constant de-
pending only on n. This follows from the properties (i)–(iv) of the family
{B(xi, ri) : i ∈ I}, as

ωn2`n = |B(y,2`)| ≥
∣∣∣ ⋃
i∈I`
B(xi, ri/3)

∣∣∣
=
∑
i∈I`

∣∣B(xi, ri/3)∣∣ ≥ωn card I`

(
2`−2

3000

)n
.

Therefore,

Σ1 =
∑
i∈I
r νi

(∫
2Bi|E|p1 dx

)1/p1

,

≤
[log2 9%]∑
`=−∞

∑
i∈I`

2`ν
(

2`

ri

)n/p1 (∫
B(y,2`)|E|p1 dx

)1/p1

,

≤ C(n,q)
[log2 9%]∑
`=−∞

2`ν
(∫

B(y,2`)|E|p1 dx
)1/p1

= C(n,q)Jν,p1 |E|(y) .

Similarly, Σ2 ≤ C(n,q)J1−ν,p2 |∇ku|(y) . Thus

A(y) ≤ C(n,q, k) · Jν,p1 |E|(y) · J1−ν,p2 |∇ku|(y) .(4.13)

Applying now Lemma 4.1, we see that

F1 : = Jν,p1 |E| ∈ Lq
∗
1 (B(a, %)) , q∗1 =

nq′

n− νq′ ,(4.14)

F2 : = J1−ν,p2 |∇ku| ∈ Lq
∗
2 (B(a, %)) , q∗2 =

nq
n− (1− ν)q ,(4.15)

provided that n/ν > q′ = q/(q − 1) and an/(1− ν) > q, or, equivalently,

1− n
q
< ν < n− n

q
.(4.16)

It is clear that for n ≥ 2 we can choose some ν ∈ (0,1) which satisfies these
inequalities.

Finally, by the Hölder inequality and Lemma 1,∫
B(a,%)

|A(y)|n/n−1 dy

≤ C
(∫
B(a,%)

|F1(y)|bn/(n−1) dy
)1/b (∫

B(a,%)
|F2(y)|b′n/(n−1) dy

)1/b′
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if there exists a pair of Hölder conjugate exponents b and b′ such that bn/(n −
1) = q∗1 and b′n/(n − 1) = q∗2 . However, a trivial check shows that if q∗1
and q∗2 are as in (4.14), (4.15) above, then the exponents b = (n− 1)q∗1 /n
and b′ = (n− 1)q∗2 /n are indeed Hölder conjugate for every ν which satisfies
condition (4.16). This observation completes the proof of claims (4.4) and (4.5),
and of the whole theorem. ❐

5. SOME GENERALIZATIONS AND REMARKS

5.1. In the case of first order derivatives, k = 1, Chanillo [1] has given
another direct proof, also bypassing the theory of Hardy spaces, of a slightly dif-
ferent duality inequality. His conditions on ψ are slightly weaker than ψ ∈ W 1,n.
He assumes that ψ ∈ W 1,2 and supx,r r

2−n ∫
B(x,r) |∇ψ|2 dy ≤ C for some con-

stant C—which obviously implies that ψ belongs to BMO—and obtains also a
weighted variant of the inequality, with a weight in the Muckenhoupt class A2.
On the other hand, he treats only the case q = q′ = 2. Later, Chanillo and
Li have noted [2, Lemma 2.2] that Chanillo’s proof extends also, via standard
Littlewood–Paley theory, to the case supx,r r

p−n ∫
B(x,r) |∇ψ|p dy ≤ C.

5.2. It is clear that with practically the same proofs both theorems can be
extended to the following situation. Let

L =A(x)∇k ,

where A(x) = (Aαβ(x)
)

is a symmetric N × N matrix, with entries indexed
by multiindices of length k in Rn. Assume that Aαβ ∈ L∞(Rn) and set µ0 =
maxα,β ‖Aαβ‖L∞ . Moreover, replace the assumption ∇k · E = 0 by

L∗ · E = 0 in the sense of distributions,

where L∗ denotes the formal adjoint of L. Then, for h = E ·Lu, where u ∈ Wk,q
and E ∈ Lq′ on appropriate sets, analogues of Theorem 1 and Theorem 2 hold.
One just has to introduce obvious changes in the integral identities (??), (4.6) and
to replace the constants in the inequalities (2.3) and (2.4) by C(n, k, q) · µ0. (No
smoothness of the coefficientsAαβ is required.)

5.3. With natural modifications of the assumptions, in particular upon re-
placement of n by the so-called homogeneous dimension, Theorem 2 extends to
other, more general situations, e.g. to calculus on Carnot groups. All impor-
tant ingredients of the proof (Whitney decomposition, a suitable representation
formula for smooth compactly supportedψ, estimates of all derivatives of the fun-
damental solution of the subelliptic laplacian, and fractional integration theorem
for generalized Riesz potentials) are available in this general setting. The key is to
be able to use polynomials and variants of higher-order local Sobolev inequalities.
These have been obtained by G. Lu, and G. Lu and R.L. Wheeden in [13], [14].
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Our computations heavily rely on the fact that derivatives of Taylor polynomials
are equal to Taylor polynomials of derivatives. A suitable replacement for this
property is provided by Lu in [13, Theorem 5.3]. Using this result, one may ob-
tain a subelliptic version of Theorem 2 (generalizing the duality lemma of [10] to
higher-order derivatives along suitable vector fields). Details are left to the reader.
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