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1 Introduction

The story begins with the paper of M̈uller, [59], who — for the sake of an
application to nonlinear elasticity — proved that if the Jacobian determinantJu

of a Sobolev mapu ∈ W1,n
loc (Rn,Rn) is nonnegative, then it belongs locally to

L logL. The result is quite intriguing, since a priori Hölder inequality implies
only thatJu ∈ L1 and one does not suspect any higher integrability.

If one does not assume thatJu is nonnegative, then, as Coifman, Lions, Meyer
and Semmes [14] have proved,Ju belongs to the local Hardy spaceH 1

loc. Since
a nonnegative function belongs to the local Hardy space if and only if it belongs
locally to L logL, the result of Coifman, Lions, Meyer and Semmes generalizes
that of Müller.

In fact, Coifman, Lions, Meyer and Semmes proved more. Namely, for 1<
p < ∞, the scalar product of a divergence free vector fieldE ∈ Lp(Rn,Rn) and
a curl free vector fieldB ∈ Lp/(p−1)(Rn,Rn) belongs to the Hardy spaceH 1.
A priori, Hölder inequality implies integrability of this expression only. Note
that the Jacobian is of this form. The discovery that many algebraic expressions
involving partial derivatives belong to the Hardy space turned out to be important
and widely applicable in nonlinear partial differential equations. This was first
shown by H́elein, [40], [41], [42]. Let us describe briefly his result.

Consider mapsu : Bn → Sm from the n-dimensional ball to them-
dimensional sphere such that thep-energy ofu, given by the functional
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Ep(u) =
∫

Bn

|∇u|p =
∫

Bn

(m+1∑
i ,j =1

(
∂ui

∂xj

)2)p/2

, (1)

is finite. HereSm is the unit sphere inRm+1, so thatu = (u1, . . . ,um+1) is a map
into R

m+1 satisfying
∑

j u2
j = 1 a.e. It is natural to assume thatu belongs to the

Sobolev spaceW1,p, in the sense that all the coordinate functionsuj belong to
W1,p(Bn).

Critical points with respect to variations in the range (see the definition in
Sect. 3) of the functionalEp satisfy the Euler–Lagrange system

−div (|∇u|p−2∇u) = u|∇u|p.
This is a system ofm + 1 equations (sinceu takes values inRm+1) which, for
n = p = 2, reduces to

−∆u = u|∇u|2. (2)

Hélein proved that in this particular situationu is smooth. (It was known that
continuity implies smoothness ofu so it was enough to prove thatu is continu-
ous.) Using the constraint condition

∑
i u2

i = 1, Hélein could apply the theorem
of Coifman, Lions, Meyer and Semmes to check that the right hand side of (2)
belongs in fact to the Hardy space; hence, (2) could be rewritten in an equivalent
form ∆u = h, with h ∈ H 1. Now, using the fact that convolution with the fun-
damental solutionI2 of the Laplacian is a bounded operator fromH 1 to W2,1,
he concluded thatu is of classW2,1 and hence continuous. The boundedness of
the convolution operator follows from the theory of Hardy spaces. Indeed, com-
puting the second order derivatives ofI2 ∗ h we obtain Riesz operators which,
due to the theory of singular integrals, are bounded onH 1.

Later Fuchs [31], and Strzelecki [67], generalized Hélein’s result to the case
n = p ≥ 2. We follow the argument of [67]. Here again, applying the result
of [14], one obtains an equation of the form div (|∇u|p−2∇u) = h with h ∈ H 1.
Whenp > 2, the convolution with the fundamental solution is not available any
more. Instead of that Strzelecki employed the duality ofH 1 and BMO. Namely,
W1,p(Bp) ⊂ BMO, so, for η supported on a ballB, test functions of the form
η(u − uB) can be integrated againsth = u|∇u|p. This leads to Caccioppoli type
estimates which in turn imply Ḧolder continuity ofu.

There are, of course, many other papers which employ similar ideas. To
mention just a few of them (we do not claim that the list below is complete),
let us mention here Evans [18], Evans and Müller [19], Bethuel [1], Bethuel
and Ghidaglia [2], Mou and Yang [58], M̈uller andŠveŕak [60], Semmes [65],
Strzelecki [68], Takeuchi [70], and Toro and Wang [71]. All these authors use
Hardy spaces in order to obtain the regularity of solutions to some nonlinear
partial differential equations.

The aim of this paper is to seek for counterparts of those results in situations
where Hardy spaces are not available but a weak counterpart ofH 1 – BMO
duality still holds true. In fact, in the papers mentioned above (at least in some
of them), instead of using the theory of Hardy spaces, it suffices to apply a
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weaker inequality which is available in a much more general setting. Already
Chanillo [9] has shown how to bypass theH 1 – BMO duality in the Euclidean
case of stationary harmonic maps. However, his proof heavily relies on harmonic
analysis inR

n, and does not seem to be applicable in our much more general
situation. In the simplified approach to duality inequality we use some ideas of
Semmes, [65].

We deal with a family of vector fieldsX1, . . . , Xk in R
n satisfying the so-

called Ḧormander’s condition (see Sect. 2 for the definition and more details).
Let Ω ⊂ R

n be a bounded domain. Any map which is stationary with respect to
variations in the range for the energy functional

Ep(u) =
∫
Ω

|Xu|p , (3)

defined on the class of maps into the Euclidean sphereSm, satisfies a system of
nonlinear subelliptic equations,

−
k∑

j =1

X∗
j (|Xu|p−2Xj u) = u|Xu|p, (4)

and the constraint
∑

j u2
j = 1. Such maps will be calledsubelliptic p-harmonic.

The idea of generalizing the concept ofp-harmonic maps to the setting of
Hörmander vector fields, or even more general setting of metric spaces is not
new, see Jost [46], [47], and Jost and Xu [48].

With a system of vector fields satisfying Hörmander’s conditions one can
associate the so called homogeneous dimension (see Sect. 2). This dimension is,
in general, greater than Euclidean dimension but, roughly speaking, with respect
to the vector fieldsXj it behaves like the classical Euclidean dimension for the
standard vector fields∂1, . . . , ∂n.

We prove that whenp is equal to the homogeneous dimension associated to
a given system of vector fields, the solutions to the above nonlinear system with
constraints are Ḧolder continuous (Theorem 3.1).

Our motivation is twofold. First, we show that one does not have to use the
theory of Hardy spaces; instead, a weaker version of duality inequality can be
applied. We prove in Lemma 3.2 that such a duality inequality holds true also for
general Ḧormander vector fields (when there is no theory of Hardy spaces). The
second goal is to contribute to the theory of nonlinear subelliptic equations —
during last decade, an area of intensive research; see, e.g., Buckley, Koskela and
Lu [4], Capogna, Danielli and Garofalo [5], [7], Citti [11], Citti and Di Fazio
[12], Citti, Garofalo and Lanconelli [13], Danielli, Garofalo and Nhieu [17],
Franchi and Lanconelli [26], Franchi, Gutiérrez and Wheeden [25], Garofalo
and Lanconelli [32], Garofalo and Nhieu [34], Hajl´ asz and Koskela [38], [39],
Jerison and Lee [44], [45] Jost and Xu [48], Lu [52], [53], [54], Vodop’yanov,
[74], Vodop’yanov and Chernikov [75], Vodop’yanov and Markina [76], Xu [77],
[78], and their references. (We did not mention here any papers concerned with
the linear theory of subelliptic equations.)
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We develop a technique which allows one to extend the above mentioned
results of H́elein, Evans, Bethuel and others to the setting of vector fields. Only
one particular question is treated in this paper, but similar methods can be used
to deal with other problems.

Our notation is fairly standard. The average value will be denoted by

uE =
∫

E
u dµ =

1
µ(E)

∫
E

u dµ.

The Lebesgue measure of the setA will be denoted by|A|. Balls will be denoted
by B. The ball concentric withB and with radiusσ times that ofB will be
denoted byσB. By C we will denote a general constant; it can change even in a
single string of estimates. We say that two quantities are comparable, and write
A ≈ B, if there is a constantc ≥ 1 such thatA/c ≤ B ≤ cA

Outline of the paper.In the next section, we fix the rest of notation and gather
all necessary “subelliptic technicalities”. The precise statement and proof of our
regularity result for subellipticp-harmonic maps is given in Sect. 3.

2 Auxiliary results

The aim of the section is to recall some definitions and collect the results which
will be used in the sequel. The reader who is familiar with the theory of vector
fields satisfying Ḧormander’s condition can jump directly to the statement of the
main theorem in Sect. 3, and then, during the lecture of the proof, she or he may
consult previous subsections.

2.1 The Ḧormander condition

Let the vector fieldsX1, X2, . . . , Xk be defined inR
n, real valued, andC∞-

smooth. We say that these vector fields satisfyHörmander’s conditionprovided
there exists an integerm such that the family of commutators ofX1, X2, . . . , Xk

up to lengthm i.e., the family of vector fields

X1, . . . ,Xk , [Xi1,Xi2], . . . , [Xi1, [Xi2, [. . . ,Xim]] . . .], ij = 1,2, . . . , k,

spans the tangent spaceR
n at every point ofRn.

Given any real valued Lipschitz continuous functionu ∈ Lip (Rn), we define

Xj u(x) = 〈Xj (x),∇u(x)〉 , j = 1,2, . . . , k.

The vector with componentsXi u is denoted byXu; its length is given by

|Xu(x)|2 =
k∑

j =1

|Xj u(x)|2.

By X∗
j we will denote formal adjoint ofXj on L2, i.e.,
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∫
Rn

(X∗
j u)v dx = −

∫
Rn

uXj v dx for all u, v ∈ C∞
0 (Rn).

Note thatX∗
j does not have to be a vector field. In general, it is an operator of

the formX∗
j = Xj + fj , wherefj is a suitable smooth function.

If E = (E1, . . . ,Ek) is a vector field, then we simply writeX∗·E =
∑k

j =1 X∗
j Ej ,

and call this expression ageneralized divergence.

Example (Heisenberg group).In R
3 ≡ C×R, with points denoted by (x1, x2, t),

or equivalently (z, t), wherez = x1 + ix2, define the group law

(z1, t1)(z2, t2) =
(

z1 + z2, t1 + t2 + 2 Im(z1z̄2)
)
.

Then,R3 becomes a Lie group, usually denoted byH1 (the so-calledHeisenberg
group). A basis of left invariant vector fields is given by

X1 =
∂

∂x1
+ 2x2

∂

∂t
, X2 =

∂

∂x2
− 2x1

∂

∂t
, T =

∂

∂t
.

SinceX1, X2, and [X1,X2] = −4 ∂
∂t span the tangent spaceR

3 at every point, we
see that the system consisting of two vector fieldsX1, X2 satisfies Ḧormander’s
condition. An important property of the Heisenberg group is that Lebesgue mea-
sure coincides with the left and right invariant Haar measure. Heisenberg group
the simplest nontrivial example of the so-called Carnot groups (known also
as stratified groups). For a deeper treatment of this topic see e.g. Folland and
Stein [22], and Stein [66]. �

With a family of vector fields satisfying Ḧormander’s condition one can
associate a suitable metric that we next describe. We say that an absolutely
continuous curveγ : [a,b] → R

n is admissibleif there exist functionscj (t),
a ≤ t ≤ b satisfying

k∑
j =1

cj (t)2 ≤ 1 and γ̇(t) =
k∑

j =1

cj (t)Xj (γ(t)).

Note that if the vector fieldsXj are not linearly independent at some point, then
the coefficientscj are not unique.

The distanceρ(x, y) is defined as the infimum of thoseT > 0 for which there
exists an admissible curveγ : [0,T] → R

n with γ(0) = x and γ(T) = y. This
metric is known in the literature under many different names. We like the name
Carnot–Carath́eodory metricand use it throughout this paper. A priori it is not
clear whether this is a metric i.e. it is not clear whether one can connect any two
points ofRn by an admissible curve. This is however the contents of the theorem
of Chow, [10]. For more recent proofs, see e.g. Gromov, [36], Nagel, Stein and
Wainger [61] or Varopoulos, Saloff-Coste and Coulhon [73]. Balls with respect
to metric ρ are calledmetric balls and denoted bỹB. Moreover, diamF will
always denote the diameter of a setF with respect to the metricρ.

Nagel, Stein and Wainger [61] proved many important properties of this
metric that we next recall (for proofs see also [36], [73, Sect. IV.5]).
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Theorem 2.1. Let X1, . . . ,Xk be as above. Then for every relatively compact open
setΩ ⊂⊂ R

n there are constants C1, C2 andλ ∈ (0,1] such that

C1|x − y| ≤ ρ(x, y) ≤ C2|x − y|λ (5)

for every x, y ∈ Ω.

Thus, identity map gives a homeomorphism between (R
n, ρ) and R

n with the
Euclidean metric.

Moreover if Ω is bounded with respect to the Euclidean metric, then it is
bounded with respect toρ. Unfortunately the converse to the last statement is,
in general, false. Indeed, if one of the vector fields isx2

1 ∂/∂x1, then it is easy
to see that the Carnot–Carathéodory distance to infinity is finite. The problem is
caused by the rapid growth of the coefficient of the vector field.

This leads to some technical problems (which are not very difficult to cope
with, and appear mostly on the notational level). However, we would like to
avoid them. The following result of Garofalo and Nhieu, [33, Proposition 2.11]
shows when such an unpleasant phenomenon does not occur.

Proposition 2.2. Let X1, X2, . . . , Xk be as above and suppose that in addition,
they have coefficients which are globally Lipschitz onR

n. Then a subset ofRn

is bounded with respect to the Carnot–Carathéodory metric if and only if it is
bounded with respect to the Euclidean metric.

The same claim holds for Carnot groups, see e.g. [33, Proposition 2.8].
To avoid the technical problems mentioned above we assume in the remaining

part of the paper that the above holds i.e., we assume that a subset ofR
n is

bounded with respect to the Carnot–Carathéodory metric if and only if it is
bounded with respect to the Euclidean metric.

Now we can state the second part of the result of Nagel, Stein and Wainger.

Theorem 2.3. Let X1, X2, . . . , Xk be as above. Then for every bounded open set
Ω ⊂ R

n there exists C≥ 1 such that one has

|B̃(x,2r )| ≤ C |B̃(x, r )| (6)

whenever x∈ Ω and r ≤ 5 diamΩ.

Without the above additional assumption, inequality (6) holds only forΩ
bounded with respect to the Euclidean metric andr < r0 for somer0 depending
on Ω. We could haver0 < diamΩ, since it could happen that̃B(x,diamΩ)
“touches infinity”.

Sanchez-Calle [64], and independently Nagel, Stein and Wainger [61], proved
that in any bounded domainΩ ⊂ R

n there exists a fundamental solution of the
sub-Laplacian

∆X = −
k∑

j =1

X∗
j Xj ,

with growth properties generalizing the well known ones for the fundamental
solution of the classical Laplace operator.
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By the fundamental solution we mean a functionΓ (x, y) defined inΩ ×Ω,
smooth off the diagonal and such that for everyϕ ∈ C∞

0 (Ω) we have(
∆X

∫
Ω

Γ (·, y)ϕ(y) dy
)

(x) = ϕ(x) . (7)

The growth estimates of [64] and [61] imply that, forn ≥ 3, we have

C−1 ρ(x, y)2

|B̃(x, ρ(x, y))| ≤ Γ (x, y) ≤ C
ρ(x, y)2

|B̃(x, ρ(x, y))| ,

and, forn ≥ 2,

|XiΓ (x, y)| ≤ C
ρ(x, y)

|B̃(x, ρ(x, y))| , |Xi XjΓ (x, y)| ≤ C

|B̃(x, ρ(x, y))|
for all x, y ∈ Ω. In the last two inequalities each of the differentiations can be
performed either with respect tox or to y.

In the proof of the main result (Theorem 3.1) we apply only the estimates
for the derivatives ofΓ , so the result holds for all Euclidean dimensionsn ≥ 2.

Example (continued). Abusing slightly the notation, we shall abbreviatex =
(z, t). Define acontinuous homogeneous normon the Heisenberg groupH1 by
‖x‖ = ρ(0, x), whereρ is the Carnot–Carathéodory metric associated with vector
fieldsX1, X2. For r > 0 define a dilationδr by δr (z, t) = (rz, r 2t). Dilations form
a group of automorphisms ofH1. The homogeneous norm has the following
properties:

(i) ‖ · ‖ : H1 → R+ is continuous;
(ii) ‖x−1‖ = ‖x‖;

(iii) ‖δr x‖ = r ‖x‖ for all r > 0;
(iv) ‖x‖ = 0 if and only if x = 0.

Since the metricρ is left invariant, it can be recovered from‖ · ‖ by ρ(x, y) =
‖x−1y‖. Note also thatρ commutes with the dilations, i.e.ρ(δr x, δr y) = rρ(x, y).
Now it is an exercise to prove Theorems 2.1 and 2.3 in this particular situation.
Namely there exists a constantC2 > 0 and for every bounded open setΩ ⊂ H1

there exists a constantC1 ≥ 1 such that

C−1
1 |x − y| ≤ ρ(x, y) ≤ C1|x − y|1/2 wheneverx, y ∈ Ω ,

|B̃(x, r )| = C2r 4 for everyx ∈ H1 and r > 0.

One can also prove that the Hausdorff dimension ofH1 with respect to the metric
ρ is equal to 4, see Mitchell [57].

In order to get a glimpse of the behaviour ofρ, consider another homogeneous
norm ‖ · ‖′, given by the formula‖(z, t)‖′ = (t2 + |z|4)1/4. Obviously, it satisfies
the conditions (i)–(iv). Moreover,d(x, y) := ‖x−1y‖′ is a metric which commutes
with dilations. The equivalence ofd andρ is easy to prove; it follows from the
left invariance of both metrics and the fact that they commute with dilations.
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Note that no Riemannian metric is equivalent to the Carnot-Carathéodory metric
on H1.

As was shown by Folland [20] (see also [21], [49]), the fundamental solution
for the sub-Laplacian

X2
1 + X2

2 =

(
∂

∂x1
+ 2x2

∂

∂t

)2

+

(
∂

∂x2
− 2x1

∂

∂t

)2

is given byΓ ((z1, t1), (z2, t2)) = G((z1, t1)(z2, t2)−1), where

G(z, t) =
const

(t2 + |z|4)1/2
. (8)

�
Multiplying both sides of (7) byu(x) ∈ C∞

0 (Ω), integrating with respect
to x and next integrating by parts we easily obtain the following well known
representation formula.

Lemma 2.4. Let Ω ⊂ R
n be a bounded domain. Then for every u∈ C∞

0 (Ω),
and for every x∈ Ω one has

u(x) =
∫
Ω

XyΓ (y, x) · Xyu(y) dy. (9)

By a cut-off function we mean a functionϕ which is identically equal to 1 on
some metric ball, vanishes outside the twice enlarged metric ball, and such that
the length of its gradient|Xϕ| is bounded by a constant times the inverse of
the radius of this ball. Using the distance function, it is easy to construct such a
function with a bound for the Lipschitz constant instead of the pointwise bound
for the gradient. However, it is not a priori obvious that the distance function is
differentiable in any sense. Indeed, due to Theorem 2.1, the distance function is
only Hölder continuous. The fundamental solutionΓ has decay properties similar
to those ofρ. Citti, Garofalo and Lanconelli, [13], used this property to construct
smooth cut-off functions.

Lemma 2.5. Let X1,. . . , Xk be as above. Then, given open and bounded setΩ ⊂
R

n, there exists a constant C> 0 such that for every x∈ Ω and t ≤ diamΩ, one
can find a functionϕ ∈ C∞

0 (B̃(x, t)) satisfying0 ≤ ϕ ≤ 1, ϕ = 1 on B̃(x, t/2)
and |Xϕ| ≤ Ct−1.

Recently Franchi, Serapioni, and Serra Cassano [29] and Garofalo and Nhieu [33]
have independently proved weak differentiability of Lipschitz functions along
given vector fields, so one can construct cut-off functions starting directly from
the distance function.

With a family of Hörmander vector fields we can associate a Sobolev space
on an open setΩ ⊂ R

n as follows

W1,p
X (Ω) = {u ∈ Lp(Ω) : Xj u ∈ Lp(Ω) for j = 1,2, . . . , k} .
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The derivatives are understood in the distributional sense and the space is
equipped with the norm‖u‖1,p = ‖u‖p + ‖Xu‖p. It was proved independently by
Franchi, Serapioni, and Serra Cassano [29] and by Garofalo and Nhieu [34] that
C∞ functions are dense inW1,p

X (Ω). However, the main idea of the proof goes
back to an old paper of Friedrichs [30]. Besides, Sobolev functions with compact
support inΩ can be approximated by compactly supported smooth functions.

Given a bounded open setΩ ⊂ R
n we say thatQ is ahomogeneous dimension

relative toΩ if for some positive constantC we have

|B̃|
|B̃0|

≥ C

(
r
r0

)Q

, (10)

whereB̃0 is an arbitrary ball centered at some point ofΩ of radiusr0 ≤ diamΩ,
and B̃ = B̃(x, r ), x ∈ B̃0, r ≤ r0.

It is well known that doubling property implies the existence of such aQ,
see Lemma 2.7 below. However,Q is not unique and it may change withΩ.
Note that anyQ′ ≥ Q is also a homogeneous dimension. In the Heisenberg
group example we clearly have the smallest suchQ = 4, and henceG(z, t) =

const·
(
‖(z, t)‖′

)2−Q
, which looks more familiar than (8).

There are plenty of generalizations of the Sobolev imbedding theorem to
the setting of vector fields. The statement of Theorem 2.6 below can be found
for example in Franchi, Lu, and Wheeden [27], or in Capogna, Danielli, and
Garofalo [8]. Various versions of this theorem appear also in Biroli and Mosco
[3], Franchi [23], Franchi and Lanconelli [26], Franchi, Lu, and Wheeden [28], Lu
[50], [51] Garofalo and Nhieu [34], Hajl´ asz and Koskela [38], [39], Jerison [43],
Maheux and Saloff-Coste [56], Saloff-Coste [63], Varopoulos [72], Varopoulos,
Saloff-Coste, and Coulhon [73].

Theorem 2.6. Let X1,. . . ,Xk be as before. Let Q be a homogeneous dimension
relative toΩ. Given1 ≤ p < Q there is a constant C> 0 such that for every
B̃=B̃(x, r ), x ∈ Ω, and r ≤ diamΩ we have(∫

B̃
|u − ũ

B
|p∗

dx

)1/p∗

≤ Cr

(∫
B̃

|Xu|p dx

)1/p

, (11)

where p∗ = Qp/(Q − p).

The imbedding for compactly supported functions is easier and has been obtained
in Rotschild and Stein [62], Capogna, Danielli, and Garofalo [5], [6], Danielli
[16], and Franchi, Gallot, and Wheeden [24].

Note that Sobolev inequality (11) implies the Poincaré inequality(∫
B̃

|u − ũ
B
|p dx

)1/p

≤ Cr

(∫
B̃

|Xu|p dx

)1/p

, (12)

for any 1 ≤ p < ∞. Indeed, if 1≤ p < Q, then it suffices to apply Ḧolder
inequality. If 1 ≤ p < ∞ is arbitrary then, as we have already noticed, any
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numberQ′ > Q is a homogeneous dimension relative toΩ, so we always can
find Q′ > p and proceed as above.

Remark.It is much more surprising that one can also deduce Sobolev imbedding
(11) from the Poincaré inequality (12). It seems that for some particular situations
this fact was first observed independently by Grigor’yan [35], and by Saloff-Coste
[63]. Later, the same has also been established in a very general setting by many
other authors, Biroli and Mosco [3], Franchi, Lu and Wheeden [28], Garofalo
and Nhieu [34], Hajl´ asz and Koskela [38], [39], Maheux and Saloff-Coste [56],
and Sturm [69].

2.2 Whitney decomposition and partition of unity

Let Y be a metric space with metricρ and some positive Borel measureµ.
Assume thatµ is finite on bounded sets. We say thatµ is doubling onΩ ⊂ Y if
there is a constantCd ≥ 1 such that

µ(B(x,2r )) ≤ Cdµ(B(x, r )),

wheneverx ∈ Ω and r < 5 diamΩ. Note that, under the assumptions of Theo-
rem 2.3, the Lebesgue measure is doubling on any bounded open subset ofR

n

with respect to the Carnot–Carathéodory metric.
In this paper we are concerned with vector fields satisfying Hörmander’s

condition. Nevertheless, we prefer to state auxiliary technical results – whenever
it is possible – for the general case of a metric spaceY . This shows much better
which results depend on the doubling property only, and which on the other hand
require more sophisticated information about vector fields.

It is well known that doubling condition implies the lower bound for the
growth of the measure of the ball.

Lemma 2.7. Let µ be a Borel measure on a metric space Y , finite on bounded
sets. Assume thatµ is doubling on a bounded open setΩ ⊂ Y . Then

µ(B(x, r )) ≥ (2 diamΩ)−sµ(Ω)r s,

for s = log2 Cd, x ∈ Ω and r ≤ diamΩ.

This applies to Ḧormander vector fields and implies (10) withQ computed from
the doubling constant.

The familiar Whitney decomposition of an open set inR
n and an associated

partition of unity has been generalized to the setting of a metric space equipped
with a doubling measure by Coifman and Weiss [15], and Macı́as and Segovia
[55], respectively. By now it is a standard technique. For the sake of completness
we recall it with some details.

Let, as beforeΩ ⊂ Y , Ω /= Y be open; assumeµ doubling onΩ. For x ∈ Ω
definerx = dist (x, Ωc)/1000. Then{B(x, rx)}x∈Ω is a covering ofΩ. Select a
maximal subfamily of pairwise disjoint balls and denote it by{B(xi , ri )}i ∈I . It
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follows from the maximality that
⋃

i ∈I B(xi ,3ri ) = Ω. Moreover the doubling
property implies that there exists an integerN ≥ 1 (depending only on the
doubling constantCd) such that no point ofΩ belongs to more thanN balls
B(xi ,6ri ).

Now with such a (Whitney) decomposition ofΩ into balls one can associate
a Lipschitz partition of unity that we next describe. Letψ be a real smooth
function withψ ≡ 1 on [0,1], ψ ≡ 0 on [4

3,∞), 0 ≤ ψ ≤ 1. Put

ϕi (x) = ψ

(
dist (x, xi )

3ri

)
.

Thenϕi ≡ 1 on B(xi ,3ri ), ϕi ≡ 0 off B(xi ,4ri ) and the Lipschitz constant of
ϕi is Cr−1

i . We define a partition of unity in a standard way,

θi (x): =
ϕi (x)∑
k ϕk(x)

. (13)

Note that the sum in the denominator is locally finite – in fact, for any pointx
at mostN terms are nonzero.

Obviously
∑

i θi (x) ≡ 1 on Ω, and suppθi ⊂ B(xi ,6ri ). Moreover θi is
Lipschitz with the Lipschitz constantc/ri , where c depends on the doubling
constantCd only. (The proof of Lipschitz estimate forθi is easy; one has to
remember that (a) the denominator in (13) is not less than 1, and (b) if bothϕi

andϕk do not vanish at some point then their Lipschitz constants are comparable.)
In the case when the metric spaceY coincides withR

n (equipped with the
Carnot–Carath́eodory metric), an open set is bounded andµ is the Lebesgue
measure, we can additionally assume with no loss of generality that allθi are
smooth and|Xθi | ≤ Cr−1

i . This follows from the construction of the partition of
unity and existence of smooth cut-off functions, Lemma 2.5. We will apply this
construction in the proof of Lemma 3.2.

2.3 Fractional Integration Theorem

In this section we state a version of the Fractional Integration Theorem obtained
by Hajĺasz and Koskela [39].

Assume thatY is a metric space and letµ be a Borel measure onY which
is strictly positive on every ball. ForΩ ⊂ Y bounded and open,p > 0, σ ≥ 1,
andα > 0 we define

Jσ,Ωα,p g(x) =
∑

2i ≤2σdiamΩ

2iα

(∫
B(x,2i )

|g|p dµ

)1/p

. (14)

The counterpart of fractional integration theorem for these abstract ‘Riesz poten-
tial’ operators reads as follows.
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Theorem 2.8. LetΩ ⊂ Y be an open and bounded set and1 ≤ σ < ∞. Assume
that the measureµ is doubling on V = {x ∈ Y : dist (x, Ω) < 2σdiamΩ}.
Moreover assume that for some constants b, s > 0 we have

µ(B(x, r )) ≥ b
( r

diamΩ

)s
µ(Ω)

whenever x∈ Ω and r ≤ 2σdiamΩ.
If α > 0, and0< p < q < s/α, then

‖Jσ,Ωα,p g‖Lq∗ (Ω,µ) ≤ C(diamΩ)αµ(Ω)−α/s‖g‖Lq(V ,µ), (15)

where q∗ = sq/(s − αq) and C = C(α, σ,p,q,b, s,Cd).

3 Main result

As we have already said in the introduction, we are concerned with the regularity
of subelliptic p-harmonic maps into spheres. These are the critical points (with
respect to variations in the range) of the subellipticp-energy functional defined
by (3).

To be more precise, assume thatX1, . . .Xk are smooth vector fields satisfying
Hörmander’s condition inRn. From now on,Ω shall denote a bounded domain
in R

n. Assume also that a mapu = (u1,u2, . . . ,um+1) from Ω to Sm, the unit
Euclidean sphere inRm+1, belongs toW1,p

X (Ω,Sm), i.e. all distributional deriva-
tives Xi uj belong toLp(Ω) and moreover

∑
i (ui )2 ≡ 1 a.e. Then,u is said to

be asubelliptic p-harmonic mapif and only if for every compactly supported
smooth test mapψ = (ψ1, ψ2, . . . , ψm+1) one has

d
dt

∣∣∣∣
t=0

Ep (ut ) = 0 ,

whereut = u+tψ
|u+tψ| is the nearest point projection ofu+tψ ontoSm. An elementary

computation of the derivative leads to

d
dt

∣∣∣∣
t=0

Ep (ut ) = p
∫
Ω

|Xu|p−2〈Xu; X
d
dt

∣∣∣∣
t=0

ut 〉 dx

= p
∫
Ω

|Xu|p−2〈Xu; X
(
ψ − (u · ψ)u

)
〉 dx

= p
∫
Ω

|Xu|p−2〈Xu; Xψ〉 dx − p
∫
Ω

|Xu|pu · ψ dx .

The last equality follows from the constraint|u| ≡ 1, which implies thatu is
orthogonal toXj u for any choice ofj .

Thus, subellipticp-harmonic maps coincide with those (weak) solutions of
the nonlinear system of equations

− X∗ · (|Xu|p−2Xu) = |Xu|pu , (16)
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which satisfy the constraint
∑

i (ui )2 ≡ 1. In the Euclidean casek = n, Xj =
∂/∂xj , this system has the familiar form−div (|∇u|p−2∇ui ) = |∇u|pui , where
i = 1,2, . . . ,m + 1. Note that for weak solutions an appropriate integral identity,

∫
Ω

k∑
j =1

|Xu|p−2Xj uXjψ =
∫
Ω

|Xu|puψ , (17)

holds not only for everyψ ∈ C∞
0 (Ω,Rm+1), but also for everyψ ∈ W1,p

X (Ω)
with compact support inΩ. This follows from the density results mentioned in
Sect. 2.1.

Denote byQ the homogeneous dimension (relative toΩ) associated with the
Xj ’s. From now on we assume thatp = Q. Our main result reads as follows.

Theorem 3.1. Every subelliptic Q-harmonic map u∈ W1,Q
X (Ω,Sm) is locally

Hölder continuous.

Both the theorem and its proof have local nature and thus, the same result
holds if the Ḧormander vector fields are defined onΩ only. We impose some
global assumptions on the vector fields onR

n only to simplify notation.
The proof of this theorem consists of three steps. (1) First, we exploit the

constraint|u| ≡ 1 to rewrite the Euler-Lagrange system (16) in an equivalent
form. It turns out that the right side resembles the familiar expressionE · B,
where one of the two vector fields is divergence free, and the other one is a
gradient field. (2) Next, the ghost of Hardy space enters: we show in Lemma 3.2
that it is possible to integrate the right side againstη(u − const), whereη is a
smooth cutoff function (which behaves nicely on metric balls). This is the crucial
part of the proof and the main novelty of this paper. Then, after a rather standard
computation which involves a hole filling argument, we arrive at a Caccioppoli
type estimate: it turns out that – asr goes to zero –

∫
B(x,r ) |Xu|Q goes to zero

faster than some fixed, positive power ofr . (3) In the final step we apply an
abstract, metric version of the classical Dirichlet Growth Theorem and obtain
Hölder continuity ofu.

Proof. To begin with, note that a well-known trick, used by Fréd́eric Hélein
to rewrite the harmonic map equation in dimension 2, still works. SetVi =
|Xu|Q−2Xui . The constraint condition

∑
l u2

l = 1 implies
∑

l ul Vl = 0, hence

Vi =
m+1∑
l =1

ul (ul Vi − ui Vl ). (18)

By a straightforward computation one checks thatX∗ · (ul Vi − ui Vl ) = 0. Indeed,
it suffices to show thatX∗ · (ul Vi ) can be written as an expression symmetric
with respect toi and l . Multiplying by ψ ∈ C∞

0 , integrating and invoking (16),
we obtain
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∫
Ω

ul Vi · Xψ =
∫
Ω

Vi · X(ulψ) −
∫
Ω

ψVi · Xul

=
∫
Ω

|Xu|Qui ulψ −
∫
Ω

ψ|Xu|Q−2Xui · Xul .

The right hand side of this identity is obviously symmetric with respect toi and
l , and the claim follows. Taking now the generalized divergence of both sides of
(18), we obtain

X∗ · (|Xu|Q−2Xui ) =
m+1∑
l =1

X∗ · (ul Ei ,l ) , (19)

whereEi ,l ≡ (ul Vi − ui Vl ) ∈ LQ/(Q−1) is of zero generalized divergence,X∗ ·
Ei ,l = 0. To derive a Caccioppoli type estimate, we integrate (19) against a
suitable test function constructed fromu.

In a more classical situation as in Hélein [40], or Strzelecki [67], the test
function η(u-const) belongs toW1,Q(BQ) ⊂ BMO, and the right hand side of
(19) belongs locally toH 1 due to the theorem of Coifman, Lions, Meyer and
Semmes, [14]. Thus one can integrate (19) against such a test function, employing
the duality ofH 1 and BMO.

Here the theory of Hardy spaces is not available but, as we shall see, a suitable
duality inequality still holds. In the proof of the duality inequality stated below
we follow some ideas of Coifman, Lions, Meyer and Semmes [14], Hajl´ asz and
Koskela [39], and Semmes [65].

Lemma 3.2 (duality inequality). For any pair of indices i, l , and any metric
ball B̃ ⊂ 200̃B ⊂ Ω, the inequality∣∣∣∣

∫
B̃

X∗ · (ul Ei ,l )(x)ϕ(x) dx

∣∣∣∣ ≤ C‖Xu‖Q

LQ(100̃B)
‖Xϕ‖

LQ(B̃)

holds for everyϕ ∈ W1,Q
X (B̃) with compact support. The constant C does not

depend oñB.

Proof. It is enough to prove the lemma for smooth compactly supportedϕ. In
the sequel, we drop the subscriptsi and l . Fix a smooth cut-off functionη with
η ≡ 1 on 2̃B, η ≡ 0 off 4B̃, |Xη| ≤ C(diamB̃)−1. By the representation formula,
see Lemma 2.4, we obtain∫

B̃
X∗

x · (uE)(x)ϕ(x) dx =
∫

X∗
x · (uE)(x)η(x)ϕ(x) dx

=
∫ ∫

X∗
x · (uE)(x)η(x)XyΓ (y, x)Xyϕ(y) dy dx

Here, the subscriptsx and y denote the variable with respect to which the dif-
ferentiation is performed. Set

A(y) =
∫

X∗
x · (uE)(x)η(x)XyΓ (y, x) dx.
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We claim that
‖A‖

LQ/(Q−1)(B̃)
≤ C‖Xu‖Q

LQ(100̃B)
. (20)

Of course, the lemma follows from (20) and Hölder inequality. The idea of
the proof of inequality (20) is to estimateA by a generalized Riesz potential
of |Xu|Q ∈ L1, say |A| ≤ CJ···

1,p(|Xu|Q) for some p < 1, and then to apply
a generalized fractional integration theorem (Theorem 2.8) which implies that
J ···

1,p : L1 → LQ/(Q−1).
Note that the above version of the fractional integration theorem provides

a replacement for the theory of Hardy spaces. Indeed, in general, the classical
Riesz potentialI1 of a L1 function onR

n does not belong toLn/(n−1) unless the
function belongs to the Hardy space. As we obtain estimates by a better Riesz
potential, we do not need Hardy spaces any more.

Now it remains to prove the desired estimate forA. Here are the details.
Fix y ∈ B̃ and let{θy

i }i ∈I be a smooth partition of unity associated to the
Whitney decomposition ofΩ \ {y} (with respect to the Carnot–Carathéodory
metric, see Sect. 2.2). WritẽBi = B̃(xi ,6ri ) to denote the Whitney ball which
supportsθy

i . (In the sequel, we drop the superscripty.) Recalling thatX∗ · E = 0,
and integrating by parts, we obtain

A(y) =
∑
i ∈I

∫
B̃i

X∗
x · (uE)(x)η(x)θi (x)XyΓ (y, x) dx

=
∑
i ∈I

∫
B̃i

X∗
x · ((u − ũ

Bi
)E)(x)η(x)θi (x)XyΓ (y, x) dx

= −
∑
i ∈I

∫
B̃i

(u(x) − ũ
Bi

)E(x) · Xx
[
η(x)θi (x)XyΓ (y, x)

]
dx. (21)

Pick I ′ ⊂ I which consists of all the indices such that suppθi ∩4B̃ /= ∅. Note that
|Xη| /= 0 in the annulus 4̃B \ 2B̃ only. Hence,|Xη(x)| ≤ Cρ(x, y)−1 for every
x. We also have|Xθi (x)| ≤ Cρ(x, y)−1 for i ∈ I ′. Therefore, the bounds for the
derivatives of the fundamental solutionΓ (y, x), see Sect. 2.1, directly imply that
for i ∈ I ′

|Xx [η(x)θi (x)XyΓ (y, x)]| ≤ C |B̃(y, ρ(x, y))|−1. (22)

Now, the doubling condition implies that, forx ∈ B̃i and i ∈ I ′, the right hand
side of (22) is comparable to|B̃i |−1. Since the terms in the sum (21) are equal
to zero fori 6∈ I ′ we obtain

|A(y)| ≤ C
∑
i ∈I ′

∫
B̃i

|u − ũ
Bi

| |E| dx

≤ C
∑
i ∈I ′

(∫
B̃i

|u − ũ
Bi

|Q2

dx

)1/Q2(∫
B̃i

|E|Q2/(Q2−1) dx

)(Q2−1)/Q2

≤ C
∑
i ∈I ′

ri

(∫
B̃i

|Xu|Q2/(Q+1) dx

)(Q+1)/Q

.
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In the last inequality, we have applied Sobolev inequality (Theorem 2.6) for

p = Q2

Q+1 and the estimate|E| ≤ C |Xu|Q−1. Now it is not surprising that the
right hand side of the last inequality can be bounded by the generalized Riesz

potentialJ 2,8̃B
1,p (|Xu|Q), wherep = Q/(Q + 1)< 1 (see Sect. 2.3 for definition).

Let i ∈ I ′. If xi ∈ B̃(y,2k−1) \ B̃(y,2k−2), for somek ∈ ZZ, then ri ≈ 2k ,
B̃i ⊂ B̃(y,2k), and by the doubling property we have|B̃i | ≈ |B̃(y,2k)|. Hence

ri

(∫
B̃i

|Xu|Q2/(Q+1) dx

)(Q+1)/Q

≤ C2k

(∫
B̃(y,2k )

|Xu|Q2/(Q+1) dx

)(Q+1)/Q

.

Moreover the number of those indicesi ∈ I ′ for which xi ∈ B̃(y,2k−1) \
B̃(y,2k−2) is bounded by a constant depending on the doubling constant only
(because the balls16B̃i are pairwise disjoint and their radii are comparable to the

diameter of the annulus̃B(y,2k−1)\B̃(y,2k−2).) Finally, note that whenk is large,
say 2k−2 ≥ diam 8̃B, then there is noi ∈ I ′ with xi ∈ B̃(y,2k−1) \ B̃(y,2k−2).
Thus

|A(y)| ≤ C
∑

2k≤4diam 8̃B

2k

(∫
B(y,2k )

|Xu|Q2/(Q+1) dx

)(Q+1)/Q

= CJ2,8̃B
1, Q

Q+1

(|Xu|Q)(y).

Now Theorem 2.8 implies that

J 2,8̃B
1, Q

Q+1

: L1(100̃B) → LQ/(Q−1)(8B̃),

which completes the proof of (20) and of the whole lemma. �
Proof of Theorem 3.1 continued.Fix Ω1 ⊂⊂ Ω and R0 > 0 such that
B̃(x,400R0) ⊂ Ω for all x ∈ Ω1. Fix a small metric ball̃B = B̃(x, r ), x ∈ Ω1,
r < R0 and integrate both sides of equation (19) against the test function given
by

ψi : = η(ui − (ui )2̃B
) ,

whereη ≡ 1 on B̃, η ≡ 0 off 2B̃, and |Xη| ≤ Cr−1, see Lemma 2.5. After a
routine calculation, using Lemma 3.2, Poincaré inequality (12), and bearing in
mind thatXη ≡ 0 on B̃, we obtain∫

B̃
|Xu|Q dx ≤ C

∑
i

∫
2̃B

|Xu|Q−1|ui − (ui )2̃B
||Xη| dx

+
∑
i ,l

∣∣∣∣
∫

2̃B
X∗ · (ui Ei ,l )ψi dx

∣∣∣∣
≤ C

(∫
2̃B\B̃

|Xu|Q dx

)(Q−1)/Q(∫
2̃B

|Xu|Q dx

)1/Q

+ C

(∫
200̃B

|Xu|Q dx

) ∑
i

(∫
2̃B

|Xψi |Q dx

)1/Q

. (23)
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By Poincaŕe inequality we also have

∑
i

(∫
2̃B

|Xψi |Q dx

)1/Q

≤ C

(∫
2̃B

|Xu|Q dx

)1/Q

.

Hence, settingI (r ) =
∫

B̃(r )
|Xu|Q dx, we can rewrite (23) in the form

I (r ) ≤ C
(

I (2r ) − I (r )
)(Q−1)/Q

I (2r )1/Q + C I (200r )I (2r )1/Q

≤ C
(

I (200r ) − I (r )
)(Q−1)/Q

I (200r )1/Q + C I (200r )(Q+1)/Q

Now, we claim that this implies the existence of numbersr0 > 0 andλ ∈ (0,1)
(which do not depend on the size and center ofB̃) such that

I (r ) ≤ λI (200r ) for all r ≤ r0. (24)

To prove this, we argue by contradiction. Were (24) false, for anyλ ∈ (0,1) we
would find an arbitrarily smallr with I (r ) > λI (200r ), and hence

λI (200r ) < I (r ) ≤ C(1 − λ)(Q−1)/QI (200r ) + C I (200r )(Q+1)/Q .

In particular for anyλ ∈ [1/2,1) we would find an arbitrarily smallr such that

1
2
< C(1 − λ)(Q−1)/Q + C I (200r )1/Q .

By the absolute continuity of integral, this is absurd forλ close to 1 and small
r . Hence, (24) follows.

A standard iteration argument implies now that there exists a numberγ ∈
(0,1) such that a decay estimate of the form

I (r ) ≡
∫

B̃(x,r )
|Xu(y)|Q dy ≤ Crγ (25)

is satisfied for allx ∈ Ω1 and all r ≤ r0. Finally, we apply an abstract version
of the so-called Dirichlet Growth Theorem due to Macı́as and Segovia [55]
(Lemma 3.3 and Lemma 3.4), to deduce local Hölder continuity ofu. For the
sake of completness we provide a short proof following Hajl´ asz and Kinnunen
[37].

Let 0< α, β < ∞ and R > 0. Recall that, for a locally integrable function
f , the fractional maximal functionof f is defined by

Mα,Rf (x) = sup
0<r<R

rα
∫

B̃(x,r )
|f | dy.

Moreover, thefractional sharp maximal functionof f is defined by

f #
β,R(x) = sup

0<r<R
r −β

∫
B̃(x,r )

|f − f
B̃(x,r )

| dy .

If R = ∞ we simply writef #
β (x).

We need the following.
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Lemma 3.3. Suppose that f:Ω → [−∞,∞] is locally integrable and let0 <
β < ∞. Then there is a constant c (which depends only onβ and on the doubling
constant) such that for every R≤ R0

|f (x) − f (y)| ≤ c ρ(x, y)β
(

f #
β,2R(x) + f #

β,2R(y)

)
(26)

for almost every x, y ∈ Ω1 such thatρ(x, y) < R.

Proof. Let x ∈ Ω1, 0 < r < R and denoteBi = B̃(x,2−i r ), i = 0,1, . . . Let N
be the the complement of the set of Lebesgue points (defined with respect to the
Carnot-Carath́eodory balls!) forf in Ω1. Since the Lebesgue measure is doubling
with respect to the Carnot–Carathéodory metric, the Lebesgue theorem implies
|N | = 0, see Coifman and Weiss [15]. For everyx ∈ Ω1 \ N we havefBi → f (x)
as i goes to infinity and hence

|f (x) − f
B̃(x,r )

| ≤
∞∑
i =0

|fBi +1 − fBi |

≤
∞∑
i =0

|Bi |
|Bi +1|

∫
Bi

|f − fBi |

≤ C
∞∑
i =0

(2−i r )β(2−i r )−β
∫

Bi

|f − fBi |

≤ C rβ f #
β,r (x).

Take y ∈ Ω1 \ N such thatρ(x, y) < R. Then y ∈ B̃(x, r ) for some r =
(1 + ε)ρ(x, y) < R. SinceB̃(x, r ) ⊂ B̃(y,2r ) we get

|f (y) − f
B̃(x,r )

| ≤ |f (y) − f
B̃(y,2r )

| + |f
B̃(y,2r )

− f
B̃(x,r )

|

≤ C rβ f #
β,2r (y) +

∫
B̃(x,r )

|f − f
B̃(y,2r )

|

≤ C rβ f #
β,2r (y).

Now
|f (x) − f (y)| ≤ |f (x) − f

B̃(x,r )
| + |f (y) − f

B̃(x,r )
| ,

and the preceding inequalities lead to

|f (x) − f (y)| ≤ C ρ(x, y)β
(
f #
β,2R(x) + f #

β,2R(y)
)

for everyx, y ∈ Ω1 \ N with ρ(x, y) < R. The proof of Lemma 3.3 is complete.
�

Lemma 3.4. Let u ∈ W1,p
X (Ω), 0 ≤ α < 1. Then for R≤ R0

|u(x) − u(y)| ≤ c ρ(x, y)1−α(
Mα,2R|Xu|(x) + Mα,2R|Xu|(y)

)
(27)

for almost every x, y ∈ Ω1 with ρ(x, y) < R.



Subellipticp-harmonic maps 359

Proof. The Poincaŕe inequality

rα−1
∫

B̃(x,r )
|u − ũ

B(x,r )
| ≤ c rα

∫
B̃(x,r )

|Xu| ,

which holds for all x ∈ Ω1 and all r ≤ 2R0, implies that u#
1−α,2R(x) ≤

c Mα,2R |Xu|(x) for R ≤ R0. Then Lemma 3.3 gives (27). �
Now, Hölder inequality, the decay estimate (25), and the definition of the

homogeneous dimension imply that forα = 1 − γ
Q and anyx ∈ Ω1 we have

Mα,r0|Xu|(x) ≤
(

MQα,r0|Xu|Q(x)
)1/Q

≤ C .

Hence, by Lemma 3.4 we obtain

|u(x) − u(y)| ≤ c ρ(x, y)γ/Q

for x, y with ρ(x, y) < r0/2. Thusu is locally Hölder continuous with respect to
ρ and, by Theorem 2.1, with respect to the Euclidean metric. This concludes the
whole proof of Theorem 3.1. �
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12. Citti, G., Di Fazio, G.: Ḧolder continuity of the solutions for operators which are sum of squares
of vector fields plus a potential. Proc. Amer. Math. Soc.122 (1994), 741–750.

13. Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of squares plus potential.
Amer. J. Math.115 (1993), 699–734.

14. Coifman, R., Lions, P. L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces.
J. Math. Pures Appl.72 (1993), 247–286.

15. Coifman, R., Weiss, G.: Analyse harmonique sur certains espaces homogenes, Lecture Notes in
Math. 242, Springer 1971.



360 P. Hajl´ asz, P. Strzelecki

16. Danielli, D.: Formulas de representation et théor̀emes d’inclusion pour des opérateurs sous
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37. Hajl´ asz, P., Kinnunen, J.: Ḧolder quasicontinuity of Sobolev functions on metric spaces, to

appear in Revista Math. Iberoamericana.
38. Hajl´ asz, P., Koskela, P.: Sobolev meets Poincaré, C. R. Acad. Sci. Paris320 (1995), 1211–1215.
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