
Math. Z.
DOI 10.1007/s00209-007-0117-4 Mathematische Zeitschrift

On rectifiable curves with Lp-bounds on global
curvature: self-avoidance, regularity, and minimizing
knots

Paweł Strzelecki · Heiko von der Mosel

Received: 14 March 2006 / Accepted: 24 October 2006
© Springer-Verlag 2007

Abstract We discuss the analytic properties of curves γ whose global curvature
function ρG[γ ]−1 is p-integrable. It turns out that the Lp-norm Up(γ ) := ‖ρG[γ ]−1‖Lp

is an appropriate model for a self-avoidance energy interpolating between “soft”
knot energies in form of singular repulsive potentials and “hard” self-obstacles, such
as a lower bound on the global radius of curvature introduced by Gonzalez and
Maddocks. We show in particular that for all p > 1 finite Up-energy is necessary and
sufficient for W2,p-regularity and embeddedness of the curve. Moreover, compactness
and lower-semicontinuity theorems lead to the existence of Up-minimizing curves in
given isotopy classes. There are obvious extensions to other variational problems
for curves and nonlinearly elastic rods, where one can introduce a bound on Up to
preclude self-intersections.

Mathematics Subject Classification (2000) 49J45 · 53A04 · 57M25 · 74K05 · 92C05 ·
92C40

1 Introduction

A central issue in the mathematical modeling of physical strands, such as rope, string or
wire, or—on a much smaller length scale—polymers and proteins, is the enforcement
of self-avoidance in order to guarantee that the geometric objects are embedded. Stan-
dard continuum models incorporating self-avoidance are usually based on pairwise
repulsive, and therefore singular, potentials, which require some sort of regularization
[17], [11], [13], [44], [28], [5], [37]. Typical examples are knot energies introduced by
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O’Hara [36] in the search of optimal knot representatives as energy minimizers within
a given knot class. The basic idea is to integrate twice an inverse power of the Eucli-
dean distance over a closed curve γ : S1 → R

3 to account for the mutual repulsion
of every pair of distinct points on the curve. Without any regularization one would
obtain the singular double integral

∫

S1

∫

S1

1
|γ (s) − γ (t)|p dsdt, p ≥ 2, (1.1)

which is infinite for any continuous curve due to the effect that γ (s) → γ (t) as
s → t. There are several ways to remove this divergence, for instance, by subtracting
some equally divergent terms, or by a multiplicative factor with a suitable decay
as s → t. This variety of possible regularizations, on the other hand, reflects the
physically undesirable lack of an intrinsic length scale on which repulsive interaction
between neighbouring points on the curve is cut off. Moreover, the mathematical
analysis of such singular integrals is quite complicated, only for O’Hara’s energy
(1.1) for p = 2 a satisfactory existence and regularity theory for minimizing knots is
developed [16], [27], see also [39]. Linear combinations of self-avoidance energies of
type (1.1) with curvature dependent elastic energies were investigated in [36], [50].
Higher-dimensional analogues of (1.1) for surfaces or general submanifolds in R

n

were suggested by Kusner and Sullivan [29], but no existence or regularity result
seems to be known.

In contrast to the approach using “soft” repulsive potentials without any inherent
length scale for the thickness of the curves, one can prescribe a “hard” steric constraint.
One may think of a tubular neighborhood of a fixed radius with the curve as its
centerline as a so-called excluded volume constraint, or various other self-obstacle
conditions, to impose a positive thickness of the curve [6], [12], [30], [34], [51], [14], [15].
In that context the global radius of curvature introduced by Gonzalez and Maddocks
[20] turned out to be both a mathematically precise and analytically tractable notion
to tackle energy minimization problems in nonlinear elasticity and knot theory for
curves and rods with a given thickness [22], [8], [19]. Instead of the Euclidean distance
as interaction function for two points as in (1.1), one considers here the circumcircle
radius R(·, ·, ·) as a function of three points on the curve. Then the thickness constraint
is given by a prescribed positive lower bound on this specific multipoint function R if
one varies among all possible triplets of distinct points along the curve.

To be more precise, let SL := R/LZ, L > 0, denote the circle with perimeter L, and
denote by � : SL → R

3 the arclength parametrization of a closed rectifiable curve
γ : S1 → R

3. Then the global radius of curvature function ρG[γ ] : SL → R is defined
as

ρG[γ ](s) := inf
σ ,τ∈SL\{s}

σ �=τ

R(�(s), �(σ), �(τ)), s ∈ SL, (1.2)

and the global radius of curvature �[γ ] of γ is given by

�[γ ] := inf
s∈SL

ρG[γ ](s). (1.3)

To impose a positive thickness θ > 0 for the curve γ one requires the inequality

�[γ ] ≥ θ . (1.4)
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The analytic properties of R, ρG, �[·], and several related multi-point functions are
well investigated [20], [21], [45], [41], [18]; (see [47], [48] for surfaces). Due to the
nonsmooth character of �[·], however, the regularity theory for (a priori nonsmooth)
maximizers of (1.3), or minimizers of other variational problems constrained by (1.4),
turned out to be quite challenging, see [42], [43], [7], [14]. Moreover, the numerical
treatment of such nonsmooth constraints with gradient methods seems rather com-
plicated, at present we are only aware of recent work by Cantarella et al. [9] on a
numerical gradient flow.

Banavar et al. [3] suggested to integrate over multi-point functions mainly to avoid
the natural singularities of the repulsive potentials, so that no regularization is requi-
red. In fact, for a smooth simple closed curve � : SL → R

3 the circumcircle radius
R(�(s), �(σ), �(τ)) tends to the classical local radius of curvature and not to zero as
σ , τ → s. Therefore, the multiple integral∫

SL

∫

SL

∫

SL

1
Rp(�(s), �(σ), �(τ))

dsdσdτ (1.5)

is finite. Numerical investigations by Banavar and co-workers using this concept lead
to considerable progress in the protein science [4], [2], [35], but there are apparently
only very few analytical contributions regarding (1.5). For p = 2 this energy functio-
nal is called the total Menger curvature, and Léger [32] could show with sophisticated
measure-theoretic tools that one-dimensional Borel sets with bounded total Menger
curvature are 1-rectifiable, i.e. these sets are essentially contained in a union of Lip-
schitz graphs; for p �= 2 see [33], and for a more general setting in metric spaces see
[25], [26]. However, we are unaware of any existence or regularity result for energy
minimizing curves for (1.5).

As a first step towards a deeper analytic understanding of (1.5) we are going to
investigate a closely related self-avoidance energy blending the concept of global ra-
dius of curvature and integration, as was already proposed by Gonzalez and Maddocks
in [20, p. 4772]. Namely, we look at the Lp-norm of 1/ρG, that is,

Up(γ ) :=
⎛
⎜⎝
∫

SL

1
ρG[γ ](s)p ds

⎞
⎟⎠

1/p

, p ≥ 1, (1.6)

whose limit p → ∞ is the global radius of curvature �[γ ]. One may view Up as an
intermediate “semi-soft” energy interpolating between the “soft” repulsive potentials
of type (1.1) and the “hard” self-obstacle condition given by (1.4). In fact we can
imagine that an upper bound on Up reflects some kind of inseparable but flexible jelly
surrounding the curve, that allows close approach of two different strands only for
the cost of larger thickness at other places. The exponent p can then be interpreted as
a parameter measuring the resistance of the jelly.

In Lemma 1 we show that any closed curve with finite Up-energy is embedded, so
Up penalizes self-intersections. Moreover, we prove in Theorem 1 that � is contai-
ned in the Sobolev space W2,p(SL, R3), i.e., has generalized second derivatives in
Lp(SL, R3), which implies for p > 1 that � has a Hölder continuous derivative. Here,
the corresponding pointwise estimate

|�′′(s)| ≤ 1
ρG[γ ](s) for a.e. s ∈ SL,
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replaces the global C1,1-estimate |�′′| ≤ 1/�[γ ] for curves with �[γ ] > 0, see [22,
Lemma 2]. For the proof of Theorem 1 we combine a geometric local oscillation
estimate for the derivative �′ (Lemma 2) with an analytical subdivision argument
in Lemma 3 inspired by the clever methods developed by Hajłasz for his metric
characterization of Sobolev spaces [23], [24]. Conversely, one may ask which closed
curves γ have finite Up-energy. It turns out that for p > 1 every simple curve γ

with a W2,p-regular arclength parametrization has in fact finite energy Up(γ ). Hence
Up characterizes simple W2,p-regular loops, just as positive thickness �[·] did in the
C1,1-setting (see [41, Theorem 1 (iii)]). The proof of Theorem 2 rests on the Hardy–
Littlewood maximal theorem, since there is an intricate relation between 1/ρG[γ ] and
the maximal function of |�′′|. The assumption p > 1 in Theorem 2 is essential: for
p = 1 we provide an example of a simple curve � ∈ W2,1 with infinite U1 energy.

A general energy estimate for Up from below (Lemma 7) shows that circles uniquely
minimize Up among all closed curves of fixed length. A corresponding uniqueness
result for O’Hara’s energy (1.1) was proven by Abrams et al. in [1]. Lemma 7 also
serves as a starting point for our discussion on sequences of closed curves with finite
Up-energy. We present two compactness and lower-semicontinuity results, Theorem 3
for curves with fixed length, and Theorem 4 for curves with a uniform bound on their
lengths. As a variational application we prove the existence of Up-minimizing knots
in a given isotopy class (Theorem 5). Clearly, our results on sequences with uniformly
bounded energy, Theorems 3 and 4, are strong enough to prove various other existence
theorems for curves or nonlinearly elastic rods, where a uniform upper bound on Up
as a side constraint ensures that the competing objects are embedded. In fact, the
general existence theory for nonlinearly elastic rods with positive thickness of [22]
carries over if one replaces inequality (1.4) there by

Up(γ ) ≤ c. (1.7)

This Lp-bound imposed on the global curvature is less restrictive than the L∞-bound
(1.4). In fact, for p > 1 one can construct W2,p regular loops—i.e., closed curves
with finite Up-energy according to Theorem 2—with unbounded global curvature. In
Lemma A.1 of the Appendix we show that the arclength parametrization of the graph
of any W2,p-function is again of class W2,p. Extending such a graph by suitable straight
segments and circular arcs yields a closed W2,p-regular loop to which Theorem 2
applies.1

We should point out that—in contrast to (1.3)—in order to evaluate Up(γ ) nume-
rically only a one-dimensional minimization is necessary by means of the following
identity (proven for C2-curves in [20, p. 4770]):

ρG[γ ](s) = ρpt[γ ](s) := inf
σ∈SL\{s} pt(s, σ), (1.8)

which, in fact, is valid for all points s ∈ SL such that �′′(s) exists, cf. Lemma 5. Here
pt(s, σ) is defined as the radius of the (unique) circle through �(s) and tangent to �

at �(σ). (As before, � : SL → R
3 denotes the arclength parametrization of γ .) A

numerical computation of Up-minimizing curves with, e.g., simulated annealing tech-
niques would be an interesting addition to the remarkable computations by Carlen,

1 Another explicit geometric construction of a loop with finite Up-energy but with unbounded global
curvature—a direct construction which works also for p = 1 and does not rely on Theorem 2—can be
found in the appendix of our preprint [49].
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Laurie, Maddocks, and Smutny [10], [45] of ideal knots, which, by definition, maxi-
mize thickness �[·] under a uniform length bound. In fact, the relation between ideal
knots, minimizers of repulsive potentials, and Up-minimizing knots remains to be in-
vestigated, at present only one result relating the first two seems to be available [38].
In addition, we have no result yet about higher regularity for Up-minimizing curves or
critical points. The proof of higher regularity for minimizers of O Hara’s energy (1.1)
for p = 2 relies heavily on the invariance of this particular potential under Möbius
transformations in R

3 [16], [27], a property which is not shared by the Up-energy. For
ideal knots, i.e., the C1,1-regular maximizers of global curvature �[·], on the other
hand, the numerical results of [10], [45] seem to suggest that local curvature may
jump, but analytically the regularity properties are far from being well understood.

2 Embeddedness and regularity of γ

Throughout the paper we assume that

γ : S1 → R
3

is a closed, rectifiable and continuous curve of positive length L > 0. Its arclength
parametrization

� : SL → R
3

is automatically Lipschitz continuous, i.e., � ∈ C0,1(SL, R3). For three parameters
s, σ , τ ∈ SL we define R(�(s), �(σ), �(τ)) to be the radius of the smallest circle contai-
ning the points �(s), �(σ), and �(τ). This radius coincides with the unique circumcircle
radius if the points are not collinear. The global radius of curvature �G[γ ](s) and the
energy Up(γ ) are, throughout the paper, defined by (1.2) and (1.6), respectively.

Let us begin with the observation that curves with finite energy Up, p ≥ 1, are
embedded:

Lemma 1 If Up(γ ) < ∞ for some p ≥ 1, then γ is simple.

Proof By Hölder’s inequality U1(γ ) is finite whenever Up(γ ) < ∞ for some p > 1.
Thus it suffices to prove the lemma for p = 1.

Assume that γ is not simple, i.e., there are two distinct arclength parameters s0, t0 ∈
SL, such that the arclength parametrization � ∈ C0,1(SL, R3) of γ satisfies �(s0) =
�(t0). We can assume w.l.o.g. that s0 = 0. For s �= 0 consider a circle through the points
�(0) and �(s) with diameter |�(0) − �(s)|. By assumption this circle contains also the
point �(t0). Thus

ρG[γ ](s) ≤ R(�(s), �(0), �(t0)) = |�(s) − �(0)|
2

≤ |s|
2

;

hence 1/�G[γ ] is not integrable, which is a contradiction. 
�

The following example suggests that curves with finite Up-energy might possess
tangents everywhere.
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Example If γ has a corner at some point, then Up(γ ) = ∞ for each p ≥ 1. To see this,
consider e.g. the square

�(s) =

⎧⎪⎪⎨
⎪⎪⎩

(−1 − s, −1, 0) for s ∈ [−2, −1],
(0, s, 0) for s ∈ (−1, 0],
(s, 0, 0) for s ∈ (0, 1],
(1, 1 − s, 0) for s ∈ (1, 2].

Taking into account circles in the xy-plane that are tangent to both sides of the right
angle of γ at (0, 0, 0), one easily sees that

�G[γ ](s) ≤ |s|, s ∈ [−1, 1]
and therefore

Up(γ ) ≥
1∫

−1

(
1

�G[γ ](s)
)p

ds

diverges for every p ≥ 1.

By [41, Theorem 1 (ii)], we know that if

�G[γ ](s) > 0 for some s ∈ SL,

then γ has a geometric tangent T(s) at �(s), and with the arclength parametrization
� : SL → R

3 one computes this tangent as

T(s) = lim
σ→s+

�(σ) − �(s)
|�(σ) − �(s)| = lim

τ→s−
�(s) − �(τ)

|�(s) − �(τ)| .

Moreover, T(s) = �′(s) if �′ exists at s. Now, if Up(γ ) < ∞, then �G[γ ] must be
positive almost everywhere. Thus, finiteness of Up yields T(s) = �′(s) a.e. on SL.

For our regularity investigations we start with a local estimate for the oscillation
of �′.

Lemma 2 Let Up(γ ) < ∞ for some p ≥ 1 and suppose that �′(s0) exists at s0 ∈ SL and
that �G[γ ](s0) =: � > 0. Then

for all s ∈ Bρ/2(s0) := (s0 − �/2, s0 + �/2)

such that �′(s) exists we can estimate

|�′(s0) − �′(s)| ≤ |�(s0) − �(s)|
�G[γ ](s0)

≤ |s0 − s|
�G[γ ](s0)

. (2.9)

Proof The proof rests on arguments similar to those in [22, pp. 49–52].

Step 1 For the arc A := �((s0, s)), s ∈ B 3
2
(s0), one has

diam A ≤ �, (2.10)

since the arclength parametrization � satisfies

|�(σ) − �(τ)| ≤ |σ − τ | for all σ , τ ∈ B�/2(s0). (2.11)
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We claim that for the lens-shaped region

l :=
⋂

z∈Cρ(�(s0),�(s))

B�(z)

we have
A ⊂ l, (2.12)

where we used the notation

Cρ(P, Q) := {z ∈ R
3 : |z − P| = |z − Q| = �}.

Indeed, assuming contrariwise that (2.12) does not hold we could infer

A ∩
⎡
⎣ ⋃

z∈Cρ(�(s0),�(s))

B�(z) \ l

⎤
⎦ �= ∅, (2.13)

since otherwise the arc A with endpoints �(s0) and �(s) would be contained in

R
3 \

⋃
z∈Cρ(�(s0),�(s))

B�(z).

That in turn together with (2.11) for σ := s0 and τ := s and the fact that γ is simple by
Lemma 1 would imply that the diameter of A is at least as large as that of a great circle
on one of the spheres ∂B�(z), z ∈ Cρ(�(s0), �(s)), i.e., diam A ≥ 2� contradicting
(2.10).

Now, fix any point �(t) in the nonempty intersection in (2.13). The intersection of⋃
z∈Cρ(�(s0),�(s))

B�(z) \ l

with the plane spanned by �(s0), �(s) and �(t) consists of two intersecting disks D1
and D2, each of radius ρ, with ∂D1 ∩∂D2 = {�(s0), �(s)}. By symmetry, we can assume
�(t) ∈ D1 \ D2. Then, for β := arcsin

(|�(s0) − �(s)|/2�
)

we have, using the classical
relation between central and inscribed angles in the circle ∂D1,

<)(�(s0) − ξ , �(s) − ξ) = β for all ξ ∈ ∂D1 \ D2,
<)(�(s0) − ξ , �(s) − ξ) = π − β for all ξ ∈ ∂D1 ∩ D2,

and clearly

α(s0, s, t) := <)(�(s0) − �(t), �(s) − �(t)) ∈ (β, π − β)

since �(t) ∈ D1 \ D2. We would then have

R(�(s0), �(s), �(t)) = |�(s0) − �(s)|
2 sin α(s0, s, t)

<
|�(s0) − �(s)|

2 sin β
= �G[γ ](s0),

contradicting the definition of �G[γ ](s0). Hence, (2.13) is absurd, which proves (2.12).

Step 2 Taking sequences {ti}, {τi} ⊂ (s0 − �/2, s) with ti → s+
0 and τi → s− as i → ∞

we find

lim
i→∞

�(ti) − �(s0)

|�(ti) − �(s0)| = T(s0) = �′(s0),

lim
i→∞

�(s) − �(τi)

|�(s) − �(τi)| = T(s) = �′(s).
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On the other hand, (2.12) implies that for all i ∈ N the unit vectors

�(ti) − �(s0)

|�(ti) − �(s0)| ,
�(s) − �(τi)

|�(s) − �(τi)| ,

and therefore also the limits �′(s0) and �′(s), lie in the intersection K� ∩ S
2, where K�

denotes the cone

K� := {x ∈ R
3 : x = λ(P − �(s0)), λ ≥ 0, P ∈ l}

with opening angle α� ∈ (0, π) satisfying

sin
α�

2
= |�(s0) − �(s)|

2�
.

Consequently,

|�′(s0) − �′(s)| ≤
√

2 − 2 cos α� = |�(s0) − �(s)|
�

≤ |s0 − s|
�

.


�
The next lemma shows that �′ belongs to the Sobolev space W1,p whenever the

global curvature of γ is of class Lp. It is inspired by the metric characterizations of
Sobolev spaces in [23] and [24]. In order to obtain an optimal constant, we do not use
the results from these papers directly.

Lemma 3 If Up(γ ) < ∞ for some p ≥ 1, then the arclength parametrization � of γ

satisfies the inequality

|�′(s) − �′(t)| ≤
t∫

s

1
�G[γ ](τ )

dτ

for all s, t ∈ SL, s < t. Thus, in particular, �′ is absolutely continuous on SL, �′′ exists
a.e. and satisfies

|�′′(s)| ≤ 1/�G[γ ](s) for a.e. s ∈ SL. (2.14)

Proof By Hölder’s inequality, U1(γ ) is finite whenever Up(γ ) < ∞ for some p > 1.
Thus, it is enough to prove the lemma for p = 1.

Let D := {s ∈ SL | �′(s) exists}. Fix s < t such that s, t ∈ D. Let s = t0 < t1 < t2 <

· · · < tn = t where the partition points ti are chosen in such a way that �′(ti) exists for
all i = 1, . . . , n − 1, and moreover, such that the intervals Ij = [tj−1, tj] satisfy

|t − s|
2n

≤ |Ij| ≤ 2|t − s|
n

, j = 1, 2, . . . , n. (2.15)

Choosing n sufficiently large, we can guarantee that∫

Ij

1
�G[γ ](τ )

dτ <
1
2

, (2.16)

by the absolute continuity of the integral. Now, we pick for each j a point s0,j ∈ Ij such
that

1
�G[γ ](s0,j)

≤
∫

Ij

1
�G[γ ](τ )

dτ , and such that �′(s0,j) exists. (2.17)
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Inequalities (2.15)–(2.17) yield

0 < |Ij| ≤ �G[γ ](s0,j)

∫

Ij

1
�G[γ ](τ )

dτ <
�G[γ ](s0,j)

2
.

Thus �G[γ ](s0,j) is sufficiently large to allow us to apply Lemma 2 and estimate
|�′(s0,j) − �′(σ )| for every σ ∈ Ij such that �′(σ ) exists. We write

|�′(s) − �′(t)| ≤
n∑

j=1

|�′(tj−1) − �′(tj)|

≤
n∑

j=1

(
|�′(tj−1) − �′(s0,j)| + |�′(s0,j) − �′(tj)|

)

≤
(2.9)

n∑
j=1

1
�G[γ ](s0,j)

(
|tj−1 − s0,j| + |s0,j − tj|

)

=
n∑

j=1

1
�G[γ ](s0,j)

|Ij|

≤
(2.17)

n∑
j=1

∫

Ij

1
�G[γ ](τ )

dτ =
t∫

s

1
�G[γ ](τ )

dτ .

Due to the absolute continuity of the integral on the right-hand side this estimate is
uniform and yields a unique uniformly continuous extension of �′ from D to SL. This
extension—let us still denote it by �′—is then absolutely continuous. Hence �′ has a
generalized derivative �′′ satisfying (2.14) and we have

�′(s) = �′(s0) +
s∫

s0

�′′(τ ) dτ ,

where s0 ∈ D is fixed and s ∈ SL is arbitrary. It is a simple elementary exercise to
check that the extended function �′ is in fact equal to the derivative of � on all of SL,
i.e., a posteriori we have D = SL. This completes the proof. 
�
Theorem 1 Let p ≥ 1. Assume that γ ∈ C0(I, R3) is a rectifiable closed curve with
Up(γ ) < ∞. Then the arclength parametrization � of γ satisfies the following conditions.

(i) � is 1–1, i.e., γ has no double points.
(ii) � ∈ W2,p(SL, R3) and |�′′| ≤ 1/�G[γ ] almost everywhere.

(iii) �′ is absolutely continuous and

|�′(s) − �′(t)| ≤
t∫

s

1
�G[γ ](τ )

dτ for all s < t.

(iv) If p > 1, then �′ is Hölder continuous and

|�′(s) − �′(t)| ≤ Up(γ )|t − s|α , α := 1 − 1
p

.
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Proof The first statement (i) is just a consequence of Lemma 1. Conditions (ii) and
(iii) were proven in Lemma 3, and (iv) is a simple consequence of (iii) and the Hölder
inequality. 
�

The last theorem of this section shows that for p > 1 any embedded curve with
a W2,p-regular arclength parametrization has finite Up-energy. Combined with the
previous result this means that simple W2,p-loops are characterized by the fact that
the global curvature function ρ−1

G has finite Lp-norm if p > 1.

Theorem 2 Assume that p > 1. Let γ be an embedded continuous closed and rectifiable
curve of length L with arclength parametrization � of class W2,p(SL, R3), then

Up(γ ) < ∞.

The assumption p > 1 is really crucial; see the example at the end of this section.
To prepare the proof of this result we are first going to prove two technical lemmas

relating ρG and ρpt, the latter quantity was defined in (1.8). For the corresponding
results in the context of C2-curves see [20], [21].

Lemma 4 For any continuous, closed and rectifiable curve γ with arclength paramet-
rization � ∈ C1(SL, R3) one has

ρpt[γ ](s) ≥ ρG[γ ](s) for all s ∈ SL. (2.18)

Proof For any σ ∈ SL \ {s} we obtain

pt(s, σ) = |�(s) − �(σ)|2
2|(�(s) − �(σ)) ∧ �′(σ )|

= lim
σ �=τ→σ

R(�(s), �(σ), �(τ)) ≥ ρG[γ ](s), (2.19)

since

R(�(s), �(σ), �(τ)) = |�(s) − �(σ)|
2
∣∣∣ �(s)−�(τ)
|�(s)−�(τ)| ∧ �(σ)−�(τ)

|�(σ)−�(τ)|
∣∣∣

for s �= σ �= τ �= s,

and since |�′| ≡ 1,

�(σ) − �(τ)

|�(σ) − �(τ)| = �′(σ )(σ − τ) + o(|σ − τ |)
|σ − τ | ·

[
1 + o(|σ − τ |)

|σ − τ |
]

→
τ→σ

±�′(σ ).

Taking the infimum in (2.19) over all σ ∈ SL \ {s} one arrives at (2.18). 
�
Lemma 5 Let � ∈ W2,1(SL, R3) be the arclength parametrization of a simple closed
curve γ , and assume that s ∈ SL is a Lebesgue point of �′′. Then

ρG[γ ](s) = ρpt[γ ](s).
Proof Since W2,1(SL, R3) embeds into C1(SL, R3), Lemma 4 applies, so it suffices to
show that

ρpt[γ ](s) ≤ ρG[γ ](s) for all Lebesgue points s of �′′.

We assume that ρG[γ ](s) is finite, otherwise there is nothing to prove. Let us
distinguish between different situations of how the infimum in the definition (1.2) of
ρG is is attained.
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Case I Assume

ρG[γ ](s) = R(�(s), �(t), �(σ)) for s �= t �= σ �= s.

Then the corresponding circumcircle c touches � tangentially in �(t) or �(σ). Indeed,
otherwise the intersection ∂BR ∩ � – where ∂BR is the sphere containing c as a great
circle – would be transversal at �(t) and �(σ); then we could find a slightly smaller
sphere S1 ⊂ BR such that S1 ∩ ∂BR = {�(s)} and S1 intersects � transversally in
two other distinct points �(t1) and �(σ1), close to �(t) and �(σ), respectively, with
t1 �= s �= σ1. Hence,

ρG[γ ](s) ≤ R(�(s), �(t1), �(σ1)) < R = ρG[γ ](s),
which is absurd.

So we have ρG[γ ](s) = pt(s, t), or ρG[γ ](s) = pt(s, σ). In any case we can take the
infimum on the respective right-hand side to obtain

ρG[γ ](s) ≥ ρpt[γ ](s).
Case II If

ρG[γ ](s) = lim
t,σ→τ
τ �=s

R(�(s), �(t), �(σ))

then ρG[γ ](s) = pt(s, τ), which can be seen by the same computation as in the proof
of Lemma 4. So again,

ρG[γ ](s) ≥ ρpt[γ ](s).
Case III If

ρG[γ ](s) = lim
σ→s

t→τ �=s

R(�(s), �(t), �(σ)) = lim
σ→s

t→τ �=s

R(�(t), �(s), �(σ))

then we find similarly as before

ρG[γ ](s) = pt(τ , s),

but we claim that the circle c realizing this point-tangent function is actually also
tangent to the curve in the point �(τ), since otherwise we could proceed as in Case
I and once again shrink the sphere for which c is an equatorial circle to obtain a
contradiction against the definition of ρG[γ ](s). Hence

ρG[γ ](s) = pt(s, τ) ≥ ρpt[γ ](s).
Case IV If

ρG[γ ](s) = lim
t,σ→s

R(�(s), �(t), �(σ))

then we can apply [41, Lemma 7 (57)] setting sj := s, = τj := t, σj := σ , (w.l.o.g.
sj < σj < τj) to obtain

ρG[γ ](s) = 1
|�′′(s)| .
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According to the expansion [41, Lemma 7 (52)] we can argue that for s �= σ

pt(s, σ) = lim
s3→τ+ R(�(s), �(σ), �(s3))

=
([41, (52)])

|�′(σ ) + 1
s−σ

∫ s
σ

∫ t
σ

�′′(ω) dωdt|2
2
∣∣∣�′(σ ) ∧ 1

σ−s

∫ 1
0

∫ σ

σ−t(σ−s) �′′(ω) dωdt
∣∣∣ , (2.20)

where we used the identity A ∧ A = 0 for A ∈ R
3 to simplify the denominator in the

last line. Analyzing this expression we obtain

lim
σ→s

pt(s, σ) = 1
|�′′(s)| , (2.21)

which proves

ρpt[γ ](s) ≤ 1
|�′′(s)| = ρG[γ ](s)

also in this last case. 
�

The last preparation for the proof of Theorem 2 consists in the following local
estimate for the pt-function:

Lemma 6 Let p > 1 and � ∈ W2,p(SL, R3) be the arclength parametrization of an
embedded closed continuous curve γ . Fix q ∈ (1, p). Then, for every s, σ ∈ SL we have

|σ − s| + pt(s, σ) ≥ 1
2A(s)

, (2.22)

where

A(s) :=
(

M
(
M|�′′|)q

(s)
)1/q

and Mf denotes the non-centered Hardy–Littlewood maximal function of f , i.e.,

Mf (t) = sup
Br(u)�t

1
2r

u+r∫

u−r

|f (τ )| dτ .

Remark 1. Since p > p/q > 1, we may apply the Hardy–Littlewood maximal theo-
rem (see e.g. Stein’s monograph [46, Chap. 1]) twice, to obtain

M|�′′| ∈ Lp,
(
M|�′′|)q ∈ Lp/q, M

(
M|�′′|)q ∈ Lp/q.

Thus, A(·) defined in the Lemma is of class Lp.
2. For closed, embedded curves γ we certainly have M|�′′|(s) > 0 for each s. Thus,

A(s) > 0.

Proof of Lemma 6 Without loss of generality we can assume s > σ , �(σ) = 0, �′(σ ) =
(1, 0, 0), and that the circle realizing r := pt(s, σ) has its center at (0, 0, r).
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We now estimate, using Hölder’s inequality for the exponents q and q′ = q/(q−1),

|�(s) − �(σ) − �′(σ )(s − σ)| =
∣∣∣∣∣∣

s∫

σ

(�′(τ ) − �′(σ )) dτ

∣∣∣∣∣∣

=
∣∣∣∣∣∣

s∫

σ

τ∫

σ

�′′(ω) dωdτ

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

s∫

σ

(τ − σ) M|�′′|(τ ) dτ

∣∣∣∣∣∣

≤ |s − σ |2−1/q
( s∫

σ

(
M|�′′|(τ )

)q
dτ

)1/q

≤ |s − σ |2 A(s), (2.23)

and therefore (2.23) implies the estimates

|�3(s)| ≤ A(s)|σ − s|2 and |�1(s)| ≥ |σ − s| − A(s)|σ − s|2.

If |σ −s|−A(s)|σ −s|2 < 0, then |σ −s| > 1/A(s) and the lemma holds true. Otherwise,
we obtain

r2 = |�(s) − (0, 0, r)|2 ≥ (�1(s))2 + (�3(s) − r)2

≥ |σ − s|2 − 2A(s)|σ − s|3 − 2r|�3(s)| + r2

≥ |σ − s|2 {1 − 2A(s)|σ − s| − 2rA(s)} + r2,

which is only possible if the term in brackets is non-positive, i.e., if

r + |σ − s| ≥ 1
2A(s)

. 
�

Now we can turn to the

Proof of Theorem 2 Fix a Lebesgue point s ∈ SL of �′′. We are going to estimate
pt(s, σ) from below by analyzing formula (2.20). Since∣∣∣∣∣∣

t∫

σ

�′′(ω) dω

∣∣∣∣∣∣ ≤ |t − σ |1−1/p‖�′′‖Lp([σ ,s],R3) for all t ∈ [σ , s],

we find that the numerator in (2.20) can be estimated from below by

1 − |σ − s|1−1/p

2 − 1/p
‖�′′‖Lp([σ ,s],R3) ≥ 1

2
(2.24)

for σ ∈ Bε1(s), where the number ε1 = ε1(p, γ ) is chosen sufficiently small and does
not depend on s.

From∣∣∣∣∣∣∣

σ∫

σ−t(σ−s)

�′′(ω) dω

∣∣∣∣∣∣∣
≤ (t|σ − s|)1−1/p‖�′′‖Lp([σ ,s],R3) for all t ∈ [0, 1]
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we deduce ∣∣∣∣∣∣∣
1

σ − s

1∫

0

σ∫

σ−t(σ−s)

�′′(ω) dωdt

∣∣∣∣∣∣∣
≤ |σ − s|−1/p

2 − 1/p
‖�′′‖Lp(SL,R3).

Similarly, we estimate
∣∣∣∣∣∣

1∫

0

σ−t(σ−s)∫

σ

�′′(ω) dωdt

∣∣∣∣∣∣ ≤ |σ − s|1−1/p

2 − 1/p
‖�′′‖Lp(SL,R3),

so that an upper bound for the denominator in (2.20) is given by

2
|σ − s|1/p

[
1 + |σ − s|1−1/p‖�′′‖Lp(SL,R3)

] ‖�′′‖Lp(SL,R3)

2 − 1/p
≤ c(p, γ )

|σ − s|1/p

for some constant c(p, γ ) depending only on p and γ . This together with the lower
bound (2.24) for the numerator leads to

pt(s, σ) ≥ |σ − s|1/p

2c(p, γ )
for all σ ∈ Bε1(s). (2.25)

Moreover, shrinking ε1 if necessary, we can assume that

pt(s, σ) ≥ |σ − s|1/p

2c(p, γ )
≥ |σ − s| for all σ ∈ Bε1(s). (2.26)

Thus, by Lemma 6,

pt(s, σ) ≥ 1
4A(s)

for all σ ∈ Bε1(s), (2.27)

Notice that since γ is simple we obviously have

pt(s, σ) ≥ |�(s) − �(σ)|
2

≥ c1 > 0 for all σ ∈ SL \ Bε1(s) (2.28)

for some positive constant c1 depending only on γ .
Estimates (2.27) and (2.28) yield

1
ρG[γ ](s) = 1

ρpt[γ ](s) ≤ max

{
1
c1

, 4A(s)
}

for all σ ∈ SL.

Since A ∈ Lp, the Theorem follows. 
�

A counterexample to the statement of Theorem 2 for p = 1.

Set x0 = 1/e3 and define

�(x) =
x∫

0

(
log

1
t

)−1

dt, x ∈ (0, x0]. (2.29)
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Extend � to an even, continuous function on [−x0, x0]. It is clear that �′(0) = 0 and
� is of class C1. In fact, � ∈ C∞ away from 0, and

�′′(x) =
(

|x| log2 1
|x|
)−1

, x ∈ [−x0, x0] \ {0} .

Since

δ∫

0

(
s log2 1

s

)−1

ds =
(

log
1
δ

)−1

,

we have also � ∈ W2,1((−x0, x0)).
Now, consider the graph of � : [−x0, x0] → R

2. It follows form Lemma A.1 (see
Appendix) that we can close this graph with a smooth arc to obtain a closed, convex
C1 curve γ ⊂ R

2 whose arclength parametrization � ∈ W2,1 is of class C∞ except at
(0, 0) ∈ R

2.
We shall now show that the energy U1(γ ) is infinite. To this end, assume that the

arclength parametrization of the graph of � is given by

t �→ (
x(t), �(x(t))

)

where t �→ x(t) is increasing and t = 0 corresponds to x = 0. Let us estimate the radius
ρG[γ ](t) for small positive t. Consider the circle σt which is tangent to the graph of
� at two points,

(±x(t), �(x(t))
)
. The center of σt is at

(
0, �(x(t)) + x(t)/�′(x(t))

)
. A

computation shows that the radius r(t) of σt is given by

r(t) = x(t)
�′(x(t))

√
1 + �′(x(t))2 .

Then, since x′ is close to 1 and �′ is bounded, one can obtain

r(t) ≤ 2
x(t)

�′(x(t))
≤ Ct log

1
t

.

Since ρG[γ ](t) ≤ r(t), the last estimate gives

U1(γ ) ≥
t0∫

0

dt
ρG[γ ](t) ≥

t0∫

0

dt
r(t)

≥ 1
C

t0∫

0

(
t log

1
t

)−1

dt = +∞. (2.30)

3 Sequences of curves and existence of energy minimizing knots

We start with an energy estimate providing a lower bound for the Up-energy in terms
of the length, which is obtained only for circles.

Lemma 7 Let p ≥ 1 and let γ be a closed rectifiable curve of positive length L(γ ) with
Up(γ ) < ∞. Then

Up(γ ) ≥ 2πL(γ )(1/p)−1 (3.1)

with equality if and only if γ is a circle of the same length.
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Proof Set L := L(γ ) and U := Up(γ ). We claim that there is an arclength parameter
s ∈ SL, such that

ρG[γ ](s) ≥ L1/p

U
. (3.2)

Indeed, if we had

ρG[γ ](σ ) <
L1/p

U
for all σ ∈ SL,

then we could estimate

U =
⎛
⎜⎝
∫

SL

1
ρG[γ ](σ )p dσ

⎞
⎟⎠

1/p

>
U

L1/p
· H1(SL)1/p = U,

which is absurd.
By (3.2), �G[γ ](s) is positive and therefore [41, Theorem 1 (iv)(a)] implies that

�(SL) ∩ M(s, ρG[γ ](s)) = ∅,

where the set M(s, ρG[γ ](s)) is the union of all open balls of radius ρG[γ ](s) tangent
to γ at the point �(s). (As before we used the notation � for the arclength parametri-
zation of γ .) This implies that L is at least as large as the length of the shortest closed
C1 curve of positive length in R

3 \ M(s, ρG[γ ](s)) containing the point �(s), which is
a great circle on one of the balls with radius ρG[γ ](s) generating M(s, ρG[γ ](s)), i.e.
by (3.2),

L ≥ 2πρG[γ ](s) ≥ 2π
L1/p

U
.

with equality if and only if γ is such a great circle. 
�
Remark As a consequence of Lemma 7 we note that (up to rotations and translations)
circles are the unique minimizers of the energy Up among all closed curves of fixed
length. The same is trivially true if one maximizes the global radius of curvature �[γ ]
without further topological restrictions, but also for minimizers of the repulsive knot
energies of the type (1.1) only that the corresponding uniqueness proof of Abrams
et al. is more involved, see [1].

Our existence proof for energy minimizers in nontrivial isotopy classes (Theorem 5)
relies on the following compactness and lower-semicontinuity result.

Theorem 3 Fix p > 1 and let α = (p − 1)/p. Assume that γj, j = 1, 2, . . . are closed
rectifiable curves of fixed length L with arclength parametrizations �j defined on SL.

If supj Up(γj) ≤ K < ∞ then there exists a simple curve � ∈ C1,α(SL, R3) with

|�′| ≡ 1, such that, for a subsequence j′ → ∞, �j′ → � in C1 and

�G[�](s) ≥ lim sup
j′→∞

�G[γj′ ](s) for each s ∈ SL. (3.3)

Moreover, Up(�) ≤ lim inf j′→∞ Up(γj′) ≤ K.

Remark Notice that one cannot expect continuity of ρG[·](s) in the C1-topology:
Consider e.g. the following arclength parametrizations of “elbow-curves” that were
also mentioned in [8]:
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�i(s) :=

⎧⎪⎨
⎪⎩

(cos s, sin s, 0) for s ∈ (− 1
i , 1

i )

(cos 1
i , sin 1

i , 0) + (s − i−1)(− sin 1
i , cos 1

i , 0) for s ∈ [ 1
i , 1]

(cos 1
i , sin(− 1

i ), 0) + (s + i−1)(sin 1
i , cos 1

i , 0) for s ∈ [−1, − 1
i ],

which2 converge in C1 to a straight vertical line � of length 2 centered in (1, 0, 0).
Hence at s = 0 we obtain

∞ = �G[�](0) > lim sup
i→∞

�G[�i](0) = 1,

since �G[�i](0) = 1 for all i ∈ N.

Proof of Theorem 3 By Theorem 1 (iv), we have

|�′
j(s) − �′

j(t)| ≤ K|s − t|α , j = 1, 2, . . . (3.4)

By the Arzela–Ascoli theorem we obtain a subsequence �j → � (still denoted by
the same index j) in the C1-topology. Passing to the limit j → ∞ in (3.4) for this
subsequence, we obtain � ∈ C1,α(SL, R3) with |�′| ≡ 1.

The crucial difficulty is to prove that � is simple. Again, as in the proof of Lemma
1, we argue by contradiction.

Assume that �(s0) = �(t) for some t �= s0. W.l.o.g. suppose that s0 = 0, �(0) = 0 ∈
R

3, and �′(0) = (1, 0, 0). Thus, for some d = d(K, α) ∈ (0, |t|/8) we have

�(s) = (s + ρ1(s), ρ2(s), ρ3(s)), s ∈ (−d, d) ,

where ρi(s) = o(s) as s → 0 and |ρi(s)| < |s|/12 for all s ∈ (−d, d). For each parameter
s ∈ (−d/3, 0) the sphere ∂Br(s)(0) of radius r(s), where

3
4
|s| < r(s) ≡ |�(s)| <

4
3
|s|,

contains �(τ) for at least four different values of the parameter τ . Namely,

�(τ1) ∈ ∂Br(s)(0) for τ1 = s ∈ (−d/3, 0),

(3.5)

�(τ2) ∈ ∂Br(s)(0) for some τ2 = τ2(s) ∈ (0, d),

and �(τ3), �(τ4) ∈ ∂Br(s)(0) for two other parameters τ3,4 in a neighbourhood of t.
(Keep in mind that �(t) = �(0).)

We now fix a number N > 16 such that
1
4

log N > KL(p−1)/p . (3.6)

Let ε = d/3N. Fix j so large that

‖�j − �‖∞ + ‖�′
j − �′‖∞ <

ε

100
. (3.7)

We shall estimate �G[γj](s) from above on the interval (−d/3, −ε). Using (3.5) and
the triangle inequality, we check that

�j(−ε) ∈ B4ε(0) \ Bε/4(0),

�j(−d/3) ∈ B4d(0) \ Bd/4(0),

2 These open curves could easily be closed by suitably large circular arcs, and we would still observe
this local effect of discontinuity of ρG[·](0).
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and in general �j(s) ∈ B4s(0) \ Bs/4(0) for all s ∈ (−d/3, −ε). Now, for each s ∈
(−d/3, −ε), the sphere ∂Brj(s)(0), where rj(s) := |�j(s)|, contains the points �j(τ ) for
three other values of the parameter τ . One of them is positive and belongs to (0, d).
Two more values of τ belong to a neighbourhood of t, as the equality �(t) = �(0)

combined with (3.7) yields �j(t) ∈ Bε/100(0). Thus, invoking the definition of the global
radius of curvature function, we have

�G[γj](s) ≤ 4|s|, −d
3

< s < −ε .

Hence,
⎡
⎢⎣
∫

SL

(
1

�G[γj](τ )

)p

dτ

⎤
⎥⎦

1/p

≥ L(1−p)/p
∫

SL

1
�G[γj](τ )

dτ

≥ L(1−p)/p

−ε∫

−d/3

1
4|s|ds

= 1
4

L(1−p)/p(log
d
3

− log ε
)

= 1
4

L(1−p)/p log N > K by (3.6).

Thus, Up(γj) > K, a contradiction.
To finish the proof, we have to deal with the upper semicontinuity of �G.
Since γ is simple, we note that if

�G[γj](s) ≥ δ > 0 for infinitely many j, (3.8)

then

�G[γ ](s) ≥ δ > 0.

since otherwise we would find two distinct parameters t, τ different from s such that

R(�(s), �(t), �(τ)) < δ.

By the C1-convergence we would then obtain

R(�j(s), �j(t), �j(τ )) < δ for j � 1

contradicting (3.8). Hence, if lim supj→∞ �G[γj](s) ≥ δ, then �G[γ ](s) ≥ δ−ε for every
ε > 0. Inequality (3.3) follows. Now, the estimate

Up(�) ≤ lim inf
j→∞ Up(γj) ≤ K

follows from Fatou’s lemma. 
�
We can weaken the hypothesis of fixed to bounded length in Theorem 3 to obtain

Theorem 4 Suppose there exist constants K and L0 with

2π

K
≤ L(p−1)/p

0 (3.9)
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such that the lengths Lj := L(γj) of closed rectifiable curves γj, j ∈ N, with arclength
parametrizations �j defined on SLj satisfy

sup
j

Lj ≤ L0, (3.10)

and such that
sup

j
Up(γj) ≤ K. (3.11)

Then there exists L with (
2π

K

)p/(p−1)

≤ L ≤ L0, (3.12)

a simple curve � ∈ C1,α(SL, R3) with |�′| ≡ 1, such that, for a subsequence j′ → ∞, the
rescaled, arclength parametrized curves

�∗
j′(s) := L

Lj′
�j′(Lj′ · s/L), s ∈ SL, (3.13)

and therefore also the unscaled but reparametrized curves

�j′ ◦ (Lj′/L) : SL → R
3,

converge to � in C1. Moreover,

�G[�](s) ≥ lim sup
j′→∞

�G[�∗
j′ ](s) = lim sup

j′→∞
�G[�j′ ◦ (Lj′/L)](s) for each s ∈ SL,

(3.14)
and

Up(�) ≤ lim inf
j′→∞

Up(�∗
j′) = lim inf

j′→∞
Up(�j′ ◦ (Lj′/L)) ≤ K. (3.15)

Proof Lemma 7 implies that

Lj ≥
(

2π

Up(γj)

)p/(p−1)

≥
(

2π

K

)p/(p−1)

for all j ∈ N,

which together with the consistency condition (3.9) implies the existence of a number
L satisfying (3.12) and a subsequence j′ → ∞ such that

Lj′ → L as j′ → ∞. (3.16)

Now we look at the rescaled curves �∗
j as defined in (3.13). We observe that for the

radius R(�∗
j (s), �∗

j (t), �∗
j (σ )) of the smallest circle containing three points �∗

j (s), �∗
j (t),

and �∗
j (σ ) for distinct arclength parameters s, t, and σ in SL one has, by definition,

R(�∗
j (s), �∗

j (t), �∗
j (σ )) = L

Lj
R(�j(Lj · s/L), �j(Lj · t/L), �j(Lj · σ/L))

and therefore

ρG[�∗
j ](s) = L

Lj
ρG[�j ◦ (Lj/L)](s). (3.17)
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This together with the change of variables formula implies

Up(�∗
j ) =

⎛
⎜⎝
∫

SL

1
ρG[�∗

j ](s)p ds

⎞
⎟⎠

1/p

=
(

Lj

L

)1−(1/p)

⎛
⎜⎜⎝
∫

SLj

1
ρG[γj](t)p dt

⎞
⎟⎟⎠

1/p

=
(

Lj

L

)1−(1/p)

Up(γj).

In particular, by (3.10)–(3.12) we obtain

Up(�∗
j ) ≤

⎛
⎜⎝ L0(

2π
K

)p/(p−1)

⎞
⎟⎠

(p−1)/p

K = L1−1/p
0

2π
K2 =: K∗,

and therefore by Theorem 1 (iv)

|(�∗
j )′(s) − (�∗

j )′(t)| ≤ K∗|s − t|α for α := (p − 1)/p.

From now on we can proceed exactly as in the proof of Theorem 3 replacing �j by �∗
j

in the line of arguments following (3.4). Since �∗
j′ → � in C1([0, L], R3) we infer from

(3.16) that

�j′ ◦ (Lj′/L) = (Lj′/L)�∗
j′ → � in C1([0, L], R3) as j′ → ∞.

Identity (3.17) together with (3.16) implies the equality in (3.14) and therefore also in
(3.15). 
�

We recall the definition of knot or isotopy classes in R
3 : Two continuous closed

curves γ1, γ2 ⊂ R
3 are isotopic, denoted as γ1 � γ2, if there are open neighbourhoods

N1 of γ1, N2 of γ2, and a continuous mapping � : N1 × [0, 1] → R
3 such that �(N1, τ)

is homeomorphic to N1 for all τ ∈ [0, 1], �(x, 0) = x for all x ∈ N1, �(N1, 1) = N2,
and �(γ1, 1) = γ2.

We consider the variational problem of minimizing the Up-energy for p > 1 on
curves of fixed length in a given isotopy class. That is, we look at

Up(γ ) −→ min

in the class

CL,k := {γ ∈ C0(S1, R3)L : length(γ ) = L, γ � k},

where L > 0 is a given constant, and k is a given isotopy class.
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Theorem 5 Let p > 1. For any isotopy class k there exists an arclength parametrized
curve � ∈ W2,p(SL, R3), such that

Up(�) = inf
CL,k

Up(.).

Proof The class CL,k is not empty since we can scale a smooth parametrization of k
to have length L. For a minimal sequence {γi} with

Up(γi) −→ inf
CL,k

Up(.) < ∞ as i → ∞

with arclength parametrizations �i ∈ C0,1(SL, R3) we can apply Theorem 3 to obtain
a simple arclength parametrized limit curve � ∈ C1, such that �i → � in C1(SL, R3)

for an (equally labelled) subsequence. According to the stability of isotopy in the
C1-topology (see e.g. [40]) we infer from �i � k that also � � k; hence � ∈ CL,k. Since,
by Theorem 3, Up is lower-semicontinuous with respect to this type of convergence,
we obtain

inf
CL,k

Up(.) ≤ Up(�) ≤ lim inf
i→∞ Up(γi) = inf

CL,k
Up(.).

The W2,p-regularity for � follows from Theorem 1, Part (ii). 
�
Remark It is clear that one may also consider other variational problems with a uni-
form upper bound on Up as a side constraint ensuring self-avoidance of the competing
curves. Either one fixes or bounds the length in addition, to apply Theorem 3 or Theo-
rem 4, or it may be that the length is part of the total energy to be minimized. It may
also happen that a uniform bound on the length follows automatically from minimi-
zing a higher order, e.g., curvature dependent elastic energy when keeping one point
of the curves fixed, cf. e.g. [31], [51]. In the light of this we can also deal with variational
problems for nonlinearly elastic rods prescribing a uniform upper bound on Up for
the rod centerlines ensuring a positive thickness of the rods, compare with [22] where
the global radius of curvature �[·] was used to prescribe a positive thickness.

Appendix

Lemma A.1 Assume that p ≥ 1 and � ∈ W2,p(I), where I = (x0, x1). Then the
arclength parametrization � of the graph of � is of class W2,p(J, R2), where J = (t0, t1)
and

| J | = t1 − t0 :=
x1∫

x0

√
1 + �′(x)2 dx .

Proof We have
�(t) = (

x(t), �(x(t))
)
, t ∈ (t0, t1), (A.1)

where the map (t0, t1) � t �→ x(t) ∈ (x0, x1) is given by the implicit formula

t =
x(t)∫

x0

√
1 + �′(x)2 dx . (A.2)
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By (A.2), x(t) is monotonically increasing and the derivative x′(t) is given by

1√
1 + �′(x(t))2

= x′(t), (A.3)

so that we have

0 < c0 ≤ x′(t) ≤ 1,

where c0 := (1 + ‖�‖2
C1)

−1/2. (In dimension 1, W2,p(I) is embedded into C1(I).)

Now, note that since �′ ∈ W1,p(I) and x ∈ C1(J), we have �′ ◦ x ∈ W1,1
loc(J) (it is

easy to see that �′ ◦x is an absolutely continuous function on J, using the fundamental
theorem of calculus and the monotonicity of x). Therefore, by (A.3), x′ is also of class
W1,1

loc . Thus, we can compute

x′′(t) = −�′(x(t))�′′(x(t))
(1 + �′(x(t))2)2 .

Since W2,p(I) ⊂ C1(I), we obtain |x′′(t)| ≤ C|�′′(x(t))|. Thus,

�′′(t) = (
x′′(t), �′′(x(t))x′(t)2 + �′(x(t))x′′(t)

)
satisfies

t1∫

t0

|�′′(t)|p dt ≤ C

t1∫

t0

|�′′(x(t))|p dt ≤ C · c−1
0

x1∫

x0

|�′′(x)|p dx < ∞ .

This completes the proof of Lemma A.1. 
�
Using this lemma, we can construct closed, W2,p-regular loops in the x-y-plane

from graphs of W2,p-functions. Here is a sketch of such a construction. Take � ∈
W2,p((x0, x1)). Then, �′ has a finite limit at x0 and x1. Take the tangents to the graph
of � at P0 = (x0, �(x0)) and P1 = (x1, �(x1)).

We follow the tangential ray emanating from the graph of � at P0 up to the point
Q0 where it hits the line {y = sup �} or {y = inf �} depending on the sign of �′(x0).
In the same way we obtain a point Q1 on the tangent ray starting in P1.

If these tangent rays are parallel we identify their common direction with the
unit vector T ∈ S1 ⊂ R

2 (such that (Q1 − Q0) · T > 0) and translate the segment
{Q0 + s((Q1 − Q0) · T)T, s ∈ [0, 1]} in a direction perpendicular to T to obtain a
segment R0R1 parallel to T which does not intersect the graph of � any more. Then
we can find two unique semi-circles C0 and C1 connecting R0 with Q0 and R1 with
Q1, respectively, such that the union

Graph � ∪ P0Q0 ∪ C0 ∪ R0R1 ∪ C1 ∪ Q1P1

forms a simple W2,p-regular loop, since it is globally C1 and piecewise (at least) W2,p.
If the tangent lines containing P0Q0 and P1Q1 intersect in a point S ∈ R

2, and if,
say, |SQ0| ≥ |SQ1| then we extend the segment P1Q1 to find a point Q̃1 collinear with
P1 and Q1 and with |P1Q̃1| ≥ |P1Q1| and |SQ0| = |SQ̃1|. Then we take the unique
circular arc C connecting Q0 and Q̃1 which is tangent to P0Q0 in Q0 and to P1Q̃1 in
Q̃1. Again, the union

Graph � ∪ P0Q0 ∪ C ∪ Q̃1P1

yields a simple W2,p-regular loop.
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If we choose � so that the curvature of the graph blows up at one point, then so
does 1/�G[γ ] for the resulting loop γ .
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