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Abstract
We prove that any weak limit of weak solutions uk of the degenerate nonlinear elliptic
system, the so-called (perturbed) H -system

div(|∇uk |
n−2

∇uk) = H(uk)
∂uk

∂x1
∧ · · · ∧

∂uk

∂xn
+8k,

where 8k → 0 in (W 1,n)∗ as k → ∞, solves the limiting H -system

div(|∇u|
n−2

∇u) = H(u)
∂u
∂x1

∧ · · · ∧
∂u
∂xn

.

(Hence, in particular, the space of weak solutions of the latter system is closed with
respect to weak convergence in W 1,n .)

Sequences of that type arise naturally as Palais-Smale sequences for the n-
Dirichlet integral plus a volume term. Maps that are critical points of this functional
and satisfy an additional conformality condition parametrize hypersurfaces of pre-
scribed mean curvature H . This was part of our main motivation.

1. Introduction
In this note, we consider weak solutions u = (u1, . . . , un+1) ∈ W 1,n(Bn,Rn+1),
where Bn

: = {x ∈ Rn
: |x | < 1} denotes the unit n-dimensional ball, of the so-

called H -system

div(|∇u|
n−2

∇u) = H(u)
∂u
∂x1

∧ · · · ∧
∂u
∂xn

. (1.1)

Here, H : Rn+1
→ R is a C1-function that satisfies the estimate

sup
y∈Rn+1

(
|H(y)| + |∇ H(y)|

)
≤ C, (1.2)
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and ∂u
∂x1

∧ · · · ∧
∂u
∂xn

denotes the cross product of vectors ∂u
∂xi

∈ Rn+1 (i = 1, . . . , n).
A map u ∈ W 1,n(Bn,Rn+1) is a weak solution of (1.1) if and only if∫

Bn
|∇u|

n−2
∇u · ∇ψ dx = −

∫
Bn

H(u)ψ ·
∂u
∂x1

∧ · · · ∧
∂u
∂xn

dx (1.3)

for all test maps ψ ∈ C∞

0 (B
n,Rn+1).

Systems of the general form (1.1) appear in many places in differential geometry
and in the calculus of variations. For n = 2, conformal solutions of (1.1) parametrize,
away from branch points, surfaces of prescribed mean curvature. In this case, exis-
tence of so-called small solutions under sharp geometric conditions has been estab-
lished by Hildebrandt [16].

For all n ≥ 2 and for H ≡ const., weak solutions of (1.1) correspond to critical
points of the functional

I [u] =

∫
Bn

|∇u|
n dx

in the class of admissible functions

A =
{
u ∈ W 1,n(Bn,Rn+1) : u

∣∣
∂Bn = η, V (u) = c

}
,

where η : ∂Bn
→ Rn+1 is a fixed map and

V (u) :=
1

n + 1

∫
Bn

u ·
∂u
∂x1

∧ · · · ∧
∂u
∂xn

dx

denotes the volume of the cone in Rn+1 generated by the image u(Bn). For variable
H , conformal solutions of (1.1) represent hypersurfaces of prescribed mean curva-
ture, equal to n−n/2 H(u(x)) at u(x). (A map u : Bn

→ Rn+1 is called conformal if
uxi · ux j = λ(x)δi j a.e., for some real-valued function λ and all i, j .) A theory of
existence and regularity of minimizing solutions to (1.1) has been set forth by Duzaar
and Grotowski in [8].

For n = 2, it is well known that (1.1), that is, 1u = H(u)ux ∧ u y in this case,
also has unstable solutions for both constant and nonconstant H . This is true for both
Dirichlet and Plateau boundary problems. The existence of such solutions, which cor-
respond to geometrically different surfaces spanning a given contour in R3, has been
established by various authors (see, e.g., Brezis and Coron [4], Steffen [25], Struwe
[27], [28], [29], Bethuel and Rey [3] and the references therein).

For higher dimensions n ≥ 3, much less is known. Mou and Yang [21] obtain
existence of unstable solutions for sufficiently small constant H , with an estimate far
from optimal. Nothing is known for nonconstant H .

Existence of unstable solutions is usually proved via applications of the mountain
pass lemma. To proceed that way, one must be able to analyze the behaviour of weakly
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convergent Palais-Smale sequences for a corresponding variational functional. This
is a delicate task (see Bethuel’s paper [2] for example!) since the equation is highly
nonlinear, and the right-hand side is not continuous with respect to weak convergence.
A well-known phenomenon of bubbling, which appears in various related problems,
especially in the investigation of harmonic and p-harmonic maps, leads to defects of
strong convergence: typically, some part of (n-)Dirichlet energy is lost in the limit
passage, and the sequence does not have to converge strongly. Thus, one is forced to
use subtle tools coming from compensated compactness theory and harmonic analysis
(or to work with perturbed functionals, as Sacks and Uhlenbeck do in their pioneering
paper [23]).

Our main result is the following theorem. We hope that it may be applied in a
proof of existence of unstable solutions of (1.1) for nonconstant H .

THEOREM 1.1
Assume that uk ∈ W 1,n(Bn,Rn+1) are weak solutions of the system

div(|∇uk |
n−2

∇uk) = H(uk)
∂uk

∂x1
∧ · · · ∧

∂uk

∂xn
+8k, (1.4)

where 8k → 0 in (W 1,n)∗, and uk ⇀ u weakly in W 1,n(Bn,Rn+1). Then u is a weak
solution of (1.1).

This result has an immediate corollary: the limit of any weakly convergent sequence
of weak solutions of (1.1) is again a weak solution of (1.1).

THEOREM 1.2
Assume that uk ∈ W 1,n(Bn,Rn+1) are weak solutions of (1.1), k = 1, 2, . . . , and
uk ⇀ u weakly in W 1,n(Bn,Rn+1). Then u is a weak solution of (1.1).

To prove the first theorem, we employ the following strategy, inspired by the results
of Freire, Müller, and Struwe [12] on weak compactness of wave maps and harmonic
maps in dimensions 3 and 2, respectively. First, we generalize slightly a result of
Hardt, Lin, and Mou [14] (see also Courilleau [6]) on compactness of p-harmonic
maps so that it may be applied to (1.4). This yields convergence of the gradients
a.e. and allows one to pass to the limit on the left-hand side of (1.4). The next step
forms the core of the whole proof; we use the results of Coifman, Lions, Meyers, and
Semmes [5], the duality of Hardy space H 1 and bounded mean oscillation (BMO),
and a theorem of Jones and Journé [18] on weak-∗ convergence in H 1 to prove a
lemma modeled on the famous paper of Lions [20] (see his Lemma 4.3, designed to
analyze large solutions of the equation of surfaces with constant mean curvature in
R3). A direct, simple application of the Jones-Journé theorem is not possible since
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the right-hand side of (1.1) is not in the Hardy space, and the uk need not converge in
W 1,n .

This lemma (see Lemma 3.1) allows us to pass to the limit on the right-hand
side—and to obtain the desired expression, plus an additional error term that is an at
most countable linear combination of Dirac measures. Finally, it is very simple to see
that all the coefficients of that combination are in fact zero. This is because W 1,n(Rn)

is not embedded in L∞, and thus a single point has zero Capn (or B1,n) capacity.
One might also think about a different proof: the energy of all uk can concentrate

only on a finite “bad set” 6 = Bn
\ G, where the “good set” G consists of those a for

which
lim inf

k=∞

∫
B(a,r)

|∇uk |
n dx < η0 for some r > 0, (1.5)

with some sufficiently small but otherwise fixed η0 > 0. It is easy to see that G is
open and 6 is finite, and one may hope to have good uniform regularity estimates
on G. Such estimates would allow one to pass to the limit on G, and then one would
be left with finitely many singularities in 6. Alas, for n ≥ 3 one needs stronger
assumptions than just (1.2) to obtain local regularity of weak solutions. (In the general
case, regularity remains open. Duzaar and Fuchs [7] obtain regularity of bounded
weak solutions; Mou and Yang [21] obtain regularity of conformal solutions; finally,
Wang [32], using Hardy space methods originating in Hélein’s work [15], proves that
all weak solutions are of class C1,α if |∇ H | decays at infinity like |y|

−1. Using this
additional assumption and Wang’s theorem, one may in fact give another proof of
Theorem 1.2. Since the details are rather tedious and the result is less general than
Theorem 1.1, we do not pursue that point further.)

2. Analytic tools

Convergence a.e. of the gradients
Let us begin with a result that allows us to control the gradients of a sequence of weak
solutions in spaces that are slightly larger than W 1,n(Bn,Rn+1).

In the case of mappings solving linear equations 1uk = fk , with ( fk)
∞

k=1
bounded in L1, this is the so-called Murat’s lemma. The generalization to sequences
of maps with p-Laplacians bounded in L1 is due to Hardt, Lin, and Mou [14] and
independently to Courilleau [6].

THEOREM 2.1
Assume the sequence (uk)

∞

k=1 ⊂ W 1,n(Bn,Rm) to be bounded, assume

div(|∇uk |
n−2

∇uk) = fk ∈ L1(Bn,Rm),
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and assume also
sup
k∈N

‖ fk‖L1 < +∞.

Then one can select a subsequence (u jk )
∞

k=1 such that u jk ⇀ u weakly in
W 1,n(Bn,Rm) and strongly in W 1,q(Bn,Rm) for every q ∈ [1, n).

The above theorem can be easily improved.

THEOREM 2.2
Assume the sequence (uk)

∞

k=1 ⊂ W 1,n(Bn,Rm) to be bounded, assume

div(|∇uk |
n−2

∇uk) = fk +8k,

where fk ∈ L1(Bn,Rm) and 8k → 0 in (W 1,n)∗, and assume also

sup
k∈N

‖ fk‖L1 < +∞.

Then one can select a subsequence (u jk )
∞

k=1 such that u jk ⇀ u weakly in
W 1,n(Bn,Rm) and strongly in W 1,q(Bn,Rm) for every q ∈ [1, n).

The proof is exactly the same as in [14, Theorem 1]. We test the equation with the
same function ψ = ξη ◦ (uk − u), where

ξ(x) = min
{

dist(x, ∂Bn)

δ
, 1

}
, x ∈ Bn

; η(y) = min
{
δ

|y|
, 1

}
y, y ∈ Rn+1.

The crucial thing (cf. [14, inequality (3)]) is to estimate the integral∣∣∣∫
Bn
ξ |∇uk |

n−2
∇uk · ∇

(
η ◦ (uk − u)

)
dx

∣∣∣;
here, in addition to all the terms listed and estimated in [14], we have an extra term
〈8k, ξη ◦ (uk − u)〉. As the 8k tend to zero in (W 1,n)∗, and the ξη ◦ (uk − u) are
bounded in W 1,n(Bn,Rn+1), this term tends to zero as k → +∞.

Hardy spaces
Recall that a measurable function f ∈ L1(Rn) belongs to the Hardy space H 1(Rn)

if and only if
f∗ : = sup

ε>0
|ϕε ∗ f | ∈ L1(Rn).

Here, ϕε(x) := ε−nϕ(x/ε) for a fixed nonnegative function ϕ of class C∞

0 (B
n) with∫

ϕ(y) dy = 1. The definition does not depend on the choice of ϕ (see [11]).
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Equivalently, one can define H 1(Rn) as the space of those elements of L1(Rn)

for which all the Riesz transforms R j f , j = 1, 2, . . . , n, are also of class L1(Rn).
The reader is referred to [24] and [26, Chapters 3 and 4] for more details. We just
mention here that H 1(Rn) is a Banach space with the norm

‖ f ‖H 1 = ‖ f ‖L1 + ‖ f∗‖L1 .

Moreover, the condition f ∈ H 1(Rn) implies
∫

f (y) dy = 0. This is the primary
reason for diverse cancellation phenomena.

C. Fefferman [10], [11] proved that the dual of H 1(Rn) is equal to the space
of functions of bounded mean oscillation, BMO(Rn). More precisely, there exists a
constant C such that ∣∣∣ ∫

Rn
h(y)ψ(y) dy

∣∣∣ ≤ C‖h‖H 1‖ψ‖BMO (2.1)

for all h ∈ H 1(Rn) and ψ ∈ BMO(Rn). We do not need the full strength of his
result. A particular case that is stated below as Lemma 2.4 is sufficient.

In their celebrated paper [5], Coifman, Lions, Meyer, and Semmes proved, among
lots of other results, that the Jacobian determinant of a map v ∈ W 1,n(Rn,Rn) is not
just integrable (this follows trivially from Hölder inequality) but belongs to the Hardy
space. For the sake of further reference, we record here their result.

PROPOSITION 2.3
If v = (v1, . . . , vn) ∈ W 1,n(Rn,Rn), then det Dv ∈ H 1(Rn). Moreover,

‖ det Dv‖H 1(Rn) ≤ C
n∏

j=1

‖∇v j
‖Ln(Rn). (2.2)

The constant C depends only on the dimension n.

Estimate (2.2) is not explicitly stated in [5] but follows from the proof presented there.
One has to combine the pointwise estimate of (det Dv)∗ = supε(ϕε ∗ det Dv) given
in [5, Section 2] with the Hardy-Littlewood maximal theorem.

In Section 3, we find it convenient to use the language of differential forms. Thus,

dv1
∧ · · · ∧ dvn

= det Dv dx1 ∧ · · · ∧ dxn

whenever the map v is of class W 1,n(Rn,Rn), and we interpret ‖dv1
∧ · · · ∧ dvn

‖H 1

as ‖ det Dv‖H 1 . (The wedge symbol ∧ is used to denote two operations: the exterior
product of differential forms and the cross product in Rn; the context should always be
clear.) Combining Proposition 2.3 with the imbedding W 1,n

⊂ BMO (which follows
easily from Poincaré inequality), one obtains the following.
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LEMMA 2.4
Let B be a ball in Rn . Assume that the functions w, v1, v2, . . . , vn belong to W 1,n

0 (B),
and assume that w ∈ L∞(B). There exists a constant C that depends only on n such
that ∣∣∣ ∫

Rn
w dv1

∧ · · · ∧ dvn
∣∣∣ ≤ C‖∇w‖Ln(B)

n∏
j=1

‖∇v j
‖Ln(B). (2.3)

A detailed explanation can be found, for example, in [30, Section 2]. Direct proofs that
bypass the theory of Hardy spaces are also available; see, for example, [13, proof of
Lemma 3.2] or [31, Theorem 2] (both results are more general than the above lemma).

We also use the following result on weak-∗ convergence in the Hardy space.

THEOREM 2.5 (Jones, Journé)
Let (gk) ⊂ H 1(Rn) be a bounded sequence such that gk → g a.e., and let g ∈

L1(Rn). Then g ∈ H 1(Rn) and gk
∗

⇀ g in H 1(Rn); that is,

lim
k=∞

∫
Rn

gkφ dx =

∫
Rn

gφ dx (2.4)

for all φ ∈ VMO(Rn).

Recall that VMO is the space of functions having vanishing mean oscillation, that is,
the closure of C∞

0 in the BMO norm. A particular case of Theorem 2.5, ascertaining
the continuity of Jacobian determinants in the sense of distributions, is well known
and dates back at least to Reshetnyak [22].

LEMMA 2.6
Assume that (uk)

∞

k=1 ⊂ W 1,n(Bn,Rn+1), and assume that uk ⇀ u weakly in

W 1,n(Bn,Rn+1). Then ∂uk
∂x1

∧ · · · ∧
∂uk
∂xn

→
∂u
∂x1

∧ · · · ∧
∂u
∂xn

in the sense of distri-
butions; that is,

lim
k=∞

∫
Bn
ψ ·

∂uk

∂x1
∧ · · · ∧

∂uk

∂xn
dx =

∫
Bn
ψ ·

∂u
∂x1

∧ · · · ∧
∂u
∂xn

dx

for all smooth, compactly supported test maps ψ .

See also Ball [1] and Iwaniec [17] for related results.

3. Proof of the main result
In this section, we present a proof of Theorem 1.1. It employs the concentration-
compactness method of P.-L. Lions [19], [20]. A similar idea was used by Freire,
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Müller, and Struwe [12] in their simplified proof of Bethuel’s results [2] on Palais-
Smale sequences for the H -surface functional and the harmonic map functional.

Let uk ∈ W 1,n(Bn,Rn+1), k = 1, 2, . . . , be a weakly convergent sequence of
weak solutions of (1.4). Upon passing to a subsequence, we may assume that

uk → u strongly in Ln(Bn,Rn+1) and a.e.,

∇uk ⇀ ∇u weakly in Ln(Bn,Rn×(n+1)), (3.1)

for some u ∈ W 1,n; by Theorem 2.2, we may also assume that

∇uk → ∇u strongly in Lq(Bn,Rn×(n+1)) for all q < n and a.e. (3.2)

By (3.1) and (3.2),

|∇uk |
n−2

∇uk → |∇u|
n−2

∇u weakly in L1(Bn,Rn×(n+1)).

Therefore,

lim
k=∞

∫
Bn

|∇uk |
n−2

∇uk · ∇ψ dx =

∫
Bn

|∇u|
n−2

∇u · ∇ψ dx (3.3)

for all ψ ∈ C∞

0 (B
n,Rn+1), and we are left with the task of investigating the conver-

gence of right-hand sides of (1.4).
First, extend each uk to the ball B(0, 2) so that the trace uk

∣∣
∂B(0,2) = 0 for k =

1, 2, . . . , and set uk ≡ 0 off B(0, 2). With no loss of generality, one may assume that
(3.1) and (3.2) are still valid. Moreover, since the sequence uk is bounded in W 1,n , one
may invoke estimate (2.2) from Proposition 2.3 to obtain, for each i = 1, . . . , n + 1,

sup
k∈N

∥∥du1
k ∧ · · · ∧︸ ︷︷ ︸

dui
k omitted

dun+1
k

∥∥
H 1(Rn)

≤ M < +∞. (3.4)

To each uk we associate a vector-valued distribution Tuk ≡ Tk ∈ D ′(Rn,Rn+1), given
by

〈Tk, ψ〉 =

∫
Rn

H(uk)ψ ·
∂uk

∂x1
∧ · · · ∧

∂uk

∂xn
dx, ψ ∈ C∞

0 (R
n,Rn+1).

Since the coordinates of the cross products are given by the determinants of appropri-
ate minors, we write Tk = (T 1

k , . . . , T n+1
k ), where each T i

k ∈ D ′(Rn) and

〈T i
k , ϕ〉 = (−1)i−1

∫
Rn

H(uk)ϕ du1
k ∧ · · · ∧︸ ︷︷ ︸

dui
k omitted

dun+1
k for ϕ ∈ C∞

0 (R
n). (3.5)

This notation is in accordance with a rule we follow: the upper index denotes the
coordinate of a vector object, while the lower one is a sequence index.

It turns out that the following generalization of [20, Lemma 4.3] holds.
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LEMMA 3.1
Under all the above assumptions, there exists a subsequence k′

→ +∞ such that for
all i = 1, 2, . . . , n + 1,

T i
k′ → T i

+

∑
j∈J

a j iδx j i ∈ D ′(Rn),

where
(1) T ≡ Tu is associated to u by (3.5), with all indices k omitted;
(2) J is at most countable, a j i ∈ R, x j i ∈ B(0, 2), and

∑
j∈J |a j i | < +∞.

Proof
We proceed as in [20], adding the duality of Hardy space and BMO as a necessary
ingredient. We consider only i = n + 1; for other i’s, the reasoning is similar.

Step 1. Assume that u ≡ 0. Fix ϕ ∈ C∞

0 (R
n). We begin with an estimate of

∣∣〈T n+1
k , ϕn+1

〉
∣∣ =

∣∣∣ ∫
Rn

H(uk)ϕ
n+1 du1

k ∧ · · · ∧ dun
k

∣∣∣. (3.6)

(A word of caution: here and in the sequel various upper indices added to ϕ always
denote powers.) Using the telescoping sum

ϕndu1
k ∧ · · · ∧ dun

k − d(ϕu1
k) ∧ · · · ∧ d(ϕun

k ) =

n−1∑
j=0

(ω
j
k − ω

j+1
k ),

where

ω
j
k = ϕn− j d(ϕu1

k) ∧ · · · ∧ d(ϕu j
k ) ∧ du j+1

k ∧ · · · ∧ dun
k , j = 0, 1, . . . , n − 1,

we obtain∣∣∣ ∫
Rn

H(uk)ϕ
n+1 du1

k ∧ · · · ∧ dun
k −

∫
Rn

H(uk)ϕ d(ϕu1
k) ∧ · · · ∧ d(ϕun

k )
∣∣∣

≤

n−1∑
j=0

∣∣∣ ∫
Rn

H(uk)ϕ (ω
j
k − ω

j+1
k )

∣∣∣
≤

n−1∑
j=0

∣∣∣ ∫
Rn

H(uk)ϕ
n− j u j+1

k d(ϕu1
k) ∧ · · · ∧ d(ϕu j

k )

∧ dϕ ∧ du j+2
k ∧ · · · ∧ dun

k

∣∣∣. (3.7)
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We estimate each term in the last sum using Hölder inequality with n exponents equal
to n, noting first that the factors H(uk), ϕn− j , and dϕ are in L∞. Since uk is supported
in B(0, 2), an application of Minkowski and Poincaré inequalities yields( ∫

Rn
|∇(ϕul

k)|
n dx

)1/n
≤

( ∫
B(0,2)

|∇ϕ|
n
|uk |

n dx
)1/n

+

( ∫
B(0,2)

|ϕ|
n
|∇uk |

n dx
)1/n

≤ C(n)‖ϕ‖C1

( ∫
B(0,2)

|∇uk |
n dx

)1/n

for each index l = 1, . . . , n. Using this observation, one easily checks that

the right-hand side of (3.7)

≤ C(n, ϕ)‖H‖L∞

( ∫
Rn

|uk |
n dx

)1/n( ∫
Rn

|∇uk |
n dx

)1−1/n

= o(1) as k → ∞, by (3.1). (3.8)

Therefore, (3.6), (3.7), and (3.8) lead to∣∣〈T n+1
k , ϕn+1

〉
∣∣ ≤ o(1)+

∣∣∣ ∫
Rn

H(uk)ϕ d(ϕu1
k) ∧ · · · ∧ d(ϕun

k )
∣∣∣

≤ o(1)+ |H(0)|
∣∣∣ ∫

Rn
ϕ d(ϕu1

k) ∧ · · · ∧ d(ϕun
k )

∣∣∣
+

∣∣∣ ∫
Rn

(
H(uk)− H(0)

)
ϕ d(ϕu1

k) ∧ · · · ∧ d(ϕun
k )

∣∣∣.
By Reshetnyak’s lemma, the first integral tends to zero as k → ∞. The second one,
by the version of Fefferman’s duality theorem stated in Lemma 2.4, does not exceed

C Ak
(
Bk

)n
,

where

Ak =
∥∥∇

(
(H(uk)− H(0))ϕ

)∥∥
Ln(Rn)

, Bk = ‖∇(ϕuk)‖Ln(Rn) .

Since H is Lipschitz, the Minkowski inequality gives

Ak ≤
∥∥(H(uk)− H(0))∇ϕ

∥∥
Ln(Rn)

+ C
∥∥ϕ∇uk

∥∥
Ln(Rn)

≤ o(1)+ C‖ϕ∇uk‖Ln(Rn).

A similar estimate holds for Bk . Thus, we finally obtain∣∣〈T n+1
k , ϕn+1

〉
∣∣ ≤ o(1)+ C(n, H)

( ∫
Rn

|ϕ|
n
|∇uk |

n dx
)1+1/n

. (3.9)
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Note now that all T n+1
k and |∇uk |

n dx are in fact uniformly bounded (signed) Radon
measures supported in B(0, 2) ⊂ Rn . Hence, passing to a subsequence, we may as-
sume that there exist dν, dµ ∈ M (Rn) which are weak limits of, respectively, T n+1

k
and |∇uk |

n dx . Thus, upon letting k → +∞ in (3.9), we obtain∣∣∣ ∫
Rn
ϕn+1 dν

∣∣∣ ≤ C(n, H)
( ∫

Rn
|ϕ|

n dµ
)1+1/n

. (3.10)

Applying P.-L. Lions [19, Lemma 1.2], we conclude that dν =
∑

j∈J a jδx j , with J
being at most countable, and

∑
j∈J |a j | < +∞.

Step 2. Assume now that u 6≡ 0. To estimate the difference between 〈T n+1
k , ϕ〉 and

〈T n+1, ϕ〉, we apply the Jones-Journé theorem. This is possible in our setting since

du1
k ∧ · · · ∧ dun

k → du1
∧ · · · ∧ dun a.e.

in light of (3.2), the sequence of the wedge products du1
k ∧ · · · ∧ dun

k is bounded in
H 1(Rn) due to (3.4), and finally du1

∧ · · · ∧ dun
∈ L1(Rn) by Hölder inequality.

Thus, Theorem 2.5 yields

lim
k=∞

∫
Rn

H(u)ϕ du1
k ∧ · · · ∧ dun

k =

∫
Rn

H(u)ϕ du1
∧ · · · ∧ dun (3.11)

since ϕH(u) ∈ VMO(Rn) for ϕ ∈ C∞

0 , H ∈ Lip, and u ∈ W 1,n . (One checks this by
a simple application of Poincaré inequality.)

Set
〈Sk, ϕ〉 : = (−1)n

∫
Rn

H(u)ϕ du1
k ∧ · · · ∧ dun

k .

According to (3.11), we have

〈T n+1
k − T n+1, ϕ〉 = o(1)+ 〈T n+1

k − Sk, ϕ〉 as k → ∞. (3.12)

We now apply the formula

A1 A2 · · · An − B1 B2 · · · Bn = (A1 − B1)A2 A3 · · · An + B1(A2 − B2)A3 · · · An

+ · · · + B1 · · · Bn−1(An − Bn)

to write

〈T n+1
k − Sk, ϕ〉 = (−1)n

∫
Rn

(
H(uk)− H(u)

)
ϕ d(u1

k − u1) ∧ · · · ∧ d(un
k − un)

+

∑′

, (3.13)
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where ∑′

=

n−1∑
j=0

(−1)n
∫

Rn

(
H(uk)− H(u)

)
ϕ � j

with

� j : =

j∧
s=1

d(us
k − us) ∧ du j+1

∧

n∧
t= j+2

dut
k .

Each of the terms of the sum
∑

′ can be written as

±

∫
Rn

u j+1 d
(
(H(uk)− H(u))ϕ

)
∧

j∧
s=1

d(us
k − us) ∧

n∧
t= j+2

dut
k . (3.14)

Our aim now is to apply the Jones-Journé theorem to each of the terms in (3.14)
to conclude their convergence to zero. The fixed factor u j+1 is of class VMO;
this follows from Poincaré inequality. Since ϕ ∈ C∞

0 and H ∈ C1 is Lipschitz,
d(ϕH(uk)) → d(ϕH(u)) a.e. by (3.2). Thus, again by (3.2),

gk := d
(
(H(uk)− H(u))ϕ

)
∧

j∧
s=1

d(us
k − us) ∧

n∧
t= j+2

dut
k

→ g ≡ 0 a.e.

Moreover, a uniform bound

sup
k∈N

‖gk‖H 1(Rn) ≤ C0 < +∞ (3.15)

follows, via a routine computation, from estimate (2.2) in Proposition 2.3 combined
with (3.1). Indeed,

sup
k∈N

∥∥∇
(
(H(uk)− H(u))ϕ

)∥∥
Ln(Rn)

≤ ‖ϕ‖C1 sup
k∈N

(
‖∇

(
H(uk)− H(u)

)
‖Ln(Rn) + ‖H(uk)− H(u)‖Ln(Rn)

)
≤ (‖H‖L∞ + Lip H) sup

k∈N

(
‖uk‖W 1,n(Rn) + ‖u‖W 1,n(Rn)

)
< +∞,

and the bounds for supk ‖∇uk −∇u‖Ln and supk ‖∇uk‖Ln follow trivially from (3.1).
(Note carefully that we are using only weak convergence of the gradients in Ln here.)
This yields inequality (3.15).
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Hence, an application of the Jones-Journé theorem to the integrals (3.14) is justi-
fied; each of these integrals goes to zero as k → ∞. Therefore,

∑
′ in (3.13) goes to

zero and we deduce that

〈T n+1
k − Sk, ϕ〉 = 〈Vk, ϕ〉 + o(1) as k → ∞, (3.16)

where

〈Vk, ϕ〉 : = (−1)n
∫

Rn

(
H(uk)− H(u)

)
ϕ d(u1

k − u1) ∧ · · · ∧ d(un
k − un).

Reasoning precisely as in the first step of the proof of the lemma, we obtain

|〈Vk, ψ
n+1

〉| ≤ C(n, H)
( ∫

Rn
|ψ |

n
|∇(uk − u)|n

)1+1/n
+ o(1), ψ ∈ C∞

0 (R
n).

Hence, again by [19, Lemma 1.2],

Vk → dν =

∑
j∈J

a jδx j , (3.17)

with J at most countable, a j ∈ R,
∑

j∈J |a j | < +∞, and x j ∈ B(0, 2). Combining
(3.17) with (3.16) and (3.12), we complete the proof of the whole lemma.

As an immediate application, we obtain the following.

COROLLARY 3.2
If uk ∈ W 1,n(Bn,Rn+1) are weak solutions of the H -system (1.4), and uk ⇀ u weakly
in W 1,n , then

div(|∇u|
n−2

∇u) = H(u)
∂u
∂x1

∧ · · · ∧
∂u
∂xn

+

∑
j∈J

a jδx j , (3.18)

with J at most countable and

(x j ) j∈J ⊂ Bn, a j ∈ Rn+1,
∑
j∈J

|a j | < +∞.

To complete the whole proof, it remains now to remove the singularities at x j . To this
end, fix j0 ∈ J and select a sequence of test maps ϕl ∈ C∞

0 (B
n,Rn+1) such that

ϕl → 0 on Rn
\ {x j0} , 0 ≤ |ϕl | ≤ C,

∫
Bn

|∇ϕl |
n

→ 0,

and
〈a j0δx j0

, ϕl〉 = |a j0 |.
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(Such a choice of (ϕl) is possible since W 1,n(Bn) contains unbounded functions.)
Testing (3.18) with ϕl , we obtain

o(1) = o(1)+ |a j0 | +

∑
j 6= j0

〈a jδx j , ϕl〉,

and thus |a j0 | = 0, since by the dominated convergence theorem the last sum goes to
zero as l → ∞. The proof of Theorem 1.1 is complete now.

Remark. It would be interesting to know whether for n ≥ 3 a counterpart of Theo-
rem 1.1 holds for n-harmonic maps from � ⊂ Rn into arbitrary compact Riemannian
manifolds (as it does for n = 2, and for target manifolds that are round spheres or,
more generally, compact symmetric spaces).

Acknowledgment. The authors are grateful to the referees of this paper for their critical
comments, which helped to improve the clarity of the presentation.
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Krümmung und Anwendungen auf die Kapillaritätstheorie, Math. Z. 112 (1969),
205 – 213. MR 0250208

[17] T. IWANIEC, Nonlinear Differential Forms: Lectures in Jyväskylä, Report 80,
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