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Abstract. We give a new proof of a theorem of Bethuel, asserting that arbitrary weak so-
lutions u ∈ W 1,2(IB, IR3) of the H-surface system ∆u = 2H(u)ux1 ∧ ux2 are locally
Hölder continuous provided that H is a bounded Lipschitz function. Contrary to Bethuel’s,
our proof completely omits Lorentz spaces. Estimates below natural exponents of integrabil-
ity are used instead. (The same method yields a new proof of Hélein’s theorem on regularity
of harmonic maps from surfaces into arbitrary compact Riemannian manifolds.) We also
prove that weak solutions with continuous trace are continuous up to the boundary, and give
an extension of these results to the equation of hypersurfaces of prescribed mean curvature
in IRn+1, this time assuming in addition that |∇H(y)| decays at infinity like |y|−1.

1 Introduction

In this note, we consider the regularity of weak solutions of theH-surface equation

∆u = 2H(u)ux1 ∧ ux2 , (1.1)

where u is a mapping from the unit disc IB ⊂ IR2 into IR3, and H: IR3 → IR is a
bounded Lipschitz function. It is well known that those classical solutions of (1.1)
which are conformal, i.e. satisfy the conditions

|ux1 |2 − |ux2 |2 = 〈ux1 , ux2〉 = 0 ,

parametrize (away from branch points) surfaces of prescribed mean curvature H;
at a point u(x), the mean curvature is equal to H(u(x)).

We say that u = (u1, u2, u3) ∈ W 1,2(IB, IR3) is a weak solution of (1.1) if and
only if∫

IB
∇u∇ϕdx = −2

∫
IB
ϕH(u)ux1 ∧ ux2 dx for every ϕ ∈ C∞

0 (IB, IR3).

(1.2)
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This is the only condition imposed on u. By a standard limit argument, (1.2) holds
also for all compactly supported ϕ of class L∞ ∩W 1,2(IB, IR3).

The regularity results for solutions of the H-surface equation, under various
additional assumptions, form a part of the vast regularity theory of nonlinear elliptic
systems with a right hand side growing critically with the gradient of solution.
(Another prominent example is supplied by harmonic maps.) A thorough discussion
of known facts is beyond the scope of this paper; let us just mention the pioneering
works of Wente [26] and Hildebrandt and Kaul [15], and the papers of Grüter
[11] and Bethuel [1], who considered, respectively, conformal weak solutions for
bounded H , and arbitrary weak solutions for bounded and Lipschitz H . For more
information we refer the reader to Chapter 7 of the monograph [4] and the references
therein. A good survey of existence results can be found e.g. in Duzaar and Steffen
[7].

The purpose of this note is twofold. First of all, we give a new proof (without
any use of Lorentz spaces) of Bethuel’s theorem [1] on interior regularity of weak
solutions of (1.1).

Theorem 1.1 (Bethuel) Assume that H: IR3 → IR is a bounded Lipschitz func-
tion. Then, every weak solution u ∈ W 1,2(IB, IR3) of equation (1.1) is Hölder
continuous on compact subsets of IB.

We deduce this theorem from interior Morrey type estimates, working with
exponents 2 − ε0 < p < 2, where ε0 is a small (absolute) constant. We show that
for such exponents rp−2

∫
Br

|∇u|p dx goes to zero faster than some positive power
of r. A rough description of the method of proof — which has its origins in the
works of T. Iwaniec in the theory of quasiconformal and quasiregular mappings—
is given at the end of the Introduction.

Once it is known that weak solutions are continuous, well-known methods lead
to the following result.

Corollary 1.2 Let u, H be as in Theorem 1.1. Then u is of class C2,β
loc (IB, IR3) for

any β < 1.

Our second aim is to prove that weak solutions with continuous trace u
∣∣
∂IB

are continuous up to the boundary. We deduce this from interior decay estimates,
combining them with Morrey’s Dirichlet Growth Theorem in a scale invariant
version and the ACL property of Sobolev functions.

Theorem 1.3 Let u, H be as in Theorem 1.1. If the trace ψ = u
∣∣
∂IB: ∂IB → IR3

is continuous, then u ∈ C0(IB, IR3).

In this generality that result, apparently, seems to be unknown in the existing
literature. Under more restrictive assumptions on H , and using a different method,
a similar theorem has been obtained by Jakobowsky [19].

Higher boundary regularity of conformal weak solutions follows then from
known theorems, see [4], Vol. 2, Theorem 7.3.2.

One of the main difficulties in the proof of Theorem 1.1 stems from the fact that
foruof classW 1,2 the right hand sideH(u)ux1 ∧ ux2 is only an integrable function.
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(A priori, u does not have to be minimizing, bounded or conformal; no extra decay
conditions on H are imposed, etc.) Although ux1 ∧ ux2 has its coordinates in the
Hardy space, multiplication byH ◦u destroys this special structure. Besides, since
there is no imbedding of W 1,2 into L∞, the gradient of (u− const)H(u) does not
have to be square integrable — and there is no apparent reason why (u−const)H(u)
should belong to BMO. Thus, even sophisticated tools like the duality of Hardy
space and BMO do not justify the use of ζ(u − const), where ζ ∈ C∞

0 (Ω), as a
test function in (1.2).

To overcome this difficulty, Bethuel [1] has been using Lorentz spaces. He
proved that for a small, fixed number α ∈ (0, 1) the decay inequality

‖u‖L2,∞(B(x,αr)) ≤ 1
2
‖u‖L2,∞(B(x,r))

holds for all x ∈ Ω and all sufficiently small radii r. His proof heavily relies on
various properties of Lorentz spaces, on fine-tuned imbedding theorems, and on
Wente estimates for the equation{−∆v = fx1gx2 − fx2gx1 in U,

v = 0 on ∂U,

where f, g ∈ W 1,2(U), and U ⊂ IR2. (Strictly speaking, Bethuel combined classi-
cal Wente estimates, i.e.L∞ bounds for v andL2 bounds for ∇v, with an additional
bound for ∇v in the Lorentz space L2,1. The last improvement, attributed in [1]
to Tartar, can be obtained via the interpolation theory, or via the theory of Hardy
spaces.)

We present a different proof. Some theory of Hardy spaces – notably the duality
of Hardy space and the space BMO of functions having bounded mean oscillation
– is still present in the argument. Fefferman’s duality theorem serves here as a re-
placement for the isoperimetric inequality that has been used much earlier (see e.g.
[26], [12]) for similar purposes. Apart of that we use only standard estimates in var-
ious Lp and Sobolev spaces. No knowledge of Lorentz spaces, and no nonstandard
imbedding theorems are necessary.

As we have already said, ζ(u − const) is not an admissible test function, and
there is no direct way to obtain decay estimates for

∫
B(x,r) |∇u|2. To circumvent

this problem, we adapt an idea that originates – in a different context of quasiregular
mappings – in a series of papers of T. Iwaniec and his various coauthors; see e.g.
[16], [17], [18]. This idea is to work below the natural exponents of integrability.
One employs test functions ϕ for which ∇ϕ behaves, modulo harmless divergence
free terms, roughly speaking like |∇u|−ε∇u, where ε is a small positive parameter.
Standard Lq-estimates for Hodge decomposition yield various bounds for ϕ and
its gradient. In particular, ϕ is Hölder continuous by Sobolev imbedding theorem.
(Due to a stability theorem of Iwaniec [16, Theorem 8.2], asserting that for small
ε the divergence free term is small in Lq, this idea has proved to be a fruitful and
powerful one in the theory of quasiregular mappings. We hope that it can find new
applications also in the regularity theory of nonlinear elliptic systems of variational
origin; this belief was part of the motivation for writing the present note.)
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Plugging such ϕ into the weak form of the equation, one immediately obtains
integrals of |∇u|p, with p = 2 − ε, from terms which correspond to the Laplacian.
It is less clear that the nonlinear expression on the right hand side can also be
estimated in terms of such integrals. To achieve this, we perform one integration
by parts and apply the Fefferman duality theorem [23, Chapter 4], combined with a
result of Coifman, Lions, Meyer and Semmes [3]. Due to the small parameter ε, the
norms of ϕ in L∞ and its gradient in L2 (or even slightly above L2) are bounded
by norms of |∇u| below L2. It follows from Poincaré inequality that the norm of u
in BMO can also be controlled by appropriate maximal functions of |∇u|p. (In this
respect, duality of H1 and BMO is better suited for our purposes than isoperimetric
inequality.) Finally, integrals of |∇u|2 are (locally, on small balls) dominated by
small constants, and it is possible to apply a variant of the hole-filling trick. See
Section 2 for details.

Boundary continuity of weak solutions follows from uniform interior decay
estimates and standard properties of Sobolev functions. The details are given in
Section 3. In Section 4, we briefly sketch another application of the method of
Section 2 (i.e., a new proof of Hélein’s theorem on regularity of harmonic maps
from surfaces into compact Riemannian manifolds), and discuss a generalization to
the equation of hypersurfaces of prescribed mean curvature in IRn+1. The method
of Section 2 does not work in the latter case, and we need an extra decay assumption
for ∇H .

The notation is mostly standard. W 1,p stands for the usual Sobolev space of
those functions inLp whose first order distributional partial derivatives also belong
to Lp. For definition and an excellent discussion of basic properties of the Hardy
space H1(IR2) and the space of functions of bounded mean oscillation BMO(IR2)
we refer to Chapters 3 and 4 of Stein’s monograph [23]. A ball in IR2 with center a
and radius r is denoted byB(a, r). The barred integral

∫
E
f dx denotes the average

value of a function f over a measurable set E,
∫

E
f ≡ [f ]E := |E|−1

∫
E
f dx.

If E = B(a, r) is a ball, we use the abbreviation [f ]B(a,r) ≡ [f ]a,r. The letter
C denotes a general constant that may change even in a single string of estimates;
writingC(p, ε, . . .) etc. we emphasize sometimes thatC depends on p, ε etc. Primes
are used to denote Hölder conjugate exponents.

2 Interior estimates

Continuity of solutions is derived from a Morrey type lemma. To state it concisely,
we need some notation.

For p ∈ (1, 2], a ∈ IB, and r ≤ 1 − |a| ≡ dist (a, ∂IB) we set

Jp(a, r) :=
1

r2−p

∫
B(a,r)

|∇u(y)|p dy, (2.1)

and

Mp(a, r): = sup
z∈B(a,r),

ρ<r−|a−z|

Jp(z, ρ) (2.2)
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(the supremum is taken over all balls contained in B(a, r)). Note that Mp(a, ·) is
a monotone function of r, and, by Hölder inequality,

Mp(a, r) ≤ π1− p
2

(∫
B(a,r)

|∇u(x)|2 dx
)p/2

.

Therefore, Mp(a, r) goes to zero as r tends to zero.
We sometimes write Mp(a, r;u) to indicate that Mp depends on u.

Lemma 2.1 There exist numbers ε0 ∈ (0, 1
4 ) and λ0 ∈ (0, 1) with the following

property: for every exponent p with ε: = 2 − p ∈ (0, ε0) one can find an R0 =
R0(ε, u) > 0 such that the maximal function Mp(a, r) of a weak solution u of
(1.1) satisfies the decay inequality

Mp(a, r) ≤ λ0Mp(a, 4r) (2.3)

for all a ∈ IB and all r ≤ 1
4 min(R0, 1 − |a|).

Proof of Lemma 2.1. Fix a point a ∈ IB and a radius r ≤ 1
4 (1 − |a|). Let ζ ∈

C∞
0 (B(a, 2r)) be a standard cutoff function with ζ ≡ 1 on B(a, r), |∇ζ| ≤ 2/r.

Set
ũ = ζ(u− [u]A),

where [u]A is the mean value of u on the annulus A := B(a, 2r) \B(a, r).
Throughout this section ε and p are constrained by the condition ε = 2 − p.

Step 1. Choice of test functions. Set

Gk := |∇ũ|−ε∇ũk , k = 1, 2, 3. (2.4)

Note that Gk is a vector field of class Lq(IR2, IR2) for all 1 ≤ q ≤ 2/(1 − ε). In
what follows, we restrict our attention only to

0 < ε <
1
4
, 2 − ε ≤ q ≤ 2

1 − ε
. (2.5)

Applying Hodge decomposition, we write

Gk = ∇vk + βk . (2.6)

Here,βk ∈ Lq(IR2, IR2) is a divergence-free vector field, and vk belongs to Sobolev
class W 1,q(IR2) for all q satisfying (2.5). With no loss of generality we can also
assume that ∫

B(a,2r)
vk(x) dx = 0 for k = 1, 2, 3. (2.7)

By well-known estimates, the inequality

‖∇vk‖Lq(IR2) + ‖βk‖Lq(IR2) ≤ C‖Gk‖Lq(IR2) (2.8)
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holds for all 1 < q ≤ 2/(1 − ε). (Papers of Iwaniec [16], Iwaniec–Martin [17],
and Iwaniec–Sbordone [18], are an excellent source of information about Lq esti-
mates for Hodge decomposition.) Moreover, by a standard application of Poincaré
inequality,

‖Gk‖Lq ≤ C

(∫
B(a,2r)

|∇u|(1−ε)q dx

)1/q

. (2.9)

We shall use ϕ = (ϕ1, ϕ2, ϕ3), where ϕk := ζvk, k = 1, 2, 3, as a test vector for
the H-surface system (1.1). Since ∇ϕ is integrable with power q0 = 2/(1 − ε) >
2 = dimension, Sobolev imbedding theorem implies that ϕ is Hölder continuous
with exponent 1 − 2/q0 = ε, and, of course, bounded.

Before proceeding further, we have to make

A remark about constants. The constant C = Cq in (2.8) depends on q. However,
since we impose the restrictions (2.5), all exponents q for which inequality (2.8) shall
ever be applied in this paper belong to some fixed interval, say [ 74 ,

8
3 ]. Therefore,

by Riesz-Thorin convexity theorem, one can use (2.8) with a fixed constant, e.g.

C = max(C7/4, C8/3) .

Tracing constants in Poincaré inequality, one can also check that for all q that satisfy
(2.5) inequality (2.9) holds true with a constant C that does not depend on ε. Thus,
assuming (2.5), we have

‖∇vk‖Lq(IR2) ≤ C

(∫
B(a,2r)

|∇u|(1−ε)q dx

)1/q

(2.10)

with some absolute constant C.

Step 2. Estimates of the test function. We shall need the following lemma.

Lemma 2.2 The function ϕ = ζv, where v is defined by (2.6) and (2.4), satisfies
the following inequalities:

‖∇ϕ‖L2(B(a,2r)) ≤ CrεJp(a, 2r)(p−1)/p , (2.11)

‖ϕ‖L∞(B(a,2r)) ≤ C(ε)rεJp(a, 2r)(p−1)/p . (2.12)

Remark. The constant in (2.12) blows up to infinity as ε tends to zero.

Proof of Lemma 2.2. We first prove (2.11). As |∇ζ| ≤ 2/r and
∫

B(a,2r) v = 0, we
have

‖∇ϕ‖L2(B(a,2r)) ≤ sup |ζ| ‖∇v‖L2(B(a,2r)) +
C

r

(∫
B(a,2r)

|v|2 dx
)1/2

≤ C‖∇v‖L2(B(a,2r))

(by Poincaré inequality). Now, applying (2.10), and then Hölder inequality with
exponents p′

2 = (2 − ε)/(2 − 2ε) and (p′

2 )′ = (2 − ε)/ε, we obtain

‖∇v‖L2(B(a,2r)) ≤ C

(∫
B(a,2r)

|∇u|(1−ε)2 dx

)1/2
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≤ Cr(2−ε)/ε

(∫
B(a,2r)

|∇u|2−ε dx

)(1−ε)/(2−ε)

= CrεJp(a, 2r)(p−1)/p .

To check (2.12) note that |ϕ(x)| ≤ |v(x)|. As v is continuous with zero mean
value, ‖ϕ‖L∞(B(a,2r)) ≤ ∣∣oscB(a,2r) v

∣∣. To estimate the oscillation, we employ
the fact that ∇v ∈ Lq1 for q1 = p′ = 2−ε

1−ε > 2. The Sobolev imbedding theorem,
combined with estimate (2.10), yields∣∣∣ osc

B(a,2r)
v
∣∣∣ ≤ C(ε)r1−2/q1‖∇v‖Lq1 (B(a,2r))

≤ C(ε)r1−2/q1

(∫
B(a,2r)

|∇u|(1−ε)q1 dx

)1/q1

.

As before, the right hand side is equal to C(ε)rεJp(a, 2r)(p−1)/p . �

The same proof yields the following.

Corollary 2.3 Both inequalities (2.11) and (2.12) of Lemma 2.2 are valid if one
replaces ϕ by v. �

Step 3. Estimates of the left-hand side. We compute (Latin indices are summed
from 1 to 3, Greek indices from 1 to 2):∫

Ω

∇u∇ϕdx =
∫

B(a,2r)

∂uk

∂xα

∂ϕk

∂xα
dx

=
∫

B(a,2r)

∂ũk

∂xα

∂vk

∂xα
dx

+
∫

B(a,2r)

∂ζ

∂xα

(
∂uk

∂xα
vk − ∂vk

∂xα
(u− [u]A)

)
dx =: I1 + I2.

Since div βk = 0 in the sense of distributions,

I1 =
∫

B(a,2r)

∂ũk

∂xα

∂vk

∂xα
dx =

∫
B(a,2r)

∂ũk

∂xα

(
∂vk

∂xα
+ βk

α

)
dx

=
∫

B(a,2r)
|∇ũ(x)|p dx ≥

∫
B(a,r)

|∇u(x)|p dx

(in the second line we use the definition of Gk, vk and βk, and then shrink the
domain of integration).

As ∇ζ is supported only in the annulus A,

|I2| ≤ C

r

∫
A

(
|v| |∇u| + |∇v| |u− [u]A|

)
dx .

We apply here Hölder inequality with exponents p′ = (2 − ε)/(1 − ε) and p =
2 − ε = (1 − ε)p′, and then Poincaré inequality to estimate integrals of |v|p′

and
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|u− [u]A|p. A bound for
∫ |∇v|p′

follows from the Hodge decomposition estimate
(2.10) Finally, we use Cauchy inequality to separate integrals over the annulus from
those over B(a, 2r). Here is the whole (routine) computation:

|I2| ≤ C

r

[(∫
B(a,2r)

|v|p′
dx

)1/p′(∫
A

|∇u|p dx
)1/p

+
(∫

B(a,2r)
|∇v|p′

dx

)1/p′(∫
A

|u− [u]A|p dx
)1/p

]

≤ C

(∫
B(a,2r)

|∇v|p′
dx

)1/p′(∫
A

|∇u|p dx
)1/p

≤ C

(∫
B(a,2r)

|∇u|p dx
)1/p′(∫

A

|∇u|p dx
)1/p

≤ C

∫
A

|∇u|p dx+
1
8

∫
B(a,2r)

|∇u|p dx . (2.13)

Both estimates of I1 and I2 yield∫
Ω

∇u∇ϕdx ≥
∫

B(a,r)
|∇u|p dx− C0

∫
A

|∇u|p dx − 1
8

∫
B(a,2r)

|∇u|p dx ,
(2.14)

with some absolute constantC0. (Note that no estimates of the divergence free field
βk were necessary.)

Step 4. Estimates of right-hand side. This is the heart of proof. The integral

−2
∫

Ω

H(u)ϕux1 ∧ ux2 dx

is a linear combination (with coefficients ±2) of terms

Jlkj =
∫

Ω

H(u)ϕl det (Duk, Duj) dx ,

with (l, k, j) being a permutation of (1, 2, 3). We show how to estimate J = J123;
other terms can be handled in the same way. For sake of brevity, let w: = H(u)ϕ1.
Integrating by parts, we obtain

|J | =
∣∣∣∣
∫

IR2
ζ1(u2 − [u2]a,2r) det (Dw,Du3) dx

∣∣∣∣
where ζ1 is a function of classC∞

0 (B(a, 3r)) with ζ1 ≡ 1 onB(a, 2r) and |∇ζ1| ≤
2/r. To bound this integral, we employ a theorem of Coifman, Lions, Meyer and
Semmes [3, Theorem II.1] combined with the duality of Hardy space and the space
of functions of bounded mean oscillation [23, Chapter IV]. This yields1

|J | ≤ C‖ζ1(u2 − [u2]a,2r)‖BMO(IR2) ‖ det (Dw,Du3)‖H1(IR2)

≤ C‖ζ1(u− [u]a,2r)‖BMO(IR2) ‖Dw‖L2(B(a,2r)) ‖∇u‖L2(B(a,2r)) .(2.15)

1 The reasoning requires some care; one first extends the gradients of w and u3 to the
whole space, without increasing their norms too much, and then applies Theorem II.1 of [3]
and Fefferman duality theorem [9]. For a more detailed explanation, we refer to [24], [22].
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Employing Lemma 2.2, we quickly check that

‖Dw‖L2(B(a,2r)) ≤ ‖H‖∞‖∇ϕ‖L2(IR2) + ‖ϕ‖∞‖∇(H ◦ u)‖L2(B(a,2r))

≤ C(H, ε)rε(1 + ‖∇u‖L2(B(a,2r)))Jp(a, 2r)(p−1)/p

≤ C(H, ε)rεMp(a, 4r)(p−1)/p . (2.16)

(With no loss of generality one can assume here that
∫

B(a,2r) |∇u|2 dx ≤ 1. Such
estimate holds anyway when 2r < R0, withR0 to be specified later.) We also claim
that

‖ζ1(u− [u]a,2r)‖BMO(IR2) ≤ CMp(a, 4r)1/p . (2.17)

Inserting (2.17) and (2.16) into the right-hand side of (2.15), and estimating other
terms Jlkj in the same way, we obtain

2
∣∣∣∣
∫

Ω

H(u)ϕux1 ∧ ux2 dx

∣∣∣∣ ≤ C1(H, ε)rεMp(a, 4r)‖∇u‖L2(B(a,2r)) , (2.18)

with C1(H, ε) that is finite for every positive ε but blows up to infinity as ε goes to
zero. It remains to verify (2.17).

Step 5. Proof of the BMO estimate (2.17). Recall that

‖f‖BMO(IR2) := sup
z∈IR2,ρ>0

∫
B(z,ρ)

∣∣f − [f ]z,ρ

∣∣ dx .
Let f = ζ1(u− [u]a,2r). We consider two cases. If ρ > r/2, then

∫
B(z,ρ)

∣∣f − [f ]z,ρ

∣∣ dx ≤ 2
πρ2

∫
B(z,ρ)

|f | dx ≤ 8
πr2

∫
B(a,3r)

∣∣u− [u]a,2r

∣∣ dx .
By Poincaré and Hölder inequalities, the last integral does not exceed
Mp(a, 3r)1/p.

If, on the other hand, ρ ≤ r/2, then we can assume that B(z, ρ) ⊂ B(a, 4r),
since otherwise f vanishes on B(z, ρ). Set g = u − [u]a,2r. For x ∈ B(z, ρ), by
triangle inequality,

|f(x) − [f ]z,ρ| ≤ |ζ1(x)g(x) − ζ1(x)[g]z,ρ| + |ζ1(x)[g]z,ρ − [ζ1g]z,ρ|
≤ |g(x) − [g]B(z,ρ)| +

C

rρ

∫
B(z,ρ)

|g| dy (2.19)

(note that |ζ1(x)− ζ1(y)| ≤ C|x− y|/r). As ∇g = ∇u, we have, by Poincaré and
Hölder inequalities,

∫
B(z,ρ)

|g − [g]z,ρ| dx ≤ C

(
ρp−2

∫
B(z,ρ)

|∇g|p dx
)1/p

≤ CMp(a, 4r)1/p.

(2.20)
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The second term on the right-hand side of (2.19),C(rρ)−1
∫

B(z,ρ) |g| dy, is simply
constant, and does not change after averaging. Applying consecutively Schwarz,
Poincaré–Sobolev, and Hölder inequalities, we estimate it as follows:

C

rρ

∫
B(z,ρ)

|g| dy ≤ C

r

(∫
B(z,ρ)

|g|2 dy
)1/2

≤ C

r

(∫
B(a,4r)

|u− [u]a,2r|2 dy
)1/2

≤ C

r

∫
B(a,4r)

|∇u| dy ≤ CMp(a, 4r)1/p . (2.21)

The desired BMO estimate (2.17) follows at once from (2.20) and (2.21).

Step 6. Choice of ε0. We combine inequalities (2.14) and (2.18). Dividing both
sides of the resulting inequality by rε = r2−p, we obtain

Jp(a, r) ≤ 1
4
Jp(a, 2r) + C0

(
2εJp(a, 2r) − Jp(a, r)

)
(2.22)

+ C1(ε)Mp(a, 4r)‖∇u‖L2(B(a,2r))

Fix ε0 > 0 so that 2ε0C0 ≤ C0 + 1
4 . Thus, for all ε ∈ (0, ε0), we have

(C0 + 1)Jp(a, r) ≤
(
C0 +

1
2

)
Jp(a, 2r) + C1(ε)Mp(a, 4r)‖∇u‖L2(B(a,2r)) .

ChoosingR0(ε) so small that ‖∇u‖L2(B(a,2r)∩IB) ≤ (
4C1(ε)

)−1
for every a ∈ IB

and every r < 1
2R0(ε), we obtain for such radii

Jp(a, r) ≤ λ0Mp(a, 4r) with λ0 =
C0 + 3

4

C0 + 1
< 1.

For any smaller ball B(z, ρ) ⊂ B(a, r) we have B(z, 4ρ) ⊂ B(a, 4r). Thus,

Jp(z, ρ) ≤ λ0Mp(z, 4ρ) ≤ λ0Mp(a, 4r) .

Upon taking the supremum over all B(z, ρ) ⊂ B(a, r), we obtain (2.3). �

Fixing an ε ∈ (0, ε0), where ε0 is specified in Lemma 2.1, and using the decay
inequality (2.3), one shows, via a standard iterative argument, that for each compact
subset K ⊂ Ω there exists a constant CK such that∫

B(a,ρ)
|∇u|2−ε dy ≤ CKρ

ε+µ for all a ∈ K and all ρ < dist (K, ∂Ω).

(2.23)
Here, µ = log4(1/λ0) > 0, where λ0 is the constant from Lemma 2.1. Hence,
the assumptions of Morrey’s Dirichlet Growth lemma (see, e.g., Giaquinta’s mono-
graph [10], Chapter 3, pages 64–65) are satisfied. Thus it follows that u is (locally)
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of class Cγ with γ := µ/(2 − ε). More precisely, when 0 < r ≤ R ≤ R0 and
R ≤ 1 − |a|, the following scale invariant inequalities hold:

Mp(a, r) ≤ λ−1
0

( r
R

)µ

Mp(a,R) , (2.24)

|u(x) − u(y)| ≤ C

( |x− y|
R

)γ

Mp(a,R)1/p, x, y ∈ B(a, R
2 ). (2.25)

Interior Hölder continuity follows.

The proof of higher interior regularity, Corollary 1.2, is standard. First, one
shows that u ∈ C1,γ for some γ > 0. This follows e.g. from a theorem of Tomi
[25]. Then, C2,β regularity of u (with any β < 1) follows from a classical Lq and
potential theoretic bootstrap reasoning. We omit the details.

3 Boundary regularity

We begin with the following simple lemma. It is a counterpart of [15, Lemma 3],
adapted to our purposes: one assumes that Morrey type estimates hold below natural
exponents.

Lemma 3.1 Let u ∈ W 1,2(IB, IRN ). Assume that for some p ≤ 2 and some µ > 0
the inequality

Mp(a, r;u) ≤ C
( r
R

)µ

Mp(a,R;u)

holds for all a ∈ IB and for all 0 < r < R ≤ min(R0, 1−|a|), whereR0 is a fixed
positive number. If the traceψ: = u

∣∣
∂IB is continuous on∂IB, thenu ∈ C0(IB, IRN ).

Proof. By Morrey’s Dirichlet Growth Theorem, u is Hölder continuous in the
interior of the unit disc IB. Moreover, the scale invariant inequality (2.25) holds. It
remains to show that u is continuous at boundary points.

Write u(x1, x2) = v(ρ, θ), where (ρ, θ) denote standard polar coordinates. Fix
a point y0 ∈ ∂IB, y0 = (1, θ0) in polar coordinates. Set

ζ(θ): = ψ(exp(iθ)) .

Let ω denote the modulus of continuity of ζ. Define

Σp(δ): = sup{Mp(a, δ)1/p : dist (a, ∂IB) ≥ δ} .

Recall that Mp(a, r) ≤ const
(∫

B(a,r) |∇u|2 dx
)p/2

. Hence, Σp(δ) → 0 as δ →
0.

Let x = (x1, x2) = ρ exp(iθ) be an interior point of IB. We assume that
1 − ρ < R0. Put δ = 1 − ρ. Note that for any 0 < σ < 2π we have

∫ θ+σ

θ

∫ 1

1−δ

|vr(r, ϑ)|2 rdrdϑ ≤
∫

{x : 1−δ≤|x|≤1}

|∇u|2 dx =: I(δ) . (3.1)
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Thus, ∫ θ+σ

θ

∫ 1

1−δ

|vr(r, ϑ)|2 drdϑ ≤ I(δ)
1 − δ

.

Therefore, there exists a set Eσ ⊂ (θ, θ + σ) having positive one-dimensional
Lebesgue measure and such that∫ 1

1−δ

|vr(r, θ1)|2 dr ≤ I(δ)
σ(1 − δ)

, lim
r→1−

v(r, θ1) = ζ(θ1) (3.2)

for every θ1 ∈ Eσ . For such θ1, applying Schwarz inequality and (3.2), we obtain

|ζ(θ1) − v(ρ, θ1)| = |v(1, θ1) − v(ρ, θ1)| ≤
∫ 1

ρ

|vr(r, θ1)| dr (3.3)

≤ (1 − ρ)1/2
(∫ 1

ρ

|vr(r, θ1)|2 dr
)1/2

≤
(
δ

σ

)1/2 √
I(δ)

(1 − δ)1/2 .

We set now σ = 1
4δ. By (2.25), for any point x′ ∈ B(x, 1

2δ) one has

|u(x) − u(x′)| ≤ C0

( |x− x′|
δ

)γ

Mp(x, δ)1/p ≤ C0

( |x− x′|
δ

)γ

Σp(δ) .

(3.4)
Pick x′ ∈ B(x, 1

2δ) with radial coordinate equal to that of x, and angular coordinate
θ1 ∈ Eσ . By triangle inequality,

|u(x) − ψ(y0)| ≤ |u(x) − u(x′)| + |u(x′) − ψ(x′/|x′|)| + |ψ(x′/|x′|) − ψ(y0)| .
We estimate the first and the second term on the right-hand side, applying (3.4) and
(3.3), respectively. Finally, continuity of ζ and choice of θ1 yield

|ψ(x′/|x′|) − ψ(y0)| = |ζ(θ1) − ζ(θ0)| ≤ ω(|θ1 − θ0|) ≤ ω
(|θ − θ0| + δ

4

)
.

Combining all estimates, and plugging in δ = 1 − ρ, we obtain

|u(x) − ψ(y0)| ≤ C0Σp(1 − ρ) + 2
(
I(1 − ρ)

ρ

)1/2

+ ω
(|θ − θ0| + 1−ρ

4

)
.

For x → y0, i.e. for ρ → 1 and θ → θ0, the right hand side of the last inequality
tends to zero. The proof is complete now. �

I am grateful to Stefan Hildebrandt who carefully explained to me a simple
proof of this lemma in the case p = 2.

By Lemma 2.1 of the previous Section, all weak solutions of the H-surface
system satisfy uniform Morrey-type decay estimates on (small) balls contained in
IB. Therefore, every weak solution uwhich has continuous trace on ∂IB, automati-
cally satisfies the assumptions of Lemma 3.1 for some p > 2. Theorem 1.3 follows
immediately.
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4 Remarks and comments

4.1 An application to harmonic maps

The method described in detail in Section 2 can be also applied to obtain a new proof
of regularity of harmonic maps from surfaces into compact Riemannian manifolds,
[13], [14, Chapter 4]. The original proof of Hélein relies on the properties of Lorentz
spaces. The construction of test functions through the Hodge decomposition of
|∇u|−ε∇u (or, strictly speaking, of the coefficients of its projections onto the
tangent space of image manifold) can replace Lorentz spaces also in this case. We
sketch the reasoning briefly.

Let u ∈ W 1,2(IB,N ) be a weakly harmonic map from the two dimensional
disc IB into a smooth, compact, closed n-dimensional Riemannian manifold N .
We assume, as it is usually done, that N is isometrically embedded in a Euclidean
space IRd. Weak harmonicity of u means that ∆u ⊥ TN , or, to be precise, that

2∑
α=1

∫
IB

〈
∂u

∂xα
,
∂ϕ

∂xα

〉
dx = 0 (4.1)

for every ϕ ∈ L∞ ∩W 1,2
0 (IB, IRd) with ϕ(x) ∈ Tu(x)N a.e.

Theorem 4.1 (Hélein) Every weakly harmonic map u ∈ W 1,2(IB,N ) is contin-
uous (and therefore smooth).

It is known [14, Lemma 4.1.2] that without loss of generality one can assume
that N is diffeomorphic to an n-dimensional torus. Then, to prove Theorem 4.1
via the method of Section 2, one checks that the conclusion of Lemma 2.1 holds
true also for weakly harmonic maps. We fix a ∈ IB and r < 1

4dist (a, ∂IB). To
construct test functions for the system (4.1), we employ the Coulomb moving frame
[14, Lemma 4.1.3], i.e. a map

e = (e1, e2, . . . , en) : B(a, 4r) → IRn×d

that satisfies the following conditions:

(i) (ei(x))i=1,...,n is an orthonormal basis of Tu(x)N for a.e. x ∈
B(a, 4r);

(ii)
∫

B(a,4r) |∇e|2dx ≤ C
∫

B(a,4r) |∇u|2dx;

(iii)
∑2

α=1
∂

∂xα

〈
∂ei

∂xα
, ej

〉
= 0 for all i, j = 1, . . . , n.

Lorentz space estimates for de, [14, Lemma 4.1.7], are not necessary here.

Test functions and decay estimates. As in Section 2, we setA = B(a, 2r)\B(a, r)
and ũ = ζ(u−[u]A), where ζ ∈ C∞

0 (B(a, 2r)), ζ ≡ 1 onB(a, r), and |∇ζ| ≤ 2/r.
Introduce differential forms

ωi: =
2∑

α=1

|dũ|−ε

〈
∂ũ

∂xα
, ei

〉
dxα ≡ |dũ|−ε 〈dũ, ei〉 , i = 1, ..., n,



240 P. Strzelecki

and apply the Hodge decomposition [17, Theorem 6.1] to write

ωi = dvi + d∗βi ,

where vi ∈ W 1,p′
(IR2), βi ∈ W 1,p′

(IR2, Λ2), and p′ stands for the Hölder conju-
gate of p = 2 − ε.

By (i) above, we have∫
B(a,r)

|du|p dx ≤
n∑

i=1

∫
IR2

〈dũ, ei〉 · (dvi + d∗βi) ;

the dot denotes the standard scalar product of 1-forms. Now,∣∣∣∣
∫

IR2
〈dũ, ei〉 · d∗βi

∣∣∣∣ ≤ C0‖du‖L2(B(a,2r))‖du‖p
Lp(B(a,2r)).

This follows from the duality of Hardy space and BMO combined with [3, Theorem
II.1]. (One has to take the Lp′

-bounds of d∗βi into account, see [17].) To estimate
the crucial term

Ti: =
∫

IR2
〈dũ, ei〉 · dvi ,

we employ (4.1) with ϕ = ζ(vi − const)ei. One checks that

Ti = −
∑
α,j

∫
IR2

〈
∂u

∂xα
,

〈
∂ei

∂xα
, ej

〉
ej

〉
ζ(vi − const) dx

+ integrals (over A) that contain derivatives of ζ.

Performing one integration by parts, we can repeat almost verbatim the proofs of
inequalities (2.13) and (2.18) to verify that

|Ti| ≤ C1

∫
A

|du|p dx+ C2(ε)rεMp(a, 4r)‖∇u‖L2(B(a,4r)) .

Next, we proceed as in the last part proof of Section 2 to obtain interior Morrey
type decay estimates. This yields Hölder continuity; higher regularity of u follows
from a classical bootstrap reasoning.

4.2 Problems involving the n-Laplace operator

If, instead of assuming that H is just Lipschitz and bounded, one adds a decay
assumption

(1 + |y|)|∇H(y)| ≤ C, (4.2)

(which was used already by E. Heinz in [12]), then the whole proof of local regularity
of weak solutions of (1.1) can be shortened drastically. Namely, one checks that
(u − const)H(u) belongs to BMO, and therefore ζ(u − const) can be used as a
test function. In this case, one obtains directly a decay estimate for

∫
Br

|∇u|2 (see
[24], where a related hole-filling trick is explained carefully).

In fact, assuming (4.2), one can prove the following.
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Theorem 4.2 LetH: IRn+1 → IR,n > 2, be a bounded Lipschitz function. Assume
that (4.2) holds for all y ∈ IRn+1, and let Ω ⊂ IRn be a bounded domain with
boundary of class C1.

Then, every weak solution u ∈ W 1,n(Ω, IRn+1) of the system

div (|∇u|n−2∇u) = H(u)ux1 ∧ . . . ∧ uxn
(4.3)

is locally Hölder continuous in Ω, and if the trace u
∣∣
∂Ω

is continuous, then u is
continuous up to the boundary of Ω.

It is known that under less demanding assumptions on H one can prove reg-
ularity for bounded weak solutions (Duzaar and Fuchs [5]) or conformal weak
solutions (Mou and Yang [21]). For minimizing weak solutions a similar theorem
has been obtained by Duzaar and Grotowski [6]. Mou and Yang conjecture that
weak solutions are of class C1,α if H ◦ u is just bounded, and the problem is wide
open for n > 2. (For n = 2 the question is also not yet fully settled; see, however,
the paper of Bethuel and Ghidaglia [2].)

To prove Theorem 4.2, one takes ζ(u − const) as a test function. By (4.2),
ζ(u − const)H(u) is of class W 1,n ⊂ BMO, and the hole-filling argument [24]
can be carried out. This leads to interior Hölder continuity. Then, continuity up to
the boundary can be obtained upon introducing minor changes to the proof from
Section 3. We leave the details as an exercise for interested readers.

(The method of Section 2 breaks down. It is easy to see that the power of
maximal function Mp which enters into the estimates of the right hand side is
equal to 1

n−ε + 1−ε
n−ε . For n > 2 this exponent is smaller than 1, and the resulting

inequality cannot be iterated in a reasonable way.)
A similar reasoning implies that a counterpart of Theorem 4.2 holds for weak

solutions u ∈ W 1,n(Ω, IRn+1) of the system

div (|∇u|n−2∇u) = H(x)ux1 ∧ . . . ∧ uxn
, (4.4)

where H is a function of class W 1,q(IRn) for some q > n. Again, we omit the
details.

We hope that modifications of the method of Section 2, combined with a stability
result of Iwaniec [16, Theorem 8.2], can be used to cope with regularity questions
for other nonlinear conformally invariant problems involving the n-Laplacian.
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11. Grüter, M.: Regularity of weak H-surfaces. J. Reine Angew. Math. 329 (1981), 1–15.
12. Heinz, E.: Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Sys-
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Note added in proof. When this paper has already been accepted for publication,
the author has learned that the first part of Theorem 4,2 (interior regularity) had
been obtained earlier by Wang [27].


