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Abstract. We give a new proof of regularity of biharmonic maps from four-dimensional
domains into spheres, showing first that the biharmonic map system is equivalent to a set of
bilinear identities in divergence form. The method of reverse Hölder inequalities is used next
to prove continuity of solutions and higher integrability of their second order derivatives. As
a byproduct, we also prove that a weak limit of biharmonic maps into a sphere is again bihar-
monic. The proof of regularity can be adapted to biharmonic maps on the Heisenberg group,
and to other functionals leading to fourth order elliptic equations with critical nonlinearities
in lower order derivatives.

Mathematics Subject Classification (2000): 35J60, 35H20

1. Introduction

In a recent paper [8] Chang, Wang and Yang initiate the study of biharmonic maps.
These are defined as critical points (with respect to variations in the range) of the
functional

E(u) =
∫

Bm

k+1∑
α=1

|∆uα|2 dx . (1.1)

Related functionals leading to fourth order elliptic equations with critical non-
linearities are connected with intriguing problems in four dimensional conformal
geometry; see e.g. [6] and [39] for more information.

In [8] the authors consider the model case of maps u ∈ W 2,2(Bm, Sk), where
S

k ⊂ R
k+1 is the standard unit sphere. They prove that in dimension m = 4

all biharmonic maps are smooth in the interior of B
4, and for m ≥ 5 stationary

biharmonic maps are smooth off a singular set Σu with Hm−4(Σu) = 0.
To achieve this goal, they extend a method which they used earlier in [7] to

prove Hélein’s theorem [18] on regularity of harmonic maps into spheres without
relying on Hardy space methods. In the case of biharmonic maps the argument
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becomes quite intricate; one first has to rewrite the right hand side of the Euler
equation

−∆2uα (1.2)

= uα
k+1∑
β=1

((
∆uβ

)2 + ∆
(∣∣∇uβ

∣∣2) + 2∇uβ · ∇∆uβ
)
, α = 1, . . . , k + 1,

as a linear combination of six different nonlinear terms in “divergence form”. Then,
u is decomposed into u = u0 +u1 +u2 +u3, where ∆2u0 = 0, and ∆2ui = ∇iFi

for i = 1, 2, 3 and suitably chosen Fi. Chang, Wang and Yang use a clever argument
based on singular integral estimates for the auxiliary linear equations. In dimension
m = 4 this leads to a decay estimate

(∫
Br

|u − uBr
|p∗

dx

)1/p∗

+ r

(∫
Br

|∇u|p dx

)1/p

≤ Crβ

for β ∈ (0, 1) and r < r0. The exponent p is strictly smaller than 4 (i.e. the
natural one). This gives Hölder continuity of u. Next, using estimates in Morrey–
Campanato spaces and linear regularity theory, one obtains the following.

Theorem 1.1 (Chang et al., [8]) Every biharmonic map u ∈ W 2,2(B4, Sk) is of
class C∞ in the interior of B

4.

In dimensions m ≥ 5 one has to add a monotonicity formula to control the
decay of the BMO norm of u on a large set; this leads to the aforementioned partial
regularity.

A careful inspection of the initial part of the proof in [8, pages 1115–1118]
reveals that a single identity in “diveregence form”, namely

div Eαβ = 0 in D′(Bm), (1.3)

where Eαβ = uβ∇∆uα −uα∇∆uβ −∆uα∇uβ +∆uβ∇uα, is equivalent to the
equation of biharmonic maps into spheres. This equivalence is not explicitly stated
in [8], and does not seem to be fully exploited there.

This is our starting point. We show that (1.3) is an equivalent form of the
biharmonic map equation, and this observation implies immediately that a W 2,2-
weak limit of biharmonic maps is also a biharmonic map. Next, we use (1.3) to
rewrite the biharmonic map equation as

N(uα) =
k+1∑
β=1

∇uβ · Eαβ , α = 1, 2, . . . , k + 1 . (1.4)

Here, N(uα) is a quasilinear fourth order elliptic operator. For the purposes of this
introduction it is convenient to imagine that

N(uα) = ∆2uα − div (|∇u|2∇uα) + an unimportant perturbation.

The left hand side of (1.4) has a familiar form, reminiscent of various applications
of Hardy space methods – growing out from the famous paper of Coifman, Lions,
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Meyer and Semmes [9] — to nonlinear elliptic equations: harmonic and p-harmonic
maps, surfaces of prescribed mean curvature, H-systems in higher dimensions etc.,
see e.g. Hélein’s book [20] for numerous comments and references. However, the
situation here is slightly different. For every map u ∈ W 2,2(Bm, Sk) we have
|∇u|2 = −∑

α uα∆uα ≤ |∆u|, so that ∇u ∈ L4, but it is not a priori clear
whether Eαβ ∈ L4/3 (as we do not know if D3u exists in L4/3) – and [9, Theorem
II.1, p. 2] cannot be directly applied to conclude that N(uα) indeed belongs to a
local Hardy space.

Nevertheless, we set off from (1.4) to give a new proof of Theorem 1.1. In
contrast to Chang, Wang and Yang, we work with natural exponents. The crucial
step is to show that |D2u|2 satisfies a weak reverse Hölder inequality. This leads to
Hölder continuity of solutions. Moreover, one can use the improved integrability
of |D2u|2 and |∇u|4 to show that the right hand side of (1.2) belongs locally to Lp

for some p > 1. A rather standard bootstrap argument allows then to show that u
is in fact a classical solution; smoothness follows from Schauder theory.

The main difficulty we have to overcome is the estimate of the right hand
side of (1.4). At first glance, this expression – when appropriately interpreted via
integration by parts – behaves, roughly speaking, like an L1 function comparable
to |∆u|2. A toy example of the H-surface equation ∆u = 2Hux1 ∧ ux2 , where
u ∈ W 1,2(B2, R3), shows that in an analogous situation instead of the trivial
L∞–L1 estimate∣∣∣∣

∫
B

ϕ · ux1 ∧ ux2

∣∣∣∣ ≤ sup
B

|ϕ|
∫

B

|∇u|2 dx, ϕ ∈ C∞
0 (B) (1.5)

one may (and should) use the Wente inequality∣∣∣∣
∫

B

ϕ · ux1 ∧ ux2

∣∣∣∣ ≤ C‖∇ϕ‖L2(B)

∫
B

|∇u|2 dx . (1.6)

The advantage of (1.6) comes from the fact that points in R
2 have zero capacity:

one may find a sequence (ϕj)j=1,2,... ⊂ C∞
0 such that

0 ≤ ϕj ≤ 1, supϕj ≡ 1, ‖∇ϕj‖L2 → 0, diam (suppϕj) → 0.

Now, Wente inequality follows from the duality of Hardy space and BMO combined
with the results of Coifman et al. [9] and the imbedding W 1,2(R2) ⊂ BMO (which
is a direct consequence of Poincaré inequality). However, one does not need here the
full strength of Hardy space–BMO duality. It is enough to know that the determinant
du1 ∧ du2 generates a linear functional on W 1,2

0 (B) for each ball B, and that the
norm of this functional does not exceed a constant multiple of

∫
B

|∇u|2.
We follow that track in the case of biharmonic maps. Though we cannot directly

conclude that Λ = ∇uβEαβ is in the Hardy space, it is possible to show that
locally Λ can be viewed as a functional Λ ∈ (

W 2,2
0

)∗
, with ‖Λ‖ ≤ C‖∆u‖3/2

L2 . We
achieve this in Lemma 3.1; its proof is the only place where the cancellation property
div Eαβ = 0 is absolutely necessary. The argument is fairly elementary and draws
inspiration from [30] and [17]. Whitney decomposition and careful analysis of
Riesz potentials serve as main tools.
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The rest is fairly routine. Lemma 3.1 is sufficient to obtain a reverse Hölder
inequality in a more or less standard way (and would be also sufficient to prove
continuity of solutions by Widman’s hole filling trick). Continuity and smoothness
follow by standard bootstrap methods. One also sees that the linearity of ∆2 does
not play any role in the initial stage: in the proof of continuity of solutions we could
replace N(uα) by any reasonable monotone fourth order operator. This opens
way to generalizations: (a) to p-biharmonic maps, defined as critical points of∫ |∆u|p dx in W 2,p(Bm, Sk) – these turn out to be regular in dimension m = 2p,
(b) to biharmonic maps on the Heisenberg group. Here are a couple of results in
these directions.

Theorem 1.2 If u ∈ W 2,p(Bm, Sk) is a critical point of the energy functional
Ep(u) =

∫
Bm |∆u|p dx, and 2p = m ≥ 3, then u is Hölder continuous in the

interior of B
m.

Theorem 1.3 Assume that u ∈ W 2,2
X (Ω, Sk), where Ω is an open domain in the

Heisenberg group H1, and W 2,2
X denotes the Folland–Stein Sobolev space. If u is

a critical point of the energy functional E2(u) =
∫

Ω
|∆Xu|2 dx, where ∆X is the

subelliptic Laplace operator, then u is smooth in Ω.

Theorem 1.4 Assume that u ∈ W 2,p
X (Ω, Sk), where Ω is an open domain in a

Carnot group G of homogeneous dimension Q. If u is a critical point of the energy
functional Ep(u) =

∫
Ω

|∆Xu|p dx, where ∆X is the subelliptic Laplace operator
on G, and 2p = Q, then u is Hölder continuous in Ω.

Our motivation was, partially, to contribute to the theory of subelliptic gener-
alizations of variational problems associated with nonlinear geometric elliptic sys-
tems. This has recently been an active field of research; it seems to be a widespread
belief that numerous regularity results regarding (quasi)minima of variational inte-
grals with appropriate growth conditions, and harmonic or p-harmonic maps, have
their subelliptic counterparts. To support this judgment, let us just mention here
the work of Capogna and Garofalo [5], Jost and Xu [23], C.Y. Wang [34], Xu and
Zuilly [38], and Hajĺ asz and the author [17]; the reader is referred to these papers
for a more thorough bibliography. The present paper can be seen as yet another
drop in that stream.

However, we believe that the method used here to prove Theorem 1.1 is in-
teresting in its own right. The duality estimate from Lemma 3.1 is applicable in a
situation where the duality of H1 and BMO is not a priori available as a tool. We
plan to investigate in future possible extensions of this approach to other higher
order elliptic systems with critical nonlinearities.

One can easily imagine more results resembling Theorems 1.2–1.4 above. In
fact, we conjecture that if A is an arbitrary �-th order elliptic operator with constant
coefficients acting on C∞(Rm, Rk+1), then critical points u ∈ W �,p(Bm, Sk) of
the energy

EA(u) =
∫

Bm

|Au|p dx

are regular whenever p = m/� > 1.



On biharmonic maps and their generalizations 405

The notation throughout the paper is more or less standard. Barred integrals
denote averages, i.e.

∫
A

f dx = |A|−1
∫

A
f dx, where |A| is the Lebesgue measure.

Sometimes we also use the shortcut fA =
∫

A
f dx. For various exponents p, q, s etc.

∈ (1,∞) we write p′, q′, s′ etc. to denote their Hölder conjugates; p∗ an exponent
for which p is the Sobolev conjugate, i.e. p∗ = mp/(m + p) if the dimension
is equal to m. The letter C traditionally stands for a general constant which can
change its value even in a single string of estimates.

We use upper Greek indices to denote coordinates of various mappings into
Euclidean spaces. The summation convention is not employed.

In Sect. 5.1, to render the exposition more or less self-contained, we recall
briefly a few facts concerning calculus on homogeneous groups.

Added in proof. When this work has been completed and submitted for publica-
tion, the author has learned that C.Y. Wang obtained, in a series of recent preprints
[35], [36] and [37], another new proof of Theorem 1.1 and of Proposition 2.1. More-
over, using different methods (estimates in Lorentz spaces), C. Y. Wang extended
Theorem 1.1 to arbitrary compact Riemannian target manifolds.

2. The Euler equation and weak convergence

Let us consider a map u ∈ W 2,2(Bm, Sk) which is a critical point of the functional

E(u) =
∫

Bm

k+1∑
α=1

|∆uα|2 dx

with respect to variations in the range. To derive the Euler–Lagrange equation, we
differentiate E(π ◦ (u + tϕ)) at t = 0, where ϕ ∈ C∞

0 (Bm, Rk+1) is a smooth
test map and π(y) = y/|y| denotes the nearest point projection onto S

k. This
computation yields

d

dt

∣∣∣
t=0

E(π ◦ (u + tϕ)) = 2
∫

Bm

〈
∆u, ∆

( d

dt

∣∣∣
t=0

π ◦ (u + tϕ)
)〉

dx

= 2
∫

Bm

〈
∆u, ∆

(
ϕ − 〈u, ϕ〉u)〉

dx (2.1)

= 0 ,

or equivalently

∫
Bm

∆uα∆ζ dx =
k+1∑
γ=1

∫
Bm

∆uγ∆(uγuαζ) dx

for all α = 1, . . . , k + 1 and ζ ∈ C∞
0 (Bm).

(2.2)

Note that ϕ − 〈u, ϕ〉u in (2.1) is the tangential part of ϕ. Hence, the geometric
interpretation of the Euler equation is clear: ∆2u is orthogonal to TS

k a.e.
Several integrations by parts show that for sufficiently regular maps (2.2)

takes the form (1.2); see [8, page 1115] for details. To prove that all weak solutions of
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this last system are in fact smooth, the authors of [8] rewrite the right hand side as a
linear combination of three different sorts of nonlinear terms in “divergence form”.

An inspection of the long formal computations in [8] reveals that the biharmonic
map equation is equivalent to a system of identities in divergence form. This equiv-
alence is fully analogous to the equivalence between the equation −∆u = |∇u|2u
of harmonic maps into S

k and the system

div (uα∇uβ − uβ∇uα) = 0 , α, β = 1, . . . , k + 1;

see [18], [20] for comments on the relationships of these equations to the symmetries
of S

k. One can use this form of the biharmonic map equation to suggest a different
proof of regularity, and to obtain a simple theorem on weak limits of biharmonic
maps.

To make things precise, we need some notation. For α, β = 1, . . . , k + 1 let

Eαβ : = uβ∇∆uα − uα∇∆uβ − ∆uα∇uβ + ∆uβ∇uα. (2.3)

For u ∈ W 2,2(Bm, Sk) we interpret Eαβ in the sense of distributions as follows:

〈Eαβ , ϕ〉 : =
∫

Bm

(
∆uβ

(
div (uαϕ) + ϕ∇uα

) − ∆uα
(
div (uβϕ) + ϕ∇uβ

))
dx

(2.4)
for test vector fields ϕ ∈ C∞

0 (Bm, Rm). To shorten the notation, we set

L(w, V ) : = div (wV ) + ∇w · V for w ∈ C∞
0 (Bm), V ∈ C∞

0 (Bm, Rm).
(2.5)

Note that one has simply L(w,∇ζ) = ∆(ζw) − ζ∆w; however, for reasons that
will become transparent later, we want to exclude second order derivatives of w
from the notation. We also write

Φ(v, w; V ) := ∆v L(w, V ) − ∆w L(v, V ) , (2.6)

and record the obvious growth estimate

|Φ(uα, uβ ; V )| ≤ 4|∆u|(|∇u| |V | + |div V |), u ∈ W 2,2(Bm, Sk) . (2.7)

In the new notation, (2.4) becomes simply

〈Eαβ , ϕ〉 =
∫

Bm

Φ(uβ , uα; ϕ) dx , ϕ ∈ C∞
0 (Bm, Rm) . (2.8)

Computing formally the divergence of both sides of (2.3), we obtain div Eαβ =
uβ∆2uα −uα∆2uβ = 0; the second equality holds since ∆2u is parallel to u. The
formal identity div Eαβ = 0 is interpreted as

∫
Bm

Φ(uβ , uα; ∇ζ) dx = 0 for all ζ ∈ C∞
0 (Bm). (2.9)

This is the desired equivalent form of the biharmonic map equation.
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Lemma 2.1 Let u ∈ W 2,2(Bm, Sk). The following conditions are then equiva-
lent:

(i) u is biharmonic, i.e. (2.2) holds;
(ii) identity (2.9) holds for all α, β = 1, . . . , k + 1

Remark. There is a strong analogy here with harmonic maps into spheres. Namely,
condition (2.9) can be written down also for mappings u with lower integrability
assumptions. If u ∈ W 2, 3

2 (Bm, Sk), then |∇u| ∈ L3, and formula (2.8) makes
sense. The old example u(x) = |x|−1x, proposed by Giusti and Miranda [14], and
used in the context of harmonic maps ever since Hildebrandt, Kaul and Widman
[21], gives a map of class W 2,p(Bm, Sm−1) for every p ∈ [1, m/2), and satisfies
(2.9). Indeed, an elementary computation shows that in this case

Eαβ = −2(m − 1)
|x|2

(
uβ∇uα − uα∇uβ

)
,

and

〈Eαβ ,∇ζ〉 = (m − 1)
∫

Bm

(
∂ζ

∂xα

∂

∂xβ

(|x|−2) − ∂ζ

∂xβ

∂

∂xα

(|x|−2)) dx = 0,

as D2ζ is symmetric for ζ ∈ C∞
0 (Bm).

Thus, for maps that are merely in W 2,p with some p < 2 = m/2 conditions
(i) and (ii) of the lemma are obviously not equivalent, and the system (2.9) does
not lead to regularity. (In the case of generalized harmonic maps, L. Almeida [2]
and R. Moser [26] give ε-regularity results for weak solutions u : Ω → S

k of the
counterpart of (2.9), i.e. of div (uα∇uβ − uβ∇uα) = 0.)

Proof of Lemma 2.1. (i) ⇒ (ii). Inserting ζ = uβϕ in (2.2), we obtain

∫
Bm

∆uα∆(uβϕ) dx =
k+1∑
γ=1

∫
Bm

∆uγ∆(uγuαuβϕ) dx .

The right hand side is symmetric with respect to α and β. Thus, switching the role
of α and β, and substracting two identities, we check that

0 =
∫

Bm

∆uβ∆(uαϕ) dx −
∫

Bm

∆uα∆(uβϕ) dx

=
∫

Bm

∆uβ L(uα,∇ϕ) dx −
∫

Bm

∆uα L(uβ ,∇ϕ) dx .

This is (2.9).
(ii) ⇐ (i). Fix ζ ∈ C∞

0 (Bm) and insert ϕ = ϕβ : = ζuβ in (2.9). Summing with
respect to β, and using the identities

k+1∑
β=1

(
uβ

)2
= 1,

k+1∑
β=1

uβ∇uβ = 0,

k+1∑
β=1

uβ∆uβ = −|∇u|2, (2.10)
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which hold for all maps u ∈ W 2,2(Bm, Sk), we obtain

k+1∑
β=1

div (uβ∇ϕβ) = ∆ζ,

k+1∑
β=1

∆uα∇uβ · ∇ϕβ = ζ|∇u|2∆uα = −ζ∆uα
k+1∑
β=1

uβ∆uβ .

Thus,

k+1∑
β=1

Φ(uβ , uα,∇ϕβ) =
k+1∑
β=1

(
∆uβ L(uα,∇ϕβ) − ∆uα L(uβ ,∇ϕβ)

)

= −∆uα∆ζ +
k+1∑
β=1

∆uβνβ , (2.11)

where νβ = ζuβ∆uα + L(uα,∇ϕβ) = ∆(ζuβuα). Integrating both sides of
(2.11), we obtain (2.2). ��

This lemma has an immediate consequence. It turns out that the following ana-
logue of weak compactness of harmonic maps into spheres (see [20, Theorem 2.5.1])
is true.

Proposition 2.1 If (uj)j=1,2,... ⊂ W 2,2(Bm, Sk) is a weakly convergent sequence
of biharmonic maps, then u = lim uj is also biharmonic.

Proof. Applying Rellich–Kondrashov’s theorem, and passing to a subsequence
if necessary, we may assume that (∇uj)j=1,2,... and (uj)j=1,2,... converge in the
strong topology of L2 to ∇u and u, respectively. Thus, it follows from the definition
of Φ that

0 =
∫

Bm

Φ(uβ
j , uα

j ; ∇ϕ) dx
j=∞−→

∫
Bm

Φ(uβ , uα; ∇ϕ) dx

for each ϕ ∈ C∞
0 . Hence, u satisfies condition (ii) of the last Lemma. ��

We conclude this section with one more equivalent form of the biharmonic map
equation. It shall be useful in the sequel.

As in the proof of Lemma 2.1, we obtain from (2.9)

k+1∑
β=1

∫
Bm

Φ(uβ , uα, ϕ∇uβ) dx = −
k+1∑
β=1

∫
Bm

Φ(uβ , uα, uβ∇ϕ) dx (2.12)

=
k+1∑
β=1

∫
Bm

∆uα L(uβ , uβ∇ϕ) dx −
k+1∑
β=1

∫
Bm

∆uβ L(uα, uβ∇ϕ) dx .
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Now, ∆uα
∑k+1

β=1 L(uβ , uβ∇ϕ) = ∆uα∆ϕ, whereas the second integrand

−
k+1∑
β=1

∆uβ L(uα, uβ∇ϕ)

= −
k+1∑
β=1

∆uβ (uβ∇uα · ∇ϕ) −
k+1∑
β=1

∆uβ div (uαuβ∇ϕ)

(2.10)
= |∇u|2uα∆ϕ + 2|∇u|2∇uα∇ϕ −

k+1∑
β=1

uα∆uβ∇uβ∇ϕ.

Hence, (2.12) leads to∫
B4

(
∆uα + |∇u|2uα

)
∆ϕ dx + 2

∫
B4

|∇u|2∇uα∇ϕ dx

−
k+1∑
β=1

∫
B4

uα∆uβ∇uβ∇ϕ dx =
k+1∑
β=1

∫
B4

Φ(uα, uβ ; ϕ∇uβ) dx

(2.13)

for every α = 1, 2, . . . , k + 1 and every test function ϕ ∈ C∞
0 (B4). By a density

argument, (2.13) holds for all ϕ ∈ W 2,2
0 ∩ W 1,4 ∩ L∞. Note that formally (2.13)

reads

N(uα) =
k+1∑
β=1

∇uβ · Eαβ , α = 1, 2, . . . , k + 1, (2.14)

with

N(uα) : = ∆(∆uα + |∇u|2uα) − 2div (|∇u|2∇uα)

+
k+1∑
β=1

div (uα∆uβ∇uβ),

Eαβ : = uβ∇∆uα − uα∇∆uβ − ∆uα∇uβ + ∆uβ∇uα.

(2.15)

Here N(uα) is a quasilinear elliptic operator, equal to ∆2 plus a lower order per-
turbation. Due to the identity

∑
α uα∇uα = 0 some terms cancel when the system

(2.14) is tested with ϕ ≈ uα, and one can treat N(uα) more or less in the same
way as ∆2uα − div (|∇u|2∇uα); see the next Section for details.

The right hand side has the familiar “div-curl” form. However, one cannot
directly apply [9, Theorem II.1, p. 2] to conclude from (2.14) that N(uα) belongs
to the Hardy space H1(Rm), since it is not a priori assumed that D3u ∈ L4/3.

3. Proof of Theorem 1.1

In this Section we present a proof of regularity of biharmonic maps from B
4 into

S
k. We use the biharmonic map equation in the form (2.14), and a direct approach

to regularity. To obtain continuity of solutions, and higher integrability of ∆u and
∇u, we employ the method of weak reverse Hölder inequalities. Higher regularity
follows from a classical bootstrap argument, relying on Lp theory of elliptic systems
with constant coefficients.
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3.1. Weak reverse Hölder inequalities

The derivation of a reverse Hölder inequality for biharmonic maps is also fairly
standard, up to the following lemma, which allows us to cope with the critical
nonlinearity.

Lemma 3.1 Assume that a ∈ B
4 and 2r < dist (a, ∂B

4). Let u ∈ W 2,2(B4, Sk)
be a weakly biharmonic map, and let Φ be defined by (2.5), (2.6) . Then, for every
test function ϕ ∈ W 2,2

0 (B(a, 4r/3)) and all α, β ∈ {1, 2, . . . , k + 1} we have

∣∣∣∣
∫

B2r

Φ(uβ , uα; ϕ∇uβ) dx

∣∣∣∣ ≤ C

(∫
B2r

|∆ϕ|2 dx

) 1
2
(∫

B2r

|∆u|2 dx

) 3
4

, (3.1)

where C is an absolute constant.

Remarks. (1) Observe that for ϕ ≈ u we obtain here the obvious term
∫ |∆u|2 dx

times a factor which tends to zero as r → 0. (2) The lack of homogeneity (note
the exponent 3

4 in the right side) is due to the trivial bound |u − uB | ≤ 2, which is
employed in the proof of Lemma 3.1 to simplify some computations.

A fairly elementary, self-contained proof is given in the last Section of the paper.
We shall now take this (crucial) lemma for granted, and go ahead to the next one.

Lemma 3.2 Every weakly biharmonic map u ∈ W 2,2(B4, Sk) satisfies the inequal-
ity

∫
Br

|D2u|2 dx ≤ C

(∫
B2r

|D2u|8/5 dx

)5/4

+C

(∫
B2r

|∆u|2 dx

)1/4∫
B2r

|D2u|2 dx

for all balls Br ≡ B(a, r) ⊂ B2r ≡ B(a, 2r) ⊂ B
4, where C is some absolute

constant.

Proof. We test (2.13) with ϕ ≡ ϕα : = ζ2(uα − T1u
α), where ζ is a standard

smooth cutoff function, ζ ≡ 1 on B(a, r), ζ ≡ 0 off B(a, 4r/3), |Dkζ| ≤ Cr−k

for k = 1, 2, and T1u
α denotes the averaged Taylor polynomial of uα, i.e.

T1u
α(x) =

∫
B2r

uα(y) dy +
(∫

B2r

∇uα(y) dy

)
· (x − a) .

Next, we sum the resulting equalities over α = 1, 2, . . . , k + 1.

Estimates of left hand side of (2.13) are a bit lengthy but otherwise completely
routine. The leading terms (those which contain ζ2 (∆uα)2 or ζ2|∇u|2 |∇uα|2 or
ζ2|∇u|2uα∆uα) sum to

∫
B2r

ζ2(|∆u|2 + |∇u|4) dx
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(recall that
∑

uα∆uα = −|∇u|2). Besides that, there are lots of lower order
terms. We estimate each of them in a standard manner, applying Hölder and Sobolev
inequalities, and choosing the exponents appropriately. Here are some details. First,
for p = 4 and p′ = 4/3,

∣∣∣∣
∫

B2r

(∆uα + |∇u|2uα)(uα − T1u
α)∆(ζ2) dx

∣∣∣∣
≤ Cr2

(∫
B2r

|∆u|p′
dx

)1/p′(∫
B2r

|u − T1u|p dx

)1/p

as |∇u|2 ≤ |∆u|

≤ Cr4
(∫

B2r

|∆u|4/3 dx

)3/4(∫
B2r

|D2u|4/3 dx

)3/4

as p′ = (p∗)∗ = 4
3

≤ Cr4
(∫

B2r

|D2u|4/3 dx

)3/2

.

Proceeding in a similar way, we obtain

∣∣∣∣
∫

B2r

(
|∆u| + |∇u|2

)
∇(ζ2) · ∇(uα − T1u

α) dx

∣∣∣∣
+

∣∣∣∣
∫

B2r

(
|∆u| + |∇u|2

)
|∇u| |∇(ζ2)| |uα − T1u

α| dx

∣∣∣∣
≤ Cr4

(∫
B2r

|D2u|s dx

)2/s

for s = 8
5 ,

and

∣∣∣∣
∫

B2r

|∇u|2uα(uα−T1u
α)∆(ζ2) dx

∣∣∣∣≤Cr4
(∫

B2r

|D2u|p dx

)2/p

for p = 4
3 .

Finally, for mα =
∫

B2r
∇uα dx we have

∣∣∣∣|mα|
∫

B2r

(
|∆u|+|∇u|2

)
|∇u|ζ2 dx

∣∣∣∣≤Cr4
(∫

B2r

|D2u|q dx

)2/q

for q = 3
2 .

After a quick glance at the above inequalities – choosing the largest of all exponents
appearing in the right hand sides and applying Hölder inequality – one concludes
that

k+1∑
α=1

〈N(uα), ϕα〉 ≥
∫

B2r

ζ2(|∆u|2 + |∇u|4) dx (3.2)

−Cr4
(∫

B2r

|D2u|8/5 dx

)5/4

.
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Next, one replaces the term
∫

ζ2|∆u|2 by a positive multiple of
∫

Br
|D2u|2. To

achieve this, set, for sake of brevity, vα : = uα − T1u
α and check that

∫
B2r

ζ2|∆uα|2 dx =
∫

R4
ζ2|∆vα|2 dx

≥ 1
8

∫
R4

|∆(ζvα)|2 dx −
∫

R4
(∆ζ)2(vα)2 dx −

∫
R4

|∇ζ|2|∇vα|2 dx

≥ 1
8

∫
R4

|∆(ζvα)|2 dx − Cr4
(∫

B2r

|D2uα| dx

)2

(3.3)

− Cr4
(∫

B2r

|D2uα|4/3 dx

)3/2

≥ 1
8

∫
R4

|∆(ζvα)|2 dx − Cr4
(∫

B2r

|D2uα|8/5 dx

)5/4

(we used Sobolev inequality to obtain the third line). Now, an easy Fourier transform
argument shows that for all i, j we have

∫
R4

|∆(ζvα)|2 dx ≥
∫

R4

∣∣∂2
ij(ζvα)

∣∣2 dx (3.4)

≥
∫

Br

∣∣∂2
ij(ζvα)

∣∣2 dx =
∫

Br

∣∣∂2
iju

α
∣∣2 dx .

Hence, using (3.2) and (3.3), and dropping the nonnegative term |∇u|4 in the
integrand, we obtain

k+1∑
α=1

〈N(uα), ϕα〉 ≥ λ0

∫
Br

|D2u|2 dx − Cr4
(∫

B2r

|D2u|8/5 dx

)5/4

, (3.5)

where λ0 > 0 is an absolute positive constant.

Estimates of the right hand side. We apply directly Lemma 3.1. This is the only
place where the special structure of the biharmonic map equation – and cancellation
properties resulting from it – are used. Invoking Sobolev and Hölder inequalities
to get rid of the derivatives of ζ, and splitting the different terms with the help of
Young inequality, we obtain

k+1∑
α,β=1

∣∣∣∣
∫

B2r

Φ(uα, uβ ; ϕα∇uβ) dx

∣∣∣∣

≤ C

k+1∑
α=1

(∫
B2r

|∆ϕα|2 dx

)1/2(∫
B2r

|∆u|2 dx

)3/4

≤ Cr4
(∫

B2r

|∆u|2 dx

)(∫
B2r

|∆u|2 dx

)1/4

+ Cr4
(∫

B2r

|D2u|8/5 dx

)5/4

.

Combining this inequality with (3.5) we conclude the proof. ��
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Now, by the absolute continuity of the integral, the coefficient
(∫

B2r
|∆u|2)1/4

is uniformly small for small radii. Thus, we may apply the Gehring–Giaquinta–
Modica higher integrability lemma, see [13, Chapter V, Thm. 1.2] or [3, Chapter
1.3], to conclude that |D2u|2 ∈ Ls

loc for some s > 1. Since |∇u|2 ≤ |∆u| a.e.,
we obtain |∇u| ∈ L4s

loc. Continuity of u follows from Sobolev imbedding theorem.
More precisely, u ∈ Cγ0 for γ0 = 1 − 2/s.

Remark. The above reasoning can be slightly modified. Namely, using Poincaré
inequalities instead of Sobolev inequalities in all estimates of lower order terms
– and remembering that all derivatives of the cutoff function ζ are nonzero only
on the annulus B2r \ Br – one obtains, via a standard hole-filling trick, a decay
estimate of the form∫

Br

|D2u|2 dx ≤ λ

∫
B2r

|D2u|2 dx , 0 < r < r0,

where r0 is a small number and λ < 1. This leads to “Dirichlet growth” estimates
in a scale invariant form. We hope to exploit this observation in a further study, to
obtain boundary regularity of biharmonic maps.

3.2. From Hölder continuity to smoothness

We proceed here as in the familiar proof of smoothness of harmonic maps on planar
domains (once higher integrability of the gradient is established).

First of all, some information about third order derivatives of u is necessary.
Now, combining (2.13) with the growth estimate (2.7), and performing one inte-
gration by parts, we check that

∣∣∣∣
∫

B4
∆uα∆ϕ dx

∣∣∣∣ ≤ C
(‖D2u‖3/2

L2

∥∥∇ϕ
∥∥

L4 + ‖D2u‖2
L2

∥∥ϕ
∥∥

∞
)
, (3.6)

ϕ ∈ C∞
0 (B4).

By Sobolev imbedding theorem, (3.6) implies that the distribution ∆2uα extends
to a continuous linear functional on all W 1,q with q > 4. Setting wα = ∆uα,
and invoking the representation of elements of

(
W 1,q

)∗
given e.g. in [1, Theorem

3.8, p. 48], one can use boundedness of Riesz transforms in Lq′
to check that the

gradients ∇(wα ∗ ϕε) of the smooth convolution approximation wα ∗ ϕε of wα

satisfy the Cauchy condition in Lq′
loc. Thus, ∆uα ∈ W 1,p

loc for every p = q′ < 4/3.
Combining this statement with higher integrability of ∇u and D2u we see that the
right hand side of the Euler equation (1.2), i.e.

Rα(u) : = uα
k+1∑
β=1

((
∆uβ

)2 + ∆
(∣∣∇uβ

∣∣2) + 2∇uβ · ∇∆uβ
)

is integrable with a power strictly greater than 1. Hence,

−∆2uα = Rα(u) ∈ Lp0
loc for some p0 > 1. (3.7)
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We may assume that 2k+3/(2k+3 − 1) < p0 < 2k+2/(2k+2 − 1) for some fixed
k ≥ 1. Invoking now continuity of Riesz transforms on Lp and Sobolev imbedding
theorem, we conclude that

D4u ∈ Lp0
loc, Diu ∈ Lκip0

loc (i = 1, 2, 3) if p0 < 4
3 , (3.8)

where κi : = 4/(4 − (4 − i)p0). Thus, by Hölder inequality

−∆2uα = Rα(u) ∈ Lp1
loc for p1 =

p0

2 − p0
. (3.9)

Repeating k times the reasonig which leads from (3.7) to (3.9), we obtain

−∆2uα = Rα(u) ∈ Lpk

loc for pk =
p0

2k − (2k − 1)p0
∈ ( 8

7 , 4
3

)
.

Thus, D4uα ∈ Lpk

loc, and the condition pk ∈ ( 8
7 , 4

3

)
combined with Sobolev imbed-

ding yields

D3uα ∈ Lq1
loc, D2uα ∈ Ls1

loc, Duα ∈ Lr1
loc, −∆2uα = Rα(u) ∈ Lt1

loc,

with some exponents q1 > 8/5, s1 > 8/3, r1 > 8, t1 > 4/3. In the next step we
obtain

D3uα ∈ Lq2
loc, D2uα ∈ Ls2

loc, Duα ∈ Cγ1 , Rα(u) ∈ Lt2
loc,

for q2 = 4t1/(4 − t1) > 2, s2 = 4q2/(4 − q2) > 4, γ1 = 1 − 4/s2 > 0, t2 > 2.
Another iteration yields

D3uα ∈ Lq3
loc, D2uα ∈ Cγ2 , −∆2uα = Rα(u) ∈ Lq3

loc,

where q3 = 4t2/(4 − t2) > 4, γ2 = 1 − 4/q3 > 0. Hence, u ∈ W 4,q3 , and
D3u ∈ Cγ3 with γ3 = γ2 = 1 − 4/q3 > 0.

Therefore, u ∈ C3,γ3 is a classical solution of −∆2uα = Rα(u), where the
right hand side is also Hölder continuous. Smoothness of u follows now from
Schauder theory.

4. p-biharmonic maps

The regularity proof described in Sects. 2 and 3 can be generalized to other function-
als leading to fourth order elliptic systems with critical nonlinearities in lower order
terms. What really matters is the structure of these nonlinearities; the semi-linearity
of the whole system is not that important.

In this section, we present the proof of Theorem 1.2. Consider the functional

Ep(u) =
∫

Bm

|∆u|p dx (4.1)

defined for maps u ∈ W 2,p(Bm, Sk), with m ≥ 3 and 2 < 2p ≤ m. We say that
u ∈ W 2,p(Bm, Sk) is p-biharmonic if and only if

d

dt

∣∣∣
t=0

E(π ◦ (u + tϕ)) = 0 for all ϕ ∈ C∞
0 (Bm, Rk+1), (4.2)
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where π(y) = y/|y|. A simple computation shows that this condition is equivalent
to

∫
Bm

|∆u|p−2∆uα∆ζ dx =
k+1∑
γ=1

∫
Bm

|∆u|p−2∆uγ∆(uγuαζ) dx

for α = 1, . . . , k + 1 and ζ ∈ C∞
0 (Bm).

(4.3)

Geometrically, (4.3) means that ∆(|∆u|p−2∆u) is orthogonal to TS
k a.e.

As in Sect. 2, we exhibit a set of identities “in divergence form” which are
equivalent to (4.3).

Lemma 4.1 A map u ∈ W 2,p(Bm, Sk) is p-biharmonic if and only if
∫

Bm

Φp(uβ , uα; ∇ζ) dx = 0 for all α, β and all ζ ∈ C∞
0 (Bm), (4.4)

where
Φp(uβ , uα; V ) : = |∆u|p−2 Φ(uβ , uα; V ) (4.5)

for Φ defined by (2.6), (2.5).

The proof is almost identical to the proof of Lemma 2.1; we omit the details.
Using (4.4), we rewrite the equation in a form analogous to (2.14). Inserting ζ =
uβϕ in (4.4) and summing with respect to β, we obtain

k+1∑
β=1

∫
Bm

Φp(uβ , uα, ϕ∇uβ) dx = −
k+1∑
β=1

∫
Bm

Φp(uβ , uα, uβ∇ϕ) dx (4.6)

= J1 + J2 + J3 + J4 ,

where

J1 = −
k+1∑
β=1

∫
Bm

|∆u|p−2∆uβ∇uα · uβ∇ϕ dx

=
∫

Bm

|∆u|p−2|∇u|2∇uα · ∇ϕ dx as |∇u|2 = −(u, ∆u),

J2 = −
k+1∑
β=1

∫
Bm

|∆u|p−2∆uβdiv (uαuβ∇ϕ) dx ,

J3 =
k+1∑
β=1

∫
Bm

|∆u|p−2∆uα∇uβ · uβ∇ϕ dx = 0 as u ⊥ ∇u,

J4 =
k+1∑
β=1

∫
Bm

|∆u|p−2∆uαdiv (uβuβ∇ϕ) dx

=
∫

Bm

|∆u|p−2∆uα∆ϕ dx .
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Now,

J2 = −
k+1∑
β=1

∫
Bm

|∆u|p−2uα∆uβ∇uβ∇ϕ dx

+ J1 +
∫

Bm

|∆u|p−2|∇u|2uα∆ϕ dx .

Thus, (4.6) leads to the identity∫
Bm

|∆u|p−2 (
∆uα + |∇u|2uα

)
∆ϕ dx

+
∫

Bm

|∆u|p−2
(
2|∇u|2∇uα −

k+1∑
β=1

uα∆uβ∇uβ
)

· ∇ϕ dx (4.7)

=
k+1∑
β=1

∫
Bm

Φp(uβ , uα, ϕ∇uβ) dx

for every α = 1, 2, . . . , k + 1 and every test function ϕ ∈ C∞
0 (Bm). By a density

argument, (4.7) holds for all

ϕ ∈ W 2,p
0 ∩ W 1,2p ∩ L∞ .

From now on we assume that m = 2p. Our goal now will be to derive a reverse
Hölder inequality for u. To estimate the right hand side of (4.7) we need an analogue
of Lemma 3.1.

Lemma 4.2 Assume that m = 2p, a ∈ B
m and 0 < 2r < dist (a, ∂B

m). Let
u ∈ W 2,p(Bm, Sk) be a weakly p-biharmonic map, and let Φp be defined as in
Lemma 4.1. Then, for every test function ϕ ∈ W 2,2

0 (B(a, 4r/3)) and all α, β ∈
{1, 2, . . . , k + 1} we have
∣∣∣∣
∫

B2r

Φp(uβ , uα; ϕ∇uβ) dx

∣∣∣∣ ≤ C

(∫
B2r

|∆ϕ|p dx

) 1
p
(∫

B2r

|∆u|p dx

)1− 1
2p

.

(4.8)

Remark. For smooth ϕ, using trivial growth properties of Φp, one can estimate∫
Φp(uβ , uα; ϕ∇uβ) by const · ∫ |∆u|p. Note that (4.8) is much better for ϕ ≈ u

and for small balls.
We postpone the proof of this Lemma to the last Section and pass directly to

reverse Hölder inequalities for |∆u|p.

Lemma 4.3 For m = 2p every p-biharmonic map u ∈ W 2,p(Bm, Sk) satisfies the
inequality

∫
Br

|D2u|m
2 dx ≤ C

(∫
B2r

|D2u|m
2 · m

m+1 dx

)m+1
m

+ C

(∫
B2r

|D2u|m
2 dx

) 1
m

∫
B2r

|D2u|m
2 dx .
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The constant C depends on the dimension only.

Proof. The reasoning is very similar to the proof of Lemma 3.2; thus, we omit
some of the details. One tests (4.7) with

ϕα : = ζp(uα − T1u
α),

where T1u
α stands, as before, for the averaged first order Taylor polynomial of

uα. Next, the summation with respect to α is performed. Those terms from the left
hand side which contain critical powers of u and its derivatives, i.e.

|∆u|p−2(∆uα)2, or |∆u|p−2|∇u|2|∇uα|2, or |∆u|p−2|∇u|2uα∆uα,

sum to
∫

Bm

ζp(|∆u|p + |∆u|p−2|∇u|4) dx ≥
∫

B2r

ζp|∆u|p dx.

Keeping in mind that
∑

α uα∇uα = 0, we check that the lower order terms resulting
from the left-hand side of (4.7) do not exceed a constant multiple of I1+I2+I3+I4,
where

I1 =
1
r

∫
B2r

|∆u|p−1|∇(u − T1u)| dx ,

I2 =
1
r

∫
B2r

|∆u|p−1|∇u||u − T1u| dx ,

I3 =
1
r2

∫
B2r

|∆u|p−1|u − T1u| dx ,

I4 =
∣∣∣∣
∫

B2r

∇u dx

∣∣∣∣ ·
∫

B2r

|∆u|p−1|∇u| dx .

Applying Hölder inequality and Sobolev imbedding, we obtain

I1 ≤ Crm−1
(∫

B2r

|∆u|s′(p−1) dx

)1/s′(∫
B2r

|∇u − (∇u)B2r |s dx

)1/s

≤ Crm

(∫
B2r

|∆u|s′(p−1) dx

)1/s′(∫
B2r

|D2u|s∗ dx

)1/s∗

≤ Crm

(∫
B2r

|D2u|m
2 · m

m+1 dx

)m+1
m

when s = m2/(m + 2). (4.9)
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To deal with I2, recall that |∇u| ≤ |∆u| 1
2 , and estimate

I2 ≤ Crm−1
(∫

B2r

|∆u|s′(p− 1
2 ) dx

)1/s′(∫
B2r

|u − T1u|s dx

)1/s

≤ Crm

(∫
B2r

|∆u|s′(p− 1
2 ) dx

)1/s′(∫
B2r

|∇u − (∇u)B2r
|s∗ dx

)1/s∗

≤ Crm

(∫
B2r

|∆u|s′(p− 1
2 ) dx

)1/s′(∫
B2r

|∆u|s∗/2 dx

)1/s∗

= Crm

(∫
B2r

|∆u|m
2 · m

m+1 dx

)m+1
m

when s = m2. (4.10)

The integrals I3 and I4 satisfy estimates analogous to (4.9) (to deal with I4, one
needs only Hölder inequality). We leave the details to the reader.

Next, to obtain a counterpart of (3.5) with exponent 2 replaced by m/2, one
has to use boundedness of Riesz transforms on Lm/2. The resulting estimate of
the left hand side of (4.7) is combined with Lemma 4.1; this completes the whole
argument. ��

It follows from Lemma 4.2 that |D2u|m/2 satisfies the assumptions of Theorem
1.2 in [13, Chapter V]. Thus, |D2u|m/2 is integrable with some power s > 1,
and since |∇u|m ≤ |∆u|m/2, we conclude that |∇u| is integrable with a power
larger than the dimension, m. Hence, by Sobolev imbedding theorem, u is Hölder
continuous. This completes the proof of Theorem 1.2.

5. Mappings on Carnot groups

In this section we show that the theorem of Chang, Wang and Yang can be gener-
alized to biharmonic maps on the Heisenberg group. The method of proof remains
unchanged; we follow the pattern from Sect. 3. Analogously, Theorem 1.2 has a
counterpart on general Carnot groups.

Basic definitions, notations and most important facts concerning calculus on
Carnot groups are gathered in Sect. 5.1. For more detailed discussions of these
topics we refer to Folland and Stein [12], Gromov [15], and Varopoulos, Saloff-
Coste and Coulhon [33]. The proof of Theorem 1.3 is presented in Sect. 5.2, and
the proof of Theorem 1.4 – in Sect. 5.3.

5.1. Basic concepts

The space, distance and measure. A Carnot group, or a stratified group G is a
connected and simply connected Lie group G whose Lie algebra g is stratified in
the following sense: g =

⊕s
i=1 Vi, where [V1, Vi] = Vi+1, with Vi : = {0} for

i > s. We assume that Vs �= {0}; G is then nilpotent of step s.
Every Carnot group is diffeomorphic to R

n for n :=
∑s

j=1 dim Vs. (The ex-
ponential map is a global diffeomorphism from g to G; so, fixing a basis (X�) of
g, one obtains a natural identification G ≡ R

n, G � g = exp(
∑

x�X�) �→ x =
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(x�) ∈ R
n.) However, the natural distance associated to the stratification of g is,

in general, not equivalent to any Riemannian metric on R
n.

It is clear from the definition that every basis of V1 generates the whole of g. In
what follows, we fix a basis X1, X2, . . . , Xl of V1, and extend this basis to a fixed
basis X1, . . . , Xl, . . . , Xn of the whole Lie algebra g. For every j = 1, . . . , n we
denote by dj the length of Xj as a commutator of (Xi)i≤l. Each Xj is identified
with the corresponding left invariant vector field on G. The Lebesgue measure on
R

n coincides with the bi-invariant Haar measure on G (we identify G ≡ R
n in the

way described above, using the basis (Xj)).
There is a natural distance, the so-callled Carnot-Carathéodory (or CC for

short) distance, associated with this family of vector fields. Namely, an absolutely
continuous curve γ : [0, T ] → G is called admissible if for every t ∈ [0, T ] we have

γ̇(t) =
l∑

j=1

cj(t)Xj(γ(t)), where
l∑

j=1

cj(t)2 ≤ 1.

The CC distance ρ(x, y) of two points x, y ∈ G is defined as the infimum of those
T > 0 for which there exist an admissible curve γ : [0, T ] → G joining x = γ(0)
and y = γ(T ). In other words, ρ(x, y) is the shortest possible travel time from x to
y with at most unit speed, along curves tangent to span (X1, . . . , Xl). The metric
ρ is well defined, as every two points of G can be joined by a piecewise smooth
admissible curve (this is the accessibility theorem of Chow and Rashevsky).

Throughout the rest of Sect. 5, B(x, r) always stands for a ball in the Carnot-
Carathéodory metric.

The CC metric is in general not equivalent to the Euclidean metric. However, it
turns out that for every bounded set E ⊂ G there exists a constant C > 0 such that

C−1|x − y| ≤ ρ(x, y) ≤ C|x − y|1/s, x, y ∈ G ,

where | · | denotes the Euclidean norm on R
n ≡ G.

There is a one-parameter family of dilations δr, r > 0, on G. One sets δrX =
riX for X ∈ Vi; this map extends to a linear automorphis of g, and, using the
exponential map, to an automorphism of G. The CC metric is left invariant and
commutes with the dilations δr, i.e. ρ(δrx, δry) = rρ(x, y) for x, y ∈ G.

The homogeneous dimension Q of G is defined as

Q =
s∑

j=1

jdim Vj . (5.1)

In Sobolev and Poincaré inequalities on G, this number plays a role analogous
to the Euclidean dimension in the classical case. This is due to the behaviour of
Lebesgue measure under the dilations δr: we have

|δr(E)| = rQ|E| for E ⊂ G; |B(x, r)| = CrQ for all x ∈ G, r > 0. (5.2)

Here is the simplest nontrivial example of a Carnot group.



420 P. Strzelecki

Example (Heisenberg group). In H1 = C × R = R
3, with points denoted by

(x1, x2, t), or (z, t), where z = x1 + ix2, consider the multiplication

(z1, t1)(z2, t2) =
(
z1 + z2, t1 + t2 + 2 Im(z1z̄2)

)
.

The vector fields

X1 =
∂

∂x1
+ 2x2

∂

∂t
, X2 =

∂

∂x2
− 2x1

∂

∂t
, X3 ≡ T =

∂

∂t
(5.3)

form the basis of all left-invariant vector fields. Since X1, X2, and [X1, X2] = −4T
span the tangent space R

3 at every point, the Lie algebra h = V1 ⊕ V2, where
V1 = span (X1, X2) and V2 = spanT . We have d1 = d2 = 1 and d3 = 2. The
homogeneous dimension of H1 is Q = 2 + 2 = 4 (it turns out to be the Hausdorff
dimension of H1 w.r.t. the CC metric associated to X1, X2).

In order to get a glimpse of the behaviour of ρ on H1, consider the so-called ho-
mogeneous norm ‖(z, t)‖ = (t2 + |z|4)1/4. One can show that d(x, y) := ‖x−1y‖
is a metric which is bi-Lipschiz equivalent to ρ. In particular ρ(0, x) ≈ d(0, x) =
(t2 + |z|4)1/4 if x = (z, t). Thus, the CC balls are definitely non-isotropic: they
become flatter and flatter in the t direction as the radius tends to zero.

Sobolev spaces, polynomials and Sobolev–Poincaré inequalities. We follow the
notation introduced above. Let Ω ⊂ G be a bounded open domain. A function
u : Ω → R belongs to the Folland–Stein Sobolev space W 2,p

X (Ω) if and only if
u ∈ Lp(Ω) and the distributional derivatives

Xiu, XiXju ∈ Lp(Ω) for all 1 ≤ i, j ≤ l = dimV1

(recall that X1, . . . , Xl form a basis of V1). We write Xu = (X1u, . . . , Xlu),
X2u = (XiXju)i,j=1,...,l, and set

|Xu| =
( l∑

i=1

|Xiu|2
)1/2

, |X2u| =
( ∑

1≤i,j≤l

|XiXju|2
)1/2

.

The space W 2,p
X (Ω, Sk) is defined as the set of those u = (u1, . . . , uk+1) ∈(

W 2,p
X (Ω)

)k+1
for which the pointwise constraint |u|2 = 1 is satisfied a.e.

It is known that counterparts of Poincaré inequalities and Sobolev inequalities
hold on Carnot groups; Hajĺ asz and Koskela [16] provide a very useful and readable
survey of this topic, and give rich references to earlier original works. If B ⊂ G is
a CC ball of radius r, then

(∫
B

|u − uB |p dx

)1/p

≤ Cr

(∫
B

|Xu|p∗ dx

)1/p∗

(5.4)

Here, p ∈ [ Q
Q−1 ,∞), and p∗ : = Qp/(p+Q), where Q denotes the homogeneous

dimension of G. The Poincaré inequality, see Jerison [22],
(∫

B

|u − uB |p dx

)1/p

≤ Cr

(∫
B

|Xu|p dx

)1/p

, 1 ≤ p < ∞, (5.5)
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follows from (5.4) and Hölder inequality.
To state higher order Sobolev inequalities, one needs an appropriate gener-

alization of the notion of the Taylor polynomial. Now, to define polynomials
on G, one takes the basis (ξj)j=1,...,n of g∗ which is dual to (Xj)j=1,...,n. Let
ηj : = ξj ◦ exp−1; these are global coordinates on G. A function P : G → R

is a polynomial if, by definition, P ◦ exp is a polynomial on the Lie algebra g.
Equivalently, P is a polynomial if

P (x) =
∑

J=(j1,...,jn)

cJηJ(x), ηJ : = ηj1
1 · · · ηjn

n ,

where the coefficients cJ are real and vanish for all but finitely many J ∈ N
n.

The order, or homogeneous degree, of P is equal to max{d(J) : cJ �= 0}, where
d(J) =

∑n
�=1 j�d� for J = (j1, . . . , jn), d� being the length of X� as a commutator.

The set of all polynomials on G of homogeneous degree < k is denoted by Pk.
To carry out the computations from Sect. 3 also in the subelliptic case, we need a
few properties of P2. Lu [25, Section 2] proves that for every ball B contained in
a fixed bounded domain Ω ⊂ G there exists a linear map

π
B

: W 2,1
X (Ω) → P2

such that

sup
x∈B

|π
B

u(x)| ≤ C

∫
B

|u(x)| dx ,

with a constant C independent of u and B, and moreover π
B

P = P for every
P ∈ P2. It follows from [25, Theorem 2.8] that for every 1 ≤ q ≤ ∞ we have

‖Xi(π
B

u)‖Lq(B) ≤ C‖Xiu‖Lq(B), i = 0, 1, (5.6)

with a constant independent of u and B.
Lu also proves the following result.

Theorem 5.1 (Lu, [25]) If B ⊂ G is a metric ball of radius r, then for j = 0, 1
and j < i ≤ 2 we have

(∫
B

∣∣∣Xj
(
u − π

B
u
)∣∣∣q dx

)1/q

≤ Cri−j

(∫
B

∣∣Xiu
∣∣p dx

)1/p

,

if Q
i−j > p ≥ 1, Xiu ∈ Lp(Ω), and 1

q = 1
p − (i−j)

Q . The constant C is independent
of u and B.

Let

∆X = X2
1 + . . . + X2

l
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denote the sublaplacian on G. It follows from the results of Folland [11], see also
Foland and Stein [12], that ∆X has a fundamental solution Γ : G × G → R such
that Γ is smooth away from the diagonal and

(
∆X

∫
G

Γ (·, y)ϕ(y) dy
)
(x) = ϕ(x) for all ϕ ∈ C∞

0 (G). (5.7)

Besides that, G(x, y) = XiXjΓ (x, y) is a sigular integral kernel of homogeneous
degree zero (each of the differentiations can be performed either with respect to x
or to y). This yields the following.

Theorem 5.2 If ∆Xf = g for some g ∈ Lp(G), 1 < p < ∞, then XiXjf ∈
Lp(G) for all i, j = 1, . . . , l. Moreover,

‖XiXjf‖Lp(G) ≤ C‖g‖Lp(G) . (5.8)

This is the desired boundedness of ‘Riesz transforms’ on Lp. More general results
of that type can be found e.g. in Folland [11, Theorem 6.1], and Rothschild and
Stein [28, Theorem 16].

5.2. Biharmonic maps on the Heisenberg group

For a bounded domain Ω ⊂ H1, and u ∈ W 2,2
X (Ω, Sk), we set

E2(u) =
∫

Ω

|∆Xu|2 dx .

Here,
∆X : = X1

2 + X2
2

is the sub-laplacian on H1. We say that u ∈ W 2,2
X (Ω, Sk) is a subelliptic biharmonic

map if and only if

d

ds

∣∣∣
s=0

E(π ◦ (u + sϕ)) = 0 for every ϕ ∈ C∞
0 (Ω, Rk+1). (5.9)

As before, π(y) = y/|y| denotes the nearest point projection onto S
k.

To write the Euler equation in the form resembling (2.9), set

LX(w, V ) : = X · (wV ) + Xw · V for w ∈ C∞
0 (Ω), V ∈ C∞

0 (Ω, R2);
ΦX(v, w; V ) : = ∆Xv LX(w, V ) − ∆Xw LX(v, V ) . (5.10)

We have of course LX(w, Xζ) = ∆X(ζw) − ζ∆Xw; as before we do not want to
use second order derivatives of w in the notation for LX .

Mimicking the computations from Sect. 2, one easily proves the following
lemma.

Lemma 5.1 Assume that u ∈ W 2,2
X (Ω, Sk). Then the following conditions are

equivalent:
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(i) u is a subelliptic biharmonic map;
(ii) The identity ∫

Ω

ΦX(uβ , uα; Xζ) dx = 0 (5.11)

holds for all ζ ∈ C∞
0 (Ω) and all α, β = 1, . . . , k + 1;

(iii) The identity

∫
Ω

(∆Xuα + |Xu|2uα)∆Xϕ dx + 2
∫

Ω

|Xu|2XuαXϕ dx

−
k+1∑
β=1

∫
Ω

uα∆XuβXuβXϕ dx =
k+1∑
β=1

∫
Ω

ΦX(uα, uβ ; ϕXuβ) dx

(5.12)
holds for all ϕ ∈ C∞

0 (Ω) and all α = 1, . . . , k + 1.

Since (5.11) is continuous with respect to weak convergence in W 2,2
X , we have

the following.

Proposition 5.1 If a sequence of subelliptic biharmonic maps converges weakly in
W 2,2

X (Ω, Sk), then its limit is also a subelliptic biharmonic map.

The proof is analogous to the proof of Proposition 2.2.

Sketch of proof of Theorem 1.3. The general pattern of proof is the same as in
Sect. 3. To avoid too much repetition, we briefly indicate necessary changes.

We test the equation (5.12) with ζ2(uα − T (uα)), where ζ is a cutoff function,
equal to 1 on a small metric ball B and vanishing off 2B, with standard estimates for
derivatives w.r.t. Xi, up to the second order, and T (uα) = π

2B
uα is Lu’s projection

polynomial described above.

Step 1. To estimate the right hand side, one proves a counterpart of Lemma 3.1,
going through the proof from Sect. 6 and replacing all “Euclidean ingredients” by
their subelliptic counterparts. (See the comments after the proof of Lemma 4.2.)
This yields

∣∣∣∣
∫

B

ΦX(uα, uβ ; ϕXuβ) dx

∣∣∣∣ ≤ C

(∫
2B

|X2ϕ|2 dx

)1/2(∫
2B

|X2u|2 dx

)3/4

(5.13)
for concentric Carnot-Carathédory balls B = B(a, r) ⊂ 2B = B(a, 2r) ⊂ Ω,
and test functions ϕ ∈ C∞

0 (B(a, 4r/3)).

Step 2. Using inequality (5.13), and mimicking the proof of Lemma 3.2, one proves
that |X2u| satisfies a family of weak reverse Hölder inequalities. All lower order
terms are estimated with the help of inequality (5.6) and Theorem 5.1.
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Since the homogeneous dimension of H1 is equal to4, all integrability exponents
match those from Sect. 3.1.

Step 3. A modification of standard arguments, see Zatorska-Goldstein [40] for
details, shows that a variant of Gehring–Giaquinta–Modica higher integrability
lemma (in the form applied earlier in Sect. 3.1 and in Sect. 4) holds for the CC
metric. Thus, |X2u| is locally integrable with a power greater than 2. This means
that Xu is integrable with a power greater than the homogeneous dimension. Hence,
u is Hölder continuous (see e.g. [16, Theorem 5.1, part 3] for an appropriate version
of Sobolev imbedding).

Step 4. Adapting the argument presented at the beginning of Sect. 3.2, one proves
that u has third order order derivatives XiXjXku ∈ Lp

loc for all i, j, k ∈ {1, 2}
and all p < 4/3. We write (5.9) in the form

∫
Ω

∆Xuα∆Xζ dx =
k+1∑
γ=1

∫
Ω

∆Xuγ∆X(uγuαζ) dx

for all α = 1, . . . , k + 1 and ζ ∈ C∞
0 (Ω).

(5.14)

Integrating the right hand side by parts, and using counterparts of identities (2.10),
we obtain

−∆X
2uα =

k+1∑
γ=1

Rγ,α(u), (5.15)

where

Rγ,α(u) = (∆Xuγ)∆X(uαuγ) − 2X · (
(∆Xuγ)X(uαuγ)

)
+ ∆X(|Xuγ |2uα)

belongs locally to Lp for some p > 1. The bootstrap argument from Sect. 2 can
be repeated. Once it is known that XiXjXku are Hölder continuous, smoothness
of u follows from Schauder estimates and Folland’s results [11] (alternatively,
one can rewrite (5.15) as a second order system system of 2k + 2 equations for
U = (uα, wα), where wα : = ∆Xuα, and apply the main theorem of Xu and
Zuilly [38]). ��

5.3. Other functionals

It should be clear by now that the proof of Theorem 1.4 is fully analogous to the
proof of Theorem 1.2. All necessary tools have been described in Sect. 5.1.

We only indicate the most important steps and leave all other details to an
interested reader.

Definitions. Let Ω be a bounded domain in a Carnot group G of homogeneous
dimension Q. Define

Ep(u) =
∫

Ω

(k+1∑
α=1

|∆Xu|2
)p/2

dx (5.16)
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for maps u ∈ W 2,p
X (Ω, Sk). We say that u ∈ W 2,p

X (Ω, Sk) is a subelliptic p-
biharmonic map if and only if

d

ds

∣∣∣
s=0

Ep(π ◦ (u + sϕ)) = 0 for every ϕ ∈ C∞
0 (Ω, Rk+1), (5.17)

where π(y) = y/|y|.
Recall that l = dimV1, where V1 ⊂ g is the generating subspace of g. For

vector fields V ∈ C∞
0 (Ω, Rl) we write

Φp,X(uβ , uα; V ) : = |∆Xu|p−2 ΦX(uβ , uα; V ), (5.18)

where ΦX is defined by (5.10).

Various forms of the Euler equation. It is easily proved that (5.17) is equivalent to
each of the following identities:

∫
Ω

Φp,X(uβ , uα; Xζ) dx = 0 for all ζ ∈ C∞
0 (Ω), 1 ≤ α, β ≤ k + 1; (5.19)

∫
Ω

|∆uX |p−2 (
∆Xuα + |Xu|2uα

)
∆Xϕ dx

+
∫

Ω

|∆Xu|p−2
(
2|Xu|2Xuα −

k+1∑
β=1

uα∆XuβXuβ
)

· Xϕ dx (5.20)

=
k+1∑
β=1

∫
Ω

Φp,X(uβ , uα, ϕXuβ) dx for all ϕ ∈ C∞
0 (Ω), α = 1, . . . , k + 1.

(One can safely mimick the proof of Lemma 2.1, and copy the reasoning from
Sect. 4, used to prove (4.7). Commutativity of Euclidean derivatives was not em-
ployed there.) As before, (5.19) provides the necessary cancellation condition to
estimate the critical term on the right side of (5.20).

Reverse Hölder inequalities. Hole filling. Assume that 2p = Q. One can then
replace m by Q and Euclidean derivatives by subelliptic ones in Lemma 4.1 and
Lemma 4.2; no essential changes are needed in the proofs. Thus, we obtain higher
integrability of |X2u| and |Xu|; Hölder continuity of u follows.

As remarked at the end of Sect. 3.1, it is also possible to use a variant of hole
filling and obtain a decay estimate of the form

∫
Br

|X2u|Q/2 dx ≤ Crγ , 0 < r < r0,

with some γ > 0. Hölder continuity of u, in light of the pointwise inequality
|∆Xu| ≥ |Xu|2, follows then from a well known variant of Morrey’s lemma on
Carnot groups.



426 P. Strzelecki

6. Proofs of the crucial estimates

In this section we give self-contained proofs of Lemma 3.1 and Lemma 4.2. The key
arguments depend heavily on cancellation properties analogous to those observed
by Coifman, Lions, Meyer and Semmes in [9], and widely used in PDE theory
afterwards. In fact, for a biharmonic map u ∈ W 2,2(B4, Sk) with ∇∆u ∈ L4/3

the inequality stated in Lemma 3.1 follows directly from the results of [9] and the
duality of Hardy space and BMO. However, the argument given at the beginning of
Sect. 3.2 implies only that D3u ∈ Lp for all p < 4/3, and the author does not know
how to obtain D3u ∈ L4/3 a priori, before proving reverse Hölder inequalities,
continuity of u, etc. Thus, a slightly different way is chosen, so that the existence of
third order distributional derivatives of u is not needed in the proof of Lemma 3.1.

The general strategy is as follows. We represent the smooth test function ϕ as
ϕ = Γ ∗∆ϕ, where Γ stands for the fundamental solution of the Laplace operator.
Then, applying Fubini’s theorem and writing the integral which represents Γ ∗∆ϕ as
the outer one, we use cancellation properties of the equation and Sobolev inequality
to bound the inner integral by some Riesz potential. An application of the classical
fractional integration theorem closes the argument.

Before entering into more details, we recall a standard technique, namely the
Whitney decomposition of an open set Ω ⊂ R

n. We shall need it for Ω : =
R

n \ {y}.
For x ∈ Ω set rx = |x − y|/250. Then {B(x, rx/4)}x∈Rn\{y} is a cover-

ing of Ω = R
n \ {y}. We select a maximal subfamily of pairwise disjoint balls

{B(xi, rxi
/4)}i∈I . Next, we set Bi : = B(xi, rxi) and ri : = rxi

. We also fix
η ∈ C∞

0 (B(0, 1)) with η ≡ 1 on B(0, 3
4 ).

One then easily checks the following properties.

(i)
⋃

i∈I B(xi,
3
4ri) = R

n \ {y} (this follows from maximality).
(ii)

∑
i∈I

χ
B(xi,2ri)

≤ N , where the constant N depends only on the di-
mension, i.e. no point of R

n belongs to more than N balls B(xi, 2ri).
(iii)

∑
i∈I θi ≡ 1 on R

n \ {y}, where θi ∈ C∞
0 (Bi) is given by

θi(x) : =
ηi(x)∑

j∈I ηj(x)
with ηi(x) : = η

(
(x − xi)/ri

)
.

(Note that the sum in the denominator is locally finite – in fact, for any
point x at most N terms are nonzero.)

(iv) |Dkθi| ≤ Cr−k
i for k = 1, 2.

We shall also need the following simple result.

Lemma 6.1 With the above notation, for every γ ∈ (0, n) we have

∑
i∈I

rγ
i

∫
Bi

|f(x)| dx ≤ C

∫
Rn

|f(x)| dx

|y − x|n−γ
.
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Sketch of proof. Set Ik = {i ∈ I : |xi − y| ∈ (2k, 2k+1]} and split the sum on the
left-hand side into ∑

k∈Z

∑
i∈Ik

rγ
i

∫
Bi

|f(x)| dx .

For a fixed k the set Ik has at most c = c(n) elements and all balls Bi with i ∈ Ik

are contained in the annulus Ak : = B(y, 2k+2) \ B(y, 2k−1). If x ∈ Bi, then
ri ≈ |x − y| ≈ |xi − y|. Using these observations and (i)-(iv) above, we conclude
that ∑

i∈Ik

rγ
i

∫
Bi

|f(x)| dx ≤ C

∫
Ak

|f(x)| dx

|y − x|n−γ
;

summation over k yields the result. ��

We are now ready to give the

Proof of Lemma 3.1. We may assume that the test function φ is of class C∞
0 .

Recall that

Φ(u, w; V ) = ∆uL(w, V ) − ∆wL(u, V ), (6.1)

where

L(φ, V ) = ∇φ · V + div (φV ).

Write

ϕ(x) =
∫

R4
Γ (x, y)∆ϕ(y) dy,

where Γ (x, y) = const|x − y|−2 is the fundamental solution of the Laplace oper-
ator. Differentiating under the integral sign, we obtain

L(v, ϕ∇uβ) = ϕ∇v · ∇uβ + div (ϕv∇uβ)

=
∫

R4
∆ϕ(y)

[
Γ (·, y)∇v · ∇uβ + div (vΓ (·, y)∇uβ)

]
dy

=
∫

R4
∆ϕ(y) L

(
v, Γ (·, y)∇uβ

)
dy . (6.2)

Thus, by Fubini theorem, (6.1) and (6.2) lead to

∫
B4r/3

Φ(uα, uβ ; ϕ∇uβ) dx =
∫

B4r/3

∆ϕ(y)Ψ(y) dy , (6.3)

where

Ψ(y) : =
∫

R4
Φ(uα, uβ ; ζ1Γ (·, y)∇uβ) dx ; (6.4)



428 P. Strzelecki

here, ζ1 is a cutoff function of class C∞
0 (B3r/2) with ζ1 ≡ 1 on some neighbour-

hood of B4r/3 and |Dkζ1| ≤ Cr−k for k = 1, 2. To conclude the whole proof, it
remains to show that

Ψ ∈ L2(B4r/3) , ‖Ψ‖L2(B4r/3) ≤ C

(∫
B2r

|∆u|2 dx

)3/4

. (6.5)

To establish (6.5), we fix y ∈ B4r/3 and estimate Ψ by two suitably chosen Riesz
potentials. To this end, we pick the partition of unity θi ≡ θy

i ∈ C∞
0 described

above. Write Bi to denote the ball which contains the support of θi. Now, recalling
the crucial cancellation property (2.9) of Φ, we obtain

|Ψ(y)| =
∣∣∣∣
∑
i∈I

∫
Bi

Φ(uα, uβ ; θiζ1Γ (·, y)∇uβ) dx

∣∣∣∣
=

∣∣∣∣
∑
i∈I

∫
Bi

Φ
(
uα, uβ ; (uβ − uβ

Bi
)∇[

θiζ1Γ (·, y)
])

dx

∣∣∣∣ (6.6)

=
∣∣∣∣
∑
i∈I1

∫
Bi

Φ
(
uα, uβ ; (uβ − uβ

Bi
)∇[

θiζ1Γ (·, y)
])

dx

∣∣∣∣ ,

where I1 ⊂ I denotes the set of those indices i ∈ I for which θiζ1 �≡ 0, i.e.
Bi ∩ B3r/2 is nonempty. Using triangle inequality, one checks that in this case

|xi − y| ≤ ri +
3r

2
+

4r

3
=

|xi − y|
250

+
17r

6
.

Thus diam Bi = |xi − y|/125 ≤ r/40. Therefore, Bi ⊂ B2r for all i ∈ I1.
Moreover, for k = 1, 2 and for all x ∈ Bi, i ∈ I1 we have

∣∣Dk
[
θiζ1Γ (·, y)

]∣∣ ≈ |x − y|−2−k ≈ r−2−k
i ≈ r2−k

i |Bi|−1 . (6.7)

Thus, using (2.7) to estimate Φ, and invoking the trivial bounds |u| = 1, |u−uBi | ≤
2, we obtain from (6.6)

|Ψ(y)| ≤ C
∑
i∈I1

∫
Bi

|∆u| |u − uBi | dx + C
∑
i∈I1

ri

∫
Bi

|∆u| |∇u| dx

=: S1(y) + S2(y) . (6.8)

Now, we estimate each sum by (a power of) a suitable Riesz potential, using Sobolev
inequality, the pointwise estimate |∇u|2 ≤ |∆u|, and Lemma 6.1. To deal with S1,
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we choose p = 6 (so that p′ = 6/5 and p∗ = 12/5 = 2p′) and estimate

|S1(y)| ≤ C
∑
i∈I1

(∫
Bi

|∆u|p′
dx

)1/p′(∫
Bi

|u − uBi |p dx

)1/p

≤ C
∑
i∈I1

ri

(∫
Bi

|∆u|p′
dx

)1/p′(∫
Bi

|∇u|p∗ dx

)1/p∗

≤ C
∑
i∈I1

ri

(∫
Bi

|∆u|p∗/2 dx

)3/p∗

as p′ = p∗/2 and |∇u|2 ≤ |∆u|

≤ C

(∑
i∈I1

r
p∗/3
i

∫
Bi

|∆u|p∗/2 dx

)3/p∗

as 3/p∗ > 1

≤ C

(∫
R4

|∆u(x)|6/5χ
B2r

(x)

|y − x|4−4/5 dx

)5/4

by Lemma 6.1.

Applying now the fractional integration theorem, we conclude that S
4/5
1 ∈ Lq for

1
q = 6

10 − 4
4·5 = 2

5 , i.e. S1 ∈ L2, and moreover

‖S1‖L2(B4r/3) ≤ C

(∫
B2r

|∆u|2 dx

)3/4

. (6.9)

S2 can be estimated directly by a Riesz potential of |∆u|3/2; another application
of fractional integration theorem yields

‖S2‖L2(B4r/3) ≤ C

(∫
B2r

|∆u|2 dx

)3/4

. (6.10)

Gathering (6.9) and (6.10) we infer that Ψ ∈ L2; estimate (6.5) follows. The proof
of Lemma 3.1 is complete now. ��

Note that the particular form of Φ was not really important here. We only used
the cancellation property (2.9), linearity of Φ in the last argument, and natural
growth estimates. This is precisely the reason why Lemma 4.2 holds.

Sketch of proof of Lemma 4.2. Since the reasoning is very similar to the previous
proof, we only indicate a few changes briefly. As before, using the kernel Γ (x, y) =
cm|x − y|2−m to represent ϕ, we obtain∫

B4r/3

Φp(uα, uβ ; ϕ∇uβ) dx =
∫

B4r/3

∆ϕ(y)Ψp(y) dy , (6.11)

where

Ψp(y) : =
∫

R4
Φp(uα, uβ ; ζ1Γ (·, y)∇uβ) dx

= −
∑
i∈I1

∫
Bi

Φp

(
uα, uβ ; (uβ − uβ

Bi
)∇[

θiζ1Γ (·, y)
])

dx
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(Whitney decomposition and the cancellation property (4.4) of Φp were used to
obtain the last equality). Thus,

|Ψp(y)| ≤ C(S1(y) + S2(y)) ,

where

S1(y) =
∑
i∈I1

∫
Bi

|∆u|p−1 |u − uBi
| dx , S2(y) =

∑
i∈I1

ri

∫
Bi

|∆u|p−1 |∇u| dx .

As in the estimate of S1 in the previous proof, we apply Hölder inequality with
exponents s′ = m(m − 1)/(m − 2)(m + 1), s = m(m − 1)/2 (so that s∗/2 =
(p − 1)s′), then invoke Sobolev inequality, and finally use Lemma 6.1 to obtain

|S1(y)| ≤ C
∑
i∈I1

(∫
Bi

|∆u|(p−1)s′
dx

)1/s′(∫
Bi

|u − uBi
|s dx

)1/s

≤ C
∑
i∈I1

ri

(∫
Bi

|∆u|(p−1)s′
dx

)1/s′(∫
Bi

|∇u|s∗ dx

)1/s∗

≤ C
∑
i∈I1

ri

(∫
Bi

|∆u|s∗/2 dx

)1+ 1
m

≤ C

(∫
B(a,2r)

|∆u(x)|m
2 · m−1

m+1

|y − x|m2/(m+1) dx

)1+ 1
m

.

Thus, by fractional integration theorem,

‖S1‖Lm/(m−2)(B4r/3) ≤ C‖∆u‖(m−1)/2
Lm/2(B2r). (6.12)

One more application of fractional integration theorem shows that

‖S2‖Lm/(m−2)(B4r/3) ≤ C‖∆u‖(m−1)/2
Lm/2(B2r). (6.13)

Combining (6.12) with (6.13), we infer that Ψp ∈ Lm/(m−2) and obtain the desired
estimate of the norm. Inserting this estimate in (6.11), we complete the proof of
Lemma 4.2. ��

Remark. Note that in both proofs above we use only the following tools:

• the triangle inequality for the Euclidean metric;
• the doubling property of Lebesgue measure;
• the Whitney decomposition (of the complement of a single point);
• standard growth estimates of the fundamental solution of the Laplacian;
• the Sobolev inequality on balls;
• the fractional integration theorem for Riesz potentials;
• (last but not least) the cancellation property of Φ, resp. Φp.
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We refer to Hajĺ asz and Koskela [16] for a thorough discussion of generalized Riesz
potentials and Sobolev inequalities on stratified groups and in metric spaces. The
fundamental solution Γ of ∆X satisfies, together with its derivatives with respect
to both variables x and y, the growth estimates

|Γ (x, y)| ≤ C
ρ(x, y)2

|B(x, ρ(x, y))| for n ≥ 3,

and, for n ≥ 2,

|XiΓ (x, y)| ≤ C
ρ(x, y)

|B(x, ρ(x, y))| , |XiXjΓ (x, y)| ≤ C

|B(x, ρ(x, y))| ,

where B denotes a ball in the Carnot–Carathéodory metric; see e.g. Sánchez-Calle
[29, Theorem 1], or [27]. These inequalities lead to a counterpart of (6.7), which
is needed for a proof of (5.13) (a closely related argument is given in the proof of
Lemma 3.2 in [17]).

Thus, all the computations in this Section can in fact be repeated in a subelliptic
setting. It is clear that in both proofs presented above the topological dimension of
R

m plays no role; it is the homogeneous dimension which is decisive.
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