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� Introduction
Is the “cable spaghetti” on the �oor really knotted

or is it enough to pull on both ends of the wire
to completely unfold it?

Since its invention, knot theory has always been a place of interdisciplinarity. The �rst
knot tables composed by Tait have been motivated by Lord Kelvin’s theory of atoms.
But it was not until a century ago that tools for rigorously distinguishing the trefoil
and its mirror image as members of two di�erent knot classes were derived. In the
�rst half of the twentieth century, knot theory seemed to be a place mainly driven by
algebraic and combinatorial arguments, mentioning the contributions of Alexander,
Reidemeister, Seifert, Schubert, and many others. Besides the development of higher
dimensional knot theory, the search for new knot invariants has been amajor endeav-
our since about 1960.

At the same time, connections to applications in DNA biology and statistical
physics have surfaced. DNA biology had made a huge progress and it was well un-
derstood that the topology of DNA strandsmatters: modeling of the interplay between
molecules and enzymes such as topoisomerases necessarily involves notions of ‘knot-
tedness’.

Any con�guration involving long strands or �exible ropes with a relatively small
diameter leads to a mathematical model in terms of curves. Therefore knots appear
almost naturally in this context and require techniques from algebra, (di�erential)
geometry, analysis, combinatorics, and computational mathematics.

The discovery of the Jones polynomial in 1984 has led to the great popularity
of knot theory not only amongst mathematicians and stimulated many activities in
this direction. Many deep connections between the Jones polynomial and quantum
physics were found. In the 1990s, monographs of Adams, Kau�man, and Livingston
addressed a wide audience of mathematicians, from undergraduate students to re-
search professionals, disseminated new results and ideas and thereby added to the
perception that knot theory is a vivid discipline having impact far beyond its roots.

Today we �nd that knots appear in almost all mathematical disciplines, having
important applications in the sciences and, most importantly, that concepts from one
�eld have impact on problems in other areas. Even more, we will see that applica-
tions donot onlymake use of existing theories developed in entirely theoretical frame-
works, but that questions from the sciences also stimulate theoretical developments
in turn.

In this edition we focus on four aspects that thematically contour its basis and back-
ground and these will be outlined below. Of course, this choice is not meant to be ex-
haustive, e.g., we do not cover recent developments in the theory of low-dimensional



Paweł Strzelecki and Heiko von der Mosel
Geometric curvature energies: facts, trends,
and open problems

Abstract: This survey focuses on geometric curvature functionals, that is, geo-
metrically de�ned self-avoidance energies for curves, surfaces, or more general k-
dimensional sets in Rd. Previous investigations of the authors and collaborators con-
centrated on the regularising e�ects of such energies, with a priori estimates in the
regime above scale-invariance that allowed for compactness and variational appli-
cations for knotted curves and surfaces under topological restrictions. We brie�y de-
scribe the impact of geometric curvature energies on geometric knot theory. Currently,
various attempts are beingmade to obtain a deeper understanding of the energy land-
scape of these highly singular and nonlinear nonlocal interaction energies. Moreover,
a regularity theory for critical points is being developed in the setting of fractional
Sobolev spaces. We describe some of these current trends and present a list of open
problems.

Keywords: geometric curvature energies, singular integrals, critical points, regularity
theory, geometric knot theory, elastic knots, recti�ability

�.� Facts
Energies. Geometric curvature functionals are characterised as geometrically de�ned
energies on a priorily non-smooth k-dimensional subsets Σk of Rd, and these func-
tionals are designed to penalise self-intersections. In addition, there are regularising
e�ects: �nite energy implies some higher degree of smoothness of Σ. One of the �rst
examples is that of the Möbius energy on recti�able curves � ⇢ Rd, introduced by J.
O’Hara [82] and investigated analytically by M. H. Freedman et al. [41, 50],

EMöb(�) :=
Z

�

Z

�

h �
|x − y|� − �

d�(x, y)�
i
dH

�(x)dH
�(y), (2.1.1)

where d�(x, y) denotes the intrinsic distance between the points x, y on the curve �,
andH

� stands for the one-dimensional Hausdor�-measure. The �rst summand in the
integrand resembles a Coulomb-type repulsive potential suitably regularised by the
second term so as to obtain �nite energy for smooth embedded curves. Another exam-
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ple is that of ropelength2.1 de�ned as the quotient of lengthL (�) and thickness4[�] of
curves �, where the latter is a non-smooth functional introduced by O. Gonzalez and
J. H. Maddocks [48], de�ned as

4[�] := inf
x,y,z2�
x 6 =y 6 =z 6 =x

R(x, y, z). (2.1.2)

Here, R(x, y, z) denotes the circumcircle radius of the three curve points x, y, and z.
Thickness can be regarded as a hard core potential or steric constraint, in contrast to
repulsive potentials.

Both functionals have had their impact on the modeling of macromolecules such
as DNA and proteins [25, 76, 77], and on geometric knot theory, where one studies
relations between the geometry of space curves and the knot types they represent.
Several geometric curvature energies can be minimised within given knot classes to
obtain particularly nice representatives of that knot, for example ideal knots as ro-
pelength minimisers [29, 49]. Bounds on the energy sometimes imply bounds on knot
invariants like stick number or crossing number, hence bounds on the number of knot
classes that possess representatives below these energy thresholds; see, e.g., [24, 73].

However, both these extreme forms of energies have serious drawbacks. The
highly singular integrals involved in the de�nition of any kind of repulsive potential
like (2.1.1) need some sort of regularisation, and – besides the ambiguity in the choice
of such a regularisation – it is by no means clear how to generalise this concept to
higher dimensional objects. The steric constraint of given thickness (2.1.2) or the rope-
length functional, on the other hand, is a non-smooth quantity imposing challenging
technical problems, e.g., for the derivation and analysis of variational equations. This
led to our systematic research between 2007 and 2012, devoted to a whole range of
intermediate energies on curves and surfaces interpolating in some sense between
hard steric constraints and “soft” repulsive potentials. Examples of such energies on
one-dimensional sets include [119]

Up(�) :=
Z

�

sup
y,z2�

z 6 =y 6 =x 6 =z

�
Rp(x, y, z) dH

�(x), p ≥ �, (2.1.3)

or the double integral [114]

Ip(�) :=
Z

�

Z

�

sup
z2�

z 6 =x 6 =y 6 =z

�
Rp(x, y, z) dH

�(x)dH
�(y), p ≥ �, (2.1.4)

2.1 The name of that functional is coined after the following geometric variational problem: given a
rope of �xed constant thickness, what is the minimum length of this rope required to tie a given knot?
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and also integral Menger2.2 curvature [115]

Mp(�) :=
Z

�

Z

�

Z

�

�
Rp(x, y, z) dH

�(x)dH
�(y)dH

�(z), p ≥ �. (2.1.5)

On a �xed loop � of unit length, these energies are ordered as

M
�/p
p (�) ≤ I

�/p
p (�) ≤ U

�/p
p (�) ≤ �

4[�] , (2.1.6)

where the last term is the ropelength of �. Moreover, the p-th root of Mp , Ip, and of
Up tends to ropelength as p ! ∞ both on �xed conformations of knots and in the
sense of Γ-convergence.

Besides averaging andmaximising over themulti-point interactions in the circum-
radius we investigated tangent-point interactions such as [121, 57]

Ep(�) :=
Z

�

Z

�

�
rtp(x, y)p

dH
�(x)dH

�(y), p ≥ �, (2.1.7)

aswell, where rtp(x, y) is the radius of the unique circle through twogiven curve points
x and y that is additionally tangent to � in x.

We also introduced and studied geometric curvature energies on higher-
dimensional sets such as thickness for surfaces Σ ⇢ Rd [118, 117], where oneminimises
over all pairs of points x, y 2 Σ the tangent-point radius Rtp(x, y) of the smallest sphere
through x and y that is tangent to Σ in x. Later, we investigated integral Menger curva-
ture for surfaces Σ ⇢ R� [120],

Mp(Σ) :=
Z

Σ

Z

Σ

Z

Σ

Z

Σ

Kp(x, y, z, ξ ) dH
�(x)dH

�(y)dH
�(z)dH

�(ξ ), p ≥ �, (2.1.8)

where the integrand K is de�ned2.3 on tetrahedra T = (x, y, z, ξ ) with vertices
x, y, z, ξ 2 Σ, as

K(T) = K(x, y, z, ξ ) := H
�(T)

area (T)diam �(T)
. (2.1.9)

2.2 Karl Menger considered in the 1930’s the circumradius R(x, y, z) of three curve points x, y, z 2 �

knowing that the coalescent limit of R(x, y, z) as x and y tend to z coincides with the local radius
of curvature if the curve � is su�ciently smooth. Menger was also aware of the fact that there is an
elementary formula for the circumradius solely in terms of the mutual distances of the points x, y,
and z. By means of multipoint functions such as R(·, ·, ·) Menger indeed intended to develop a purely
metric geometry in contrast to classic di�erential geometry. The idea of using Menger curvature as a
tool – both in harmonic analysis and in modeling – has been re-discovered in the last 20 years.
2.3 Themost obvious choice to take as integrand in (2.1.8) a negative power of the circumsphere radius
of a tetrahedron does not serve our purposes since there are smooth embedded surfaces for which
such an integrand would not be bounded; see our detailed discussion on various integrands in [120,
Appendix B].
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HereH
�(T) is the volume of the tetrahedron T and area (T) the sum of its facet areas.

For k-dimensional submanifolds Σk ⇢ Rd we looked at the tangent-point energy [123]

Ep(Σ) :=
Z

Σ

Z

Σ

�
Rp
tp(x, y)

dH
k(x)dH

k(y), (2.1.10)

and S. Kolasiński investigated in his Ph.D. thesis integralMenger curvature for Σk ⇢ Rd

[61, 62]

Mp(Σ) :=
Z

Σ

· · ·
Z

Σ| {z }
k + � integrals

Kp(x�, . . . , xk+�) dH
k(x�) · · · dH

k(xk+�) (2.1.11)

for p > k(k + �), where the integrand generalises (and simpli�es) the one given in
(2.1.9) to

K(T) = K(x�, . . . , xk+�) :=
H

k+�(T)
(diam (T))k+�

, (2.1.12)

for (k + �)-dimensional simplices T = (x�, . . . , xk+�) with each vertex xi on Σ.

Regularising e�ects. Summarising the essential results of this systematic re-
search (which is well documented in a number of publications [119, 114, 115, 121, 117,
118, 120, 123, 61, 62], we can say the following: we have a pretty clear understanding of
the topological and regularising e�ects of each of these energies, with sharp regular-
ity statements and uniform a priori estimates. For example, a recti�able curve � with
�nite integral Menger curvature Mp(�) for some p > � (i.e., above the scale-invariant
case p = �) is homeomorphic to the unit-circle or unit-interval, and the arclength
parametrisation of that curve satis�es the uniform a priori estimate

|�′(s) − �′(t)| . Mp(�[s, t])�/p|s − t|�−�/p for all s, t. (2.1.13)

In other words, � 2 C�,�−(�/p), so although Mp does not capture the pointwise value
of local curvature (which may be simply unde�ned even if Mp(�) is �nite), it does
capture the average oscillation of the unit tangent vector; see [115, Theorem 1.2]. We
may interpret this result as a geometric Morrey-Sobolev embedding: the integrand cor-
responds to a very weak form of curvature integrated to some power p > �, and the
total domain of integration is three-dimensional; the classic Morrey-Sobolev theorem
applied to second derivatives (instead of curvature) would give exactly the optimal
Hölder exponent � − (�/p) for the �rst derivatives.

Likewise for higher-dimensional subsets of Rd, exempli�ed by integral Menger
curvature Mp(Σ) for two-dimensional surfaces in Euclidean �-space, as de�ned in
(2.1.8); see [120, Theorem 1.4]: if an admissible two-dimensional set Σ ⇢ R� satis-
�es Mp(Σ) < ∞ for some p > � (again above the scale-invariant case p = �), then
Σ is actually an orientable C�,�−(�/p)-submanifold with a controlled local graph rep-
resentation: There is a uniform radius R > � depending only on p and the energy
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valueMp(Σ), such that for each x 2 Σ the intersection BR(x)\ Σ equals the graph of a
C�,�−(�/p)-function with uniform estimates on this function solely depending on p and
Mp(Σ). Again, this is a geometric variant of the Morrey-Sobolev embedding theorem
with optimal Hölder exponent � − (�/p) for the oscillation of tangent planes. Similar
results hold for k-dimensional admissible sets Σk ⇢ Rd with �nite integral Menger
curvature Mp(Σ) for p > k(k + �), or �nite tangent point energy Ep(Σ) for p > �k,
both in the regime above scale-invariance; see [61, 62, 123]. A thorough discussion of
the respective admissibility class of sets can be found, e.g., in [64]. At this point, we
may roughly describe our mild requirements on the set Σk as a certain degree of local
�atness around many (but not all) points, together with an amount of connectivity to
allow for some degree-theoretic arguments.

That these regularity estimates are indeed sharp, can be seen either by explicit
examples constructed in [66, 57], or by the complete characterisation of energy spaces
for all these energies in the work of S. Blatt and Kolasiński [17, 13, 11]: based on our
results that �nite energy implies that the admissible sets are already C�-submanifolds
inRd, they use the explicit structure of the energies to estimate locally the seminorms
of fractional Sobolev spaces to �nd that Σ has �nite energy if and only if Σ is embedded
and has local graph representations of exactly that Sobolev regularity. Recall, e.g.,
from [128, Section 2.2.2], that a function u 2 Lp(Rk) belongs to the Sobolev-Slobodeckĭı
spaceWm+s,p(Rk) for somem 2 N, s 2 (�, �), and p 2 [�,∞) if u belongs to the classic
Sobolev spaceWm,p and satis�es, in addition,

kukpm+s,p := kukpWm,p(Rk) +
X

|α|=m

Z

Rk

Z

Rk

|Dαu(x) − Dαu(y)|p
|x − y|k+sp

dydx < ∞. (2.1.14)

As an example, let us mention Blatt’s and Kolasiński’s characterisation of the energy
space for integral Menger curvature as de�ned in (2.1.11); see [17, Corollary 1.2]: If
p > k(k + �) and Σk ⇢ Rd is an admissible set, then its integral Menger curvature
Mp(Σ) is �nite if and only if Σ is a submanifoldwith local graph representation of class
W�+s,p(Rk ,Rd−k), where s = �− (k(k+�)/p) 2 (�, �). Blatt and Kolasiński treated also
all intermediate energies where up to all but two integrations in (2.1.11) are replaced
bymaximisations, obtaining corresponding fractional Sobolev spaces as the exact en-
ergy spaceswith suitably adapteddi�erentiability and integrability. Themissing cases
where only one integration is left, i.e.,

Z

Σ

sup
x� ,...,xk+�2Σ

Kp(x�, x�, . . . , xk+�) dH
k(x�), (2.1.15)

generalising (2.1.3) to k-dimensional sets Σk ⇢ Rd , and the global tangent-point energy
(cf. (2.1.10)), Z

Σ

sup
y2Σ

�
Rp
tp(x, y)

dH
k(x), (2.1.16)
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were treated in cooperation with Kolasiński in [64] leading to the theorem that �-
nite energy characterises embedded submanifolds of classic Sobolev regularity W�,p

if p > k; see [64, Theorem 1.4]. This result may be compared to Allard’s famous C�,α-
regularity theorem [3, 37] for k-dimensional varifolds whose generalised mean curva-
ture is p-integrable, where, again, p > k.

Connections to geometric knot theory. The uniform estimates obtained in
[119, 114, 115] for �nite energy curves � (like the one in (2.1.13)) together with a uni-
form geometric rigidity of these curves (replacing the excluded volume constraint of
thickness) was used to connect the respective energies to geometric knot theory, as de-
scribed indetail in [116, Section4]; see also the recent surveys [122, 124]. This geometric
rigidity2.4 means, roughly speaking, that the curve may be equipped with a necklace
of consecutive double-cones whose size and opening angle are determined purely in
terms of the respective energy [116, Proposition 4.7]. The circular cross-sections of each
piece of this necklace, i.e., of each such double cone (with its two tips located on the
curve �), are intersected by � transversally and exactly in one point; see Figure 2.1.
Once this necklace is established one can fairly easily construct an ambient isotopy
from � to the inscribed polygon made of the consecutive double cones’ axes.

Thus, any one of the geometric curvature energies for curves (2.1.3)–(2.1.5), (2.1.7),
bounds the stick number, which is theminimal number of straight segments you need
to build a polygonal representative of the same knot type. Since stick number is a knot
invariant, any such energy bounds the number of knot types: given any constant E ≥ �
there is a nonnegative integer N(E) depending only on E, such that at most N(E) knot
types can be represented by curves of geometric curvature energy below the energy
threshold E.

On the other hand, the double-cone property described above also serves as a
substitute of the excluded volume constraint given by �nite ropelength. This allows
us to control the average crossing number acn(�), where you count the number of self-
intersections of every planar projection of the given curve � and then average over all
directions of projections. Indeed, Freedman et al. derived in [41, Section 3] a double
integral formula for acn(�),

acn(�) := �
�π

�Z

�

�Z

�

|(�′(s) × �′(t)) · (�(t) − �(s))|
|�(t) − �(s)|� ds dt, (2.1.17)

where × denotes the usual cross-product in R�. While the local interaction terms in
that formula may be estimated by the local smoothness properties of a �nite energy
curve �, one can follow the strategy of G. Buck and J. Simon [24] for curves of �nite
ropelength, to estimate the global interaction terms by estimating the volume of a
spatial region necessary to �t in a maximally compacti�ed curve �. Only here, one

2.4 Referred to as diamond property in [116].
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Fig. 2.1: Top: The curve � is trapped in a conical region with two tips at x, y 2 � and does not me-
ander back and forth: each cross section of the double-cones contain exactly one point of the curve.
Bottom: Necklace made of such small double cones with vertices along the curve � that have pair-
wise disjoint interiors. The polygonal curve joining the consecutive vertices of the cones is ambient
isotopic to �.

has to replace the excluded volume constraint by the double-cone condition, so that
our constants are far from being optimal; see [116, Proposition 4.13]. Since the aver-
age crossing number bounds the classic knot invariant crossing number, we thus have
established another means to control the number of knot types below given energy
thresholds.

In addition, we could show that all these energies are charge and tight, which
means that they blow up along sequences that converge to curves with self-
intersections and also along sequences where one small knotted subarc pulls tight,
i.e., vanishes in the limit. Being tight distinguishes these geometric curvature energies
from the Möbius energy (2.1.1): O’Hara showed in [83, Theorem 3.1] that the Möbius
energy does not prevent the pull-tight phenomenon. Moreover, Up and Ip could be
shown to distinguish the knot from the unknot: there is a gap between the in�mum
over unknots and the in�mumover non-trivially knotted curves. The in�maof all these
energies (in contrast, e.g., to the Möbius2.5 energy) are attained on each given knot

2.5 The Möbius energy can, however, be minimised within prescribed prime (or irreducible ) knot
classes; see [41, Theorem 4.3].
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class. Freedman et al. [41] showed that the Möbius energy EMöb is uniquely minimised
by the round circle, a knot energy with that property is called basic. A. Abrams et
al. [1] extended that uniqueness result to a larger family of energies. Also ropelength
is basic, and more generally, Up as well; see [119, Lemma 7]. A more recent mono-
tonicity formula2.6 for compact free boundary surfaces by A. Volkmann [129, Section
5] implies the same for the tangent-point energy Ep (see (2.1.7)), and hence also Ip
by the arguments in [116, Proof of Cor. 3.7]. All these results resolve some of the open
problems formulated in geometric knot theory, e.g. in [125, Section 2], or in [86, Chap-
ter 8], and give some �rst insights into the presumably complicated energy landscape
of these energies on knot space. Almost nothing is known about the actual shape of
knotted energy minimisers, apart from the explicit continuous family of ideal links
(minimising ropelength in �xed link classes) presented by J. Cantarella, R. B. Kusner,
and J. M. Sullivan in [29], and necessary criticality conditions for ropelength minimis-
ers [110, 26, 27]. Moreover, studying ideal knots in R� lead to the discovery of unique
explicit solution families of longest (thick) ropes on the two-sphere by H. Gerlach and
the second author; see [45] and the popular account in [44].

�.� Trends and open problems
Regularity. Higher regularity of local minimisers or critical points is only known in a
few cases. Freedman et al. [41] used the Möbius-invariance of the Möbius energy EMöb
de�ned in (2.1.1) to apply re�ection arguments to show that local minimisers are of
class C�,�, and they derived the Euler-Lagrange equation

δEMöb(�, h) := lim
τ!�

EMöb(� + τh) − EMöb(�)
τ (2.2.1)

= � lim
ε��

ZZ

|u−v|≥ε

✓
�′(u) · h′(u)
|�′(u)|� − (�(u) − �(v)) · (h(u) − h(v))

|�(u) − �(v)|�

◆

× |�′(v)||�′(u)|
|�(u) − �(v)|� du dv

for injective and regular curves � and perturbations h both of class C�,�. Later Zh.-
X. He [50] used this Euler-Lagrange equation to improve the regularity of local EMöb-
minimisers to C∞-smoothness; see also [98]. Quite recently, there has been consider-
able progress through the work of Blatt, P. Reiter, and A. Schikorra, who established
the following deep regularity result [22, Theorem I] in the correct fractional Sobolev
space W�/�,� corresponding – according to Blatt’s earlier work [11] – to �nite Möbius
energy:

2.6 Or alternatively, a secant map approach of Blatt reminiscent of an argument to prove the classic
Fenchel inequality; see [129, Section 5].
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Theorem 2.2.1 (EMöb-critical points are smooth). Any arclength parametrised critical
point � 2 W�/�,� of the Möbius energy is C∞-smooth.

It is remarkable that no use at all is made of the Möbius-invariance of EMöb to prove
Theorem 2.2.1 in contrast to the previous work of Freedman et al. Here, one uses the
Euler-Lagrange equation (suitably extended to the correct fractional Sobolev spaces)
to �rst gain some additional regularity, i.e., a slightly higher integrability of the tan-
gent [22, Theorem III], before a bootstrapping process can be started. One should point
out that, similarly to other geometric equations like the variational equation for the
Willmore functional, the Euler-Lagrange equation for EMöb is in a sense critical, which
requires some very intricate techniques that were developed in the context of frac-
tional harmonic mappings [34, 33, 102, 101].

Somewhat less involved is the regularity proof for othermembers of O’Hara’s fam-
ilies of repulsive potentials [82, 84, 85], namely for the energies E

α, where a power
α 2 (�, �) replaces the quadratic power in the denominators of (2.1.1). Blatt and Re-
iter established the Fréchet-di�erentiability of E

α on the space of regular curves of
�nite energy, and proved C∞-smoothness for arclength parametrised critical points
[19, Theorems 1.1 & 1.2].

To carry over this regularity program to critical points of geometric curvature ener-
gies such as the tangent-point energy (2.1.7) or integral Menger curvature (2.1.5), Blatt
and Reiter embedded those energies into larger two-parameter families of energies by
decoupling the integrability exponent p into di�erent powers for numerator and de-
nominator of the integrands. In this way they obtain, for instance, modi�ed tangent-
point energies

TP
(p,q) :=

Z

�

Z

�

�
r(p,q)(x, y)

dH
�(x)dH

�(y), (2.2.2)

by replacing the p-th power of the inverse tangent-point radius

�
rtp(x, y)

= �dist (Tx , y)
|x − y|� by the less geometric expression �

r(p,q)(x, y)
:= dist (Tx , y)q

|x − y|p .

(Here, Tx denotes the tangent-line to � through the point x 2 �.) In the parameter
regime q > � and p 2 (q + �, �q + �) the modi�ed tangent-point energies turn out
to be well-behaved knot energies that are minimisable in every knot class. The frac-
tional Sobolev regularity W (p−�)/q,q characterises �nite energy (see[20, Theorems 1.1
& 1.3]), and allows a �rst variation formula even without Cauchy principal values [20,
Theorem 1.4] in contrast to the variational equations of O’Hara’s repulsive energies.
Blatt and Reiter then identify a non-degenerate parameter range q = �, p 2 (�, �)
that permits a regularity result[20, Theorem 1.5]. Unfortunately this range excludes
the original tangent-point energy Ep = TP

�p,p (cf. (2.1.7)).

Theorem 2.2.2 (TP
(p,�)-critical points are smooth). For p 2 (�, �) any TP

(p,�)-
critical arclength parametrised injective curve of classW (p−�)/�,� is C∞-smooth.
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Asimilar result holds also for a subfamily ofmodi�ed integralMenger energies; see [21],
but apart from that non-degenerate parameter regime, in particular for (the original)
integral Menger curvature (2.1.5) and tangent point energies (2.1.7) the regularity of
critical points, even that of local minimisers remains open.

Open questions 2.2.3. Despite degeneracies in the non-local Euler-Lagrange equa-
tions, is there any chance to prove additional regularity (beyond the fractional Sobolev
regularity characterising energy spaces) for localminimisers or critical points of tangent-
point energies (2.1.7), or of integral Menger curvature (2.1.5)? Does the optimal regular-
ity depend on p, and if yes, what happens with that p-dependent regularity in the limit
p ! ∞? Does that lead to new insights into the still open optimal regularity of ideal
knots?

We know that the geometric curvature energies in higher dimensions such as inte-
gral Menger curvature (2.1.8), (2.1.11), or the tangent-point energy (2.1.10) can be min-
imised within given isotopy classes of submanifolds [117, Theorem 7.1], [120, Theorem
1.7], [65, Corollary 1], but nothing is known about higher regularity of these minimis-
ers, not to speak of a regularity statement about possible critical points. Not even a
variational equation has been derived so far in higher dimensions. In case of the non-
smooth energies (2.1.15), (2.1.16), and also for the one-dimensional prototype (2.1.3),
non-smooth analysis tools such as Clarke gradients would have to be applied to de-
rive the variational di�erential inclusion, similar to the analysis performed for the ro-
pelength functional for curves involving the non-smooth expression (2.1.2) for thick-
ness; see [109, 110, 26, 27].

Open questions 2.2.4. Whatare theEuler-Lagrange-equations for higher-dimensional
geometric curvature energies like integral Menger curvature (2.1.5) or tangent-point en-
ergies (2.1.10)? Is there any chance to prove higher regularity of local minimisers or crit-
ical points of these energies? What form do the expected variational inclusions have for
the non-smooth geometric energies (2.1.3), (2.1.15), (2.1.16)? What can be said about the
regularity of thick knotted surfaces minimising area?

Below or in the scale-invariant regime. Integral Menger curvature Mp on one-
dimensional sets E ⇢ C with integrability exponent p = � (well below the scale-
invariant exponent p = �) has played a fundamental rôle in harmonic analysis, e.g.,
in the proof of the famous Vitushkin conjecture on the removability of compact sub-
sets of the complex plane for complex analytic functions; see, for instance, X. Tolsa’s
quite recent excellent monograph [126]. Motivated by some of G. David’s methods [35]
for his �nal proof of this conjecture, J.-C. Léger [70] proved the following remarkable
recti�ability result:
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Theorem 2.2.5 (Recti�ability for sets of �nite integral Menger curvature M�). Any
Borel set E ⇢ Rn with � < H

�(E) < ∞ satisfying

M�(E) =
Z

E

Z

E

Z

E

�
R�(x, y, z) dH

�(x)dH
�(y)dH

�(z) < ∞ (2.2.3)

is �-recti�able, i.e., there exists a countable family of Lipschitz functions fi : R ! Rn

such that H
�(E \

S
i fi(R)) = �.

So, even below scale-invariance, integralMenger curvature has regularising e�ects on
sets. In our context of geometric curvature energies one is naturally lead to the ques-
tion if one can generalise Leger’s deep result to sets of higher dimensions? What are
suitable generalisations of the integrand in (2.2.3) which is de�ned on point triples
forming two-dimensional simplices. Already for our generalisations to surfaces and
submanifolds as given in (2.1.9) and (2.1.12) we had discussed several variants of in-
tegrands de�ned on general (k + �)-dimensional simplices; see, e.g., the introduction
and appendix of [120]. Recently, M. Meurer [75] presented a collection of integrands
for which Léger’s result could indeed be extended to arbitrary dimensions and co-
dimensions, including, e.g., the integrand, de�ned on (k + �)-dimensional simplices
T = (x�, x�, . . . , xk+�); see [75, Section 3.2],

KM(T) = KM(x�, . . . , xk+�) :=
H

k+�(T)
diam (T)(k+�)(k+�)/�

, (2.2.4)

which is one out of several possible generalisations of Léger’s integrand �/R(x, y, z)
in (2.2.3). Meurer could prove the following recti�ability theorem [75, Theorem 1.1].

Theorem 2.2.6 (Recti�ability in arbitrary dimensions). Any Borel set E ⇢ Rn with � <
H

k(E) < ∞ satisfying

M�(E) :=
Z

E

· · ·
Z

E| {z }
k + � integrals

K�
M(x�, . . . , xk+�) dH

k(x�) · · · dH
k(xk+�) < ∞ (2.2.5)

is k-recti�able, i.e., can be covered (up to sets ofH k-measure zero) by a countable union
of Lipschitz images of Rk.

Meurer’s class of admissible integrands includes also the discrete curvatures used by
G. Lerman and J. T. Whitehouse in [71, 72] to give a characterisation of David’s and S.
Semmes’ concept of uniform recti�ability; cf [36, Theorem 1.57]. J. Azzam and Tolsa
[7] recently established a new recti�ability criterion in terms of P. Jones’s β-numbers
[56] which are fundamentally related to integral Menger curvature as shown in [70,
75]. Interestingly, however, and somewhat surprising is the fact, that the integrands
(2.1.9) and (2.1.12) we studied in the integrability regime above scale-invariance, are
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not included in Meurer’s class of integrands; they do scale di�erently. At this point it
remains open, if one can replaceKM in (2.2.5) by the expressionK de�ned in (2.1.12).

In the de�nition of recti�ability one covers the set (up to a set of measure zero) by
Lipschitz images, and one might think about improving the regularity of the covering
images. The step from Lipschitz to C�-images is immediate by Whitney’s extension
theorem; see, e.g. [112, Section 3, Lemma 11.1], but improving that to C�,α (as in the
regime above scale-invariance) is highly non-trivial. This was recently accomplished
by Kolasiński [63] also for a large class of discrete curvatures with a certain overlap
with Meurer’s class including (2.2.4), so that, e.g., the following higher order recti�a-
bility result holds true and can be deduced from [63, Theorem 1.1].

Theorem 2.2.7 (C�,α-recti�ability). Any Borel set E ⇢ Rn with � < H
k(E) < ∞ and

a.e. positive lower density, satisfying

Mp(E) :=
Z

E

· · ·
Z

E| {z }
k + � integrals

Kp
M(x�, . . . , xk+�) dH

k(x�) · · · dH
k(xk+�) < ∞ (2.2.6)

for some p > � is k-recti�able of class C�,α for some positive Hölder exponent α = α(p),
i.e., the set E can be covered (up to sets of H

k-measure zero) by a countable union of
k-dimensional C�,α-submanifolds of Rn.

Open questions 2.2.8. Can one extend Meurer’s recti�ability result to the integrands
(2.1.9) or (2.1.12) of integral Menger curvature or to the tangent-point energies (2.1.10)
de�ned on a suitable wide class of non-smooth sets? How does Meurer’s result relate to
other recent recti�ability results like [127, 7]?

Not much is known about geometric curvature energies in the scale-invariant regime,
but simple scaling arguments reveal the fact that cone-type singularities do lead to
in�nite geometric curvature energies; see Figure 2.2. S. Scholtes could indeed demon-
strate that embedded polygons have �nite integral Menger curvature Mp if and only
if p 2 (�, �); see [103]. Recall that p = � is the scale-invariant exponent for integral
Menger curvature for curves. In addition, Scholtes established certainweak tangential
properties of arbitrary (a priori fairly wild) sets at every point if the one-dimensional
set E ⇢ Rn has �nite integral Menger curvature M�(E) [104].

So, one can indeed hope for mild regularising e�ects, like for the energy Up for
curves for p = �, where we proved in [119, Theorem 1] that �nite U�-energy implies
that the curve is embedded and in the Sobolev class W�,�. However, not every em-
beddedW�,�-curve has �nite U�-energy; see [119, Example pp. 120–121]. Finiteness of
the tangent-point energy Ep in the scale-invariant case p = � (see de�nition (2.1.7))
yields at least a topological one-dimensional manifold – possibly with boundary; see
[121, Theorem1.1]. Only for theMöbius energy (2.1.1),whoseMöbius-invariance implies
scale-invariance, one has Blatt’s [11] characterisation of the appropriate energy spaces
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Fig. 2.2: A cone has in�nite scale-invariant geometric curvature E , since scaling of a �xed portion S
of the cone leads to the same quantum of energy E (S) = E (S/2) = E (S/4) = . . .. Adding up these
in�nitely many contributions E (S/2i), i 2 N leads to a divergent series of positive real numbers as a
lower bound for the cone’s energy if (S/2i) \ (S/2j) = ; for i 6= j.

as the fractional Sobolev space W�/�,� (assuming injective arclength parametrised
curves), and already earlier Blatt andReiter used an idea of He to construct a closed bi-
Lipschitz curve with �nite Möbius energy that is not di�erentiable [18, Corollary 4.2].
But very recently, Blatt has established a nice approximation result on convolutions of
curves whose tangents have vanishing mean oscillations which in particular implies
that arclength parametrised curves of�niteMöbius energy can be approximated in the
W�/�,�-norm and in energy2.7 by smooth curves; see [14, Theorem 1.3]. At present there
are a few suggestions how to generalise theMöbius energy to higher-dimensional sub-
manifolds – we are aware of Kusner and Sullivan [67, 68] and D. Auckly and L. Sadun
[5] (see also the very recent contribution by O’Hara and G. Solanes [88], [87]) – but
no satisfactory analysis regarding regularity or variational issues has been performed
yet.

2.7 This has various consequences in geometric knot theory, for instance, it completes Scholtes’ recent
investigations on a discrete version of the Möbius energy for polygons with n edges, that can now be
shown to Γ-converge to the Möbius energy (2.1.1) as n ! ∞; see [105, Theorem 1.1] and [14, Theorem
3.8]. We do not address the very interesting questions regarding suitable discretisations and merely
refer to the work of Rawdon et al. [92, 93, 95, 78, 94, 96, 97, 106] on discretised versions of ropelength,
and to [108, 105, 107] for discretisations of a few other geometric curvature energies.
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The scale-invariant exponent for integral Menger curvature Mp(Σ) on two-
dimensional surfaces Σ ⇢ R� is p = �, and we proved a Fenchel-type theorem [120,
Theorem 1.2].

Theorem 2.2.9 (Fenchel-type theorem). There is anabsolute constant �� > � such that
M�(Σ) ≥ �� for any closed compact connected two-dimensional Lipschitz surface Σ ⇢
R�.

Due to our rather rough estimates the constant �� is far from being optimal.

Open questions 2.2.10. What is the optimal regularity of �nite energy Lipschitz curves
or submanifolds for any of the geometric curvature energies in the scale-invariant case?
How regular are submanifolds of �nite energy for a suitable generalisation of theMöbius
energy to higher dimensional objects? How much geometric curvature energy does one
really need to close a curve or a surface, in other words what are the optimal constants
in Fenchel-type theorems like Theorem 2.2.9? Is every k-dimensional manifold Mk im-
mersed in Rn automatically embedded if its image has �nite scale-invariant tangent-
point energyE�k (see (2.1.10)), or�nite scale-invariant integralMenger curvatureMk(k+�)
(see (2.1.11))?

Existence of critical points. For all geometric curvature energies above scale-
invariance one can �nd (at least one) minimising knot in a given isotopy class. This
even works for higher-dimensional geometric curvature energies such as integral
Menger curvature or tangent-point energies for submanifolds as described above. But
are there other critical points, and how can one prove their existence? One of the �rst
attempts in that direction is the work of D. Kim and Kusner [59] on the Möbius energy.
They applied R. S. Palais’ principle of symmetric criticality [89] to obtain EMöb-critical
torus knots byminimising the Möbius energy within the appropriate subclass of torus
knots enjoying particular symmetries . In addition, together with G. Stengle [59, p. 4]
they used classic residue calculus from complex analysis to calculate their energy val-
ues. Further numerical experiments lead them to conjecture that most of these EMöb-
critical torus knots are not local minimisers. For the non-smooth ropelength func-
tional Cantarella et al. [28] successfully modi�ed Palais’ symmetric criticality prin-
ciple to �nd new critical points in several symmetry classes of knots and links, e.g.
in the non-trivial (a, b)-torus knots. They used their numerical ropelength minimis-
ing algorithm ����� ������ to compute their respective values for ropelength; see
Figure 2.3.
In ongoing cooperative work with A. Gilsbach we apply Palais’ principle to O’Hara’s
repulsive energies, integral Menger curvature, and tangent-point energies to produce
symmetric critical con�gurations in every prescribed knot class. Speci�cally, in non-
trivial (a, b)-torus knot classes we even obtain two distinct symmetric critical knots
with thismethod [46], [47]. Very helpful in that context is the knowledge of the respec-
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Fig. 2.3: A 5-fold and a 2-fold symmetric ropelength-critical (2, 5)-torus knot, both with ropelength
values distinctly larger than the unsymmetric global ropelength minimiser on the right accord-
ing to the computations with ����� ������ of Cantarella et al. in [28]. (Images by courtesy of
J. Cantarella.)

tive correct energy spaces described in Section 2.1. Gilsbach also uses Γ-convergence
arguments to show that her symmetric critical points of integral Menger curvatureMp
do converge to ropelength-critical points as p ! ∞. Recently, Gilsbach has modi-
�ed T. Hermes’ numerical code [52] to actually compute the energy values of the sym-
metric critical points of integral Menger curvature. Hermes had rigorously derived the
�rst variation formula for integral Menger curvature in the suitable fractional Sobolev
space, and could prove that the round circle is a critical point. He created a numer-
ical tool to explore the presumably quite complicated energy landscape of integral
Menger curvature. His numerical experiments exhibit among other things the ability
of the Menger gradient �ow to untangle complicated unknots to the round circle after
fairly short time, aswell as varying features as p approaches in�nity. For p only slightly
above the scale-invariant exponent one �nds smoothing as the predominant feature
(while keeping the curves embedded in contrast to, e.g., the classic mean curvature
�ow on space curves), whereas for large p, say p ≥ ��, the similarity to Cantarella’s
����� ������ (corresponding to the case p = ∞) is striking [4]: both �ows try to em-
bed the curves as nicely as possible.

A second variation formula has beenderived and analysed in detail for theMöbius
energy by A. Ishizeki and T. Nagasawa [54]. They used a very interesting decompo-
sition theorem for the Möbius energy itself [53], and studied recently the Möbius-
invariance of the various parts of that decomposition [55]. Also quite recently J. Knapp-
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The gradient �ow for integral
Menger curvature �ows the ini-
tial con�guration above to the
trefoil on the top right for p =
�.�, and to the bottom trefoil on
the right as p = ��.

Fig. 2.4: Di�erent parameters p > 3 lead to di�erent �nal con�gurations for the gradient flow of
the rescaled integral Menger curvature but the knot type is preserved. (Images by courtesy of T. Her-
mes.)

mann [60] succeeded in deriving rigorously a second variation formula for integral
Menger curvature Mp on curves in the appropriate fractional Sobolev spaces.

The only approach to deal with higher-dimensional critical points for geometric
curvature energies is the ingenious paper by A. Nabutovsky [80] who combined com-
plexity theory with real algebraic geometry to prove the existence of in�nitely many
critical unknotted hyperspheres in Rn for n ≥ � for a higher-dimensional variant of
ropelength.

Open questions 2.2.11. Are there critical points for geometric curvature energies in
every prescribed knot class other than the known global minimisers? In particular, are
there critical unknots di�erent2.8 from the round circle? And if so, how many are there?
Can we relate critical points of di�erent geometric curvature energies with each other,
e.g., via Γ-convergence? What can be said about the stability of such critical points? Is
it possible to �nd critical con�gurations in higher dimensions?

2.8 Energies that allow such critical unknots would therefore not be suitable to give an alternative
proof of the Smale conjecture bymeans of a gradient �ow as, e.g., suggested by Freedman et al. in [41,
p. 41] for the Möbius energy. We do not address here the very challenging topic of gradient �ows for
geometric curvature energies and just refer to the pioneering work of Blatt on the gradient �ow for the
Möbius energy and other O’Hara energies [12, 15, 16]
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Fig. 2.5: Springy knots: �gure-eight knot, mathematician’s loop, and Chinese button knot. Wire
models manufactured by��� �����, Aptos, in 1980; photographs by B. Bollwerk, Aachen.

Further implications on geometric knot theory. The round circle minimises many
of the knowngeometric knot energies [41, Corollary 2.2],[1], [119, Lemma 7],[129, Corol-
lary 5.12], and we expect the same for integral Menger curvature due to strong numer-
ical evidence based on Hermes’ numerical experiments with his gradient �ow algo-
rithm [52, Section 4.3]. In addition, we mentioned the explicit continuous families
of ropelength-minimising links constructed by Cantarella et al. [29]. More recently,
I. Agol, F. C. Marques, and A. Nèves applied their ingenious min-max-theory for mini-
mal currents to resolve not only the famousWillmore conjecture [74] but also a conjec-
ture by Freedman et al. by proving that the stereographic projection of the standard
Hopf-link minimises the Möbius energy; see [2]. Apart from these results nothing is
known analytically about the shape of non-trivially knotted minimising curves. For
the ropelength-minimising trefoil, the so-called ideal trefoil one has presumably fairly
accurate numerical solutions [8, 30, 9, 4, 91] and some local analytic information on
the possible shape of general ideal knots [110, 26, 39, 40, 27] extracted from the com-
plicated necessary conditions.
If one combines geometric curvature energies with (higher order) local energies like
the classic bending energy Ebend(�) :=

R
� κ

� ds, one can studyminimal con�gurations
for such energies under topological constraints on the competing curves or surfaces.
This leads to the concept of elastic knots that can be obtained as limits of minimisers
�ϑ of the total energy

Eϑ(�) := Ebend(�) + ϑ
�

4[�] (2.2.7)

as ϑ ! �. Recall that4[�] denotes the thickness as de�ned in (2.1.2), so that the par-
ticular geometric curvature energy chosen in (2.2.7) is the ropelength functional if one
restricts to curves of length one. Indeed, it can be shown [43, Theorem2.2] that in every
given knot class one �nds such a limiting curve ��, which has smaller bending energy
than any knotted competitor. However, as one would expect from the simple toy mod-
els of knotted wires designed by J. C. Langer, see Figure 2.5, �� has self-intersections
unless the givenknot class is theunknot inwhich case �� is the round circle [43, Propo-
sition 3.1].
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Is there anything one can say about the actual shape of the elastic knot �� for non-
trivial knot classes? This is indeed the case for any (�, b)-torus knot as shown in [43,
Corollary 6.5]:

Theorem 2.2.12 (Elastic (�, b)-torus knots). For any odd integer |b| ≥ � the unique
elastic (�, b)-torus knot is the doubly covered circle. In particular, the elastic trefoil is
the doubly covered circle.

This result con�rms mechanical and numerical experiments (see Figure 2.6), as well
as the heuristics and Metropolis Monte Carlo simulations of R. Gallotti and O. Pierre-
Louis [42, 90], and the numerical gradient-descent results by S. Avvakumov and
A. Sossinsky [6]. However, adding twist changes the geometry of the springywire dras-
tically; see bottom right of Figure 2.6. And there is no theory yet, describing these twist
e�ects for knotted elastic wires.

ϑ = �.� ϑ = �.���

Fig. 2.6: Top: Numerically computed minimisers of the total energy Eϑ in the class of trefoils ap-
proaching the doubly covered circle as ϑ tends to zero. Bottom left: Mechanical experiments: The
springy trefoil knot is close to the doubly covered circle. Bottom right: Adding twist leads to a stable
flat trefoil con�guration close to a planar �gure-eight. (Wire models by courtesy of J. H. Maddocks,
Lausanne.)
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Open questions 2.2.13. Does the round circle minimise integral Menger curvature
(2.1.5)? Can one prove more about the actual shape of ideal knots? What is the shape of
links with more than two components minimising the Möbius energy? Can one identify
the shapes of global minimisers of other geometric curvature energies for curves? What
can be said about elastic knots for non-trivial knot classes di�erent from (�, b)-torus
knots? What is the shape of twisted elastic knots?

A higher-dimensional branch of geometric knot theory is naturally much less devel-
oped yet. The shape of possibleminimising con�gurations for higher-dimensional ge-
ometric curvature energies is wide open and seems currently out of reach. There is one
exception, however: We proved in [64, Theorem 1.5] with the isoperimetric inequal-
ity and a simple measure-theoretic argument the following uniqueness result for the
global tangent-point-energy (2.1.16):

Theorem 2.2.14 (Spheres are unique minimisers). The round sphere uniquely min-
imises the global tangent-point energy (2.1.16) among all compact embedded C�-
hypersurfaces in Rn.

Recently, we proved in [65] that many higher-dimensional geometric curvature en-
ergies including integral Menger curvature (2.1.8), (2.1.11) or tangent-point energies
(2.1.10), or their more singular variants (2.1.15), (2.1.16), are valuable knot energies.
All these energies are self-repulsive (on the scale above scale-invariance), lower-
semicontinuous on sublevel sets with respect to Hausdor�-convergence, they enjoy
nice compactness properties and can thus be minimised in given isotopy classes; see
[65, Theorem 2, Corollary 1]. They also bound the number of isotopy typeswith explicit
constants only depending on the energy level and the integrability exponent, on a di-
ameter bound, and on the dimensions [65, Theorem 1 & Remark 1.1]. In particular, one
has the following boundedness result.

Theorem 2.2.15 (Isotopy �niteness). Let E, d > � be given. Then there are at most
K = K(E, d, k, n, p) di�erent ambient isotopy types among all k-dimensional Lipschitz
submanifolds Σ ⇢ Rn with integral Menger curvature Mp(Σ) ≤ E and diam Σ ≤ d. This
constant may be estimated as

log log K ≤ c(k, n, p)
⇣
| log d| + log(E�/p + �) + �

⌘
. (2.2.8)

This result canbe compared to awhole series of�niteness theoremsof di�eomorphism
types under given bounds on classic curvatures, beginningwith thework of J. Cheeger
[31], and extended by many others, see, e.g, Cheeger’s exhaustive survey [32] and the
references therein. The notable di�erence is here that we deal with embedded sub-
manifolds of lower regularity, whose Riemannian metrics are just Hölder continuous
so that the classic notion of curvature does not make sense. The geometric curvature
energies in the regime above scale-invariance turn out to be valuable substitutes. The



Geometric curvature energies: facts, trends, and open problems � 27

only comparable result with this emphasis is the work of O. Durumeric [38] who, how-
ever, works in the context of C�,�-submanifolds with positive thickness.

Higher-dimensional variants of elastic knots have not been discussed explicitly
yet, but L. Simon’s pioneering work [113] solves the problem of minimising the Will-
more energy Z

Σ

H�(x) dH
�(x) (2.2.9)

in the class of two-dimensional embedded surfaces with prescribed genus or under
alternative constraints; see also [10, 100, 111, 69, 58, 99, 79]. But minimising the Will-
more energy or related functionals such as the Helfrich functional [51, 81] on given
isotopy classes has to the best of our knowledge not been investigated yet — with the
exception of recent work of P. Breuning, J. Hirsch, and E. Mäder-Baumdicker [23] on
Willmore minimising Klein bottles.

Open questions 2.2.16. Is it possible to identify the shape of global minimisers of
higher-dimensional geometric curvature energies? The explicit constant in Theorem
2.2.15 is far from being optimal, what is the best constant bounding the number of iso-
topy types under given energy values? For curves the energies could often be related
to knot invariants or to quantities like the average crossing number (2.1.17) controlling
knot invariants. Are there meaningful topological invariants or geometric quantities for
higher-dimensional knots that could be controlled by means of higher-dimensional geo-
metric curvature energies? Are there higher-dimensional elastic knots, for instance min-
imisers of the Willmore functional in arbitrary prescribed isotopy classes? And can one
say anything about their shapes?
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