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1 Introduction

The story begins with the paper of iMer, [59], who — for the sake of an
application to nonlinear elasticity — proved that if the Jacobian determihant
of a Sobolev map € V\/lé’C“(R“R”) is nonnegative, then it belongs locally to
LlogL. The result is quite intriguing, since a prioridler inequality implies
only thatJ, € L' and one does not suspect any higher integrability.

If one does not assume thitis nonnegative, then, as Coifman, Lions, Meyer
and Semmes [14] have provel, belongs to the local Hardy spac#;}.. Since
a nonnegative function belongs to the local Hardy space if and only if it belongs
locally to L logL, the result of Coifman, Lions, Meyer and Semmes generalizes
that of Miuller.

In fact, Coifman, Lions, Meyer and Semmes proved more. Namely, for 1
p < oo, the scalar product of a divergence free vector figld LP(R", R") and
a curl free vector field e LP/®P—D(R" R") belongs to the Hardy spacgZ?.
A priori, Holder inequality implies integrability of this expression only. Note
that the Jacobian is of this form. The discovery that many algebraic expressions
involving partial derivatives belong to the Hardy space turned out to be important
and widely applicable in nonlinear partial differential equations. This was first
shown by Helein, [40], [41], [42]. Let us describe briefly his result.

Consider mapsu : B" — S™ from the n-dimensional ball to them-
dimensional sphere such that theenergy ofu, given by the functional
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is finite. HereS™ is the unit sphere iR™*!, so thatu = (uy, . .., Un+1) iS @ map
into RM*? satisfyingzj u]-2 =1 a.e. It is natural to assume thatbelongs to the
Sobolev spac&V™P, in the sense that all the coordinate functianselong to
WLP(B").

Critical points with respect to variations in the range (see the definition in
Sect. 3) of the functiondk, satisfy the Euler—Lagrange system

—div (|Vul[P~2Vu) = u|VulP.

This is a system ofm + 1 equations (since takes values irR™?) which, for
n=p =2, reduces to
— Au=u|Vul?. 2

Hélein proved that in this particular situatianis smooth. (It was known that
continuity implies smoothness of so it was enough to prove thatis continu-
ous.) Using the constraint conditidn; u? = 1, Helein could apply the theorem

of Coifman, Lions, Meyer and Semmes to check that the right hand side of (2)
belongs in fact to the Hardy space; hence, (2) could be rewritten in an equivalent
form Au = h, with h € .77, Now, using the fact that convolution with the fun-
damental solutior, of the Laplacian is a bounded operator from* to W1,

he concluded that is of classw?! and hence continuous. The boundedness of
the convolution operator follows from the theory of Hardy spaces. Indeed, com-
puting the second order derivatives lgfx h we obtain Riesz operators which,
due to the theory of singular integrals, are bounded7sfi.

Later Fuchs [31], and Strzelecki [67], generalizegléin’s result to the case
n =p > 2. We follow the argument of [67]. Here again, applying the result
of [14], one obtains an equation of the form div(|P~2Vu) = h with h € .72,
Whenp > 2, the convolution with the fundamental solution is not available any
more. Instead of that Strzelecki employed the dualityt and BMO. Namely,
WZLP(BP) c BMO, so, forn supported on a baB, test functions of the form
n(u — ug) can be integrated againist= u|VulP. This leads to Caccioppoli type
estimates which in turn imply &lder continuity ofu.

There are, of course, many other papers which employ similar ideas. To
mention just a few of them (we do not claim that the list below is complete),
let us mention here Evans [18], Evans andilldr [19], Bethuel [1], Bethuel
and Ghidaglia [2], Mou and Yang [58], Mler and Sveak [60], Semmes [65],
Strzelecki [68], Takeuchi [70], and Toro and Wang [71]. All these authors use
Hardy spaces in order to obtain the regularity of solutions to some nonlinear
partial differential equations.

The aim of this paper is to seek for counterparts of those results in situations
where Hardy spaces are not available but a weak counterpa?®éf— BMO
duality still holds true. In fact, in the papers mentioned above (at least in some
of them), instead of using the theory of Hardy spaces, it suffices to apply a
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weaker inequality which is available in a much more general setting. Already
Chanillo [9] has shown how to bypass th&* — BMO duality in the Euclidean
case of stationary harmonic maps. However, his proof heavily relies on harmonic
analysis inR", and does not seem to be applicable in our much more general
situation. In the simplified approach to duality inequality we use some ideas of
Semmes, [65].

We deal with a family of vector fieldXy, ..., Xk in R" satisfying the so-
called Hbrmander’s condition (see Sect. 2 for the definition and more details).
Let 2 C R" be a bounded domain. Any map which is stationary with respect to
variations in the range for the energy functional

Ep(u) = /Q XulP, 3)

defined on the class of maps into the Euclidean spB&esatisfies a system of
nonlinear subelliptic equations,

k
— > X (XuP~2Xu) = ufXulP, )
j=1

and the constrainEj uj2 = 1. Such maps will be calledubelliptic p-harmonic

The idea of generalizing the concept pfharmonic maps to the setting of
Hormander vector fields, or even more general setting of metric spaces is not
new, see Jost [46], [47], and Jost and Xu [48].

With a system of vector fields satisfyingoHnander’s conditions one can
associate the so called homogeneous dimension (see Sect. 2). This dimension is,
in general, greater than Euclidean dimension but, roughly speaking, with respect
to the vector fields it behaves like the classical Euclidean dimension for the
standard vector field8, ..., O,.

We prove that whep is equal to the homogeneous dimension associated to
a given system of vector fields, the solutions to the above nonlinear system with
constraints are Blder continuous (Theorem 3.1).

Our motivation is twofold. First, we show that one does not have to use the
theory of Hardy spaces; instead, a weaker version of duality inequality can be
applied. We prove in Lemma 3.2 that such a duality inequality holds true also for
general Hhrmander vector fields (when there is no theory of Hardy spaces). The
second goal is to contribute to the theory of nonlinear subelliptic equations —
during last decade, an area of intensive research; see, e.g., Buckley, Koskela and
Lu [4], Capogna, Danielli and Garofalo [5], [7], Citti [11], Citti and Di Fazio
[12], Citti, Garofalo and Lanconelli [13], Danielli, Garofalo and Nhieu [17],
Franchi and Lanconelli [26], Franchi, Gatrez and Wheeden [25], Garofalo
and Lanconelli [32], Garofalo and Nhieu [34], Haflz and Koskela [38], [39],
Jerison and Lee [44], [45] Jost and Xu [48], Lu [52], [53], [54], Vodop’yanov,
[74], Vodop’yanov and Chernikov [75], Vodop’yanov and Markina [76], Xu [77],
[78], and their references. (We did not mention here any papers concerned with
the linear theory of subelliptic equations.)
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We develop a technique which allows one to extend the above mentioned
results of Hlein, Evans, Bethuel and others to the setting of vector fields. Only
one particular question is treated in this paper, but similar methods can be used
to deal with other problems.

Our notation is fairly standard. The average value will be denoted by

1
u=ud=—/ud.
E]é e e

The Lebesgue measure of the 8awill be denoted byA|. Balls will be denoted

by B. The ball concentric witlB and with radiuss times that ofB will be
denoted by B. By C we will denote a general constant; it can change even in a
single string of estimates. We say that two quantities are comparable, and write
A= B, if there is a constant > 1 such thatA/c < B < cA

Outline of the paperIn the next section, we fix the rest of notation and gather
all necessary “subelliptic technicalities”. The precise statement and proof of our
regularity result for subelliptip-harmonic maps is given in Sect. 3.

2 Auxiliary results

The aim of the section is to recall some definitions and collect the results which
will be used in the sequel. The reader who is familiar with the theory of vector
fields satisfying Hhrmander’s condition can jump directly to the statement of the
main theorem in Sect. 3, and then, during the lecture of the proof, she or he may
consult previous subsections.

2.1 The Hrmander condition

Let the vector fieldsXy, X, ..., Xk be defined inR", real valued, andC°°-
smooth. We say that these vector fields satidrmander’s conditionprovided
there exists an integen such that the family of commutators ¥f, Xo, ..., Xk
up to lengthm i.e., the family of vector fields

le"'7xk> [Xiuxiz]a BERE) [Xi17[xi27["’,xim]]"']7 IJ :172a"'ak7

spans the tangent spaBé8 at every point ofR".
Given any real valued Lipschitz continuous functiore Lip (R"), we define

Xju(x) = (X (x), Vu(x)), i=12,... k.
The vector with componentsju is denoted byXu; its length is given by
k
XuE) = X u)l®
j=1

By X" we will denote formal adjoint o¥X; on L2 i.e.,
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/ (X u)vdx = —/ uXjvdx for all u,v € C§°(R").
R RN

Note thatX" does not have to be a vector field. In general, it is an operator of
the formXj* =X +fj, wheref; is a suitable smooth function.

If E = (Ey,...,Ex)is avector field, then we simply writé*-E = ijzl X,
and call this expression generalized divergence

Example (Heisenberg group)ln R3 = C x R, with points denoted byx{, o, t),
or equivalently £,t), wherez = x; +ix,, define the group law

(21, 1)(22, 1) = (Zl t,ttt+2 |m(212_2)) .

Then,R® becomes a Lie group, usually denotedHy (the so-calledHeisenberg
group). A basis of left invariant vector fields is given by

) ) 9 ) 1.0

Xq = —— + 2Xp— Xop = —— — 2% — =2
YT TPot 27 9x, Yot ot

Since Xy, Xz, and [X1, Xo] = —4% span the tangent spae at every point, we
see that the system consisting of two vector fieXdsX, satisfies lrmander’s
condition. An important property of the Heisenberg group is that Lebesgue mea-
sure coincides with the left and right invariant Haar measure. Heisenberg group
the simplest nontrivial example of the so-called Carnot groups (known also
as stratified groups). For a deeper treatment of this topic see e.g. Folland and
Stein [22], and Stein [66]. O

With a family of vector fields satisfying &rmander’s condition one can
associate a suitable metric that we next describe. We say that an absolutely
continuous curvey : [a,b] — R" is admissibleif there exist functionsg; (t),
a <t < b satisfying

k k
Sgm?<1  and ()= gOX (L)
j=1 j=1
Note that if the vector fieldX; are not linearly independent at some point, then
the coefficientss; are not unique.

The distancey(x, y) is defined as the infimum of tho3e> 0 for which there
exists an admissible curve : [0, T] — R" with 4(0) =x and~(T) = y. This
metric is known in the literature under many different names. We like the name
Carnot—Caratt®odory metricand use it throughout this paper. A priori it is not
clear whether this is a metric i.e. it is not clear whether one can connect any two
points of R" by an admissible curve. This is however the contents of the theorem
of Chow, [10]. For more recent proofs, see e.g. Gromov, [36], Nagel, Stein and
Wainger [61] or Varopoulos, Saloff-Coste and Coulhon [73]. Balls with respect
to metric p are calledmetric ballsand denoted byB. Moreover, dianf will
always denote the diameter of a $ewith respect to the metrip.

Nagel, Stein and Wainger [61] proved many important properties of this
metric that we next recall (for proofs see also [36], [73, Sect. IV.5]).
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Theorem 2.1. Let X, ..., X be as above. Then for every relatively compact open
setf? cc R" there are constants CC, and A € (0, 1] such that

Cilx —y| < p(x,y) < Cox —y* ()
for every xy € 2.

Thus, identity map gives a homeomorphism betwekh, ) and R" with the
Euclidean metric.

Moreover if £2 is bounded with respect to the Euclidean metric, then it is
bounded with respect tp. Unfortunately the converse to the last statement is,
in general, false. Indeed, if one of the vector fieldxi®)/dx,, then it is easy
to see that the Carnot—Caratdory distance to infinity is finite. The problem is
caused by the rapid growth of the coefficient of the vector field.

This leads to some technical problems (which are not very difficult to cope
with, and appear mostly on the notational level). However, we would like to
avoid them. The following result of Garofalo and Nhieu, [33, Proposition 2.11]
shows when such an unpleasant phenomenon does not occur.

Proposition 2.2. Let X, Xp, ..., X be as above and suppose that in addition,
they have coefficients which are globally LipschitzRh Then a subset dR"

is bounded with respect to the Carnot—Carddory metric if and only if it is
bounded with respect to the Euclidean metric.

The same claim holds for Carnot groups, see e.g. [33, Proposition 2.8].

To avoid the technical problems mentioned above we assume in the remaining
part of the paper that the above holds i.e., we assume that a subRét isf
bounded with respect to the Carnot—Caeatthory metric if and only if it is
bounded with respect to the Euclidean metric.

Now we can state the second part of the result of Nagel, Stein and Wainger.

Theorem 2.3. Let X, Xp, ..., X be as above. Then for every bounded open set
{2 C R" there exists C> 1 such that one has
B(x,2r)| < C[B(x,r)] (6)

whenever x¢ 2 and r < 5diam{2.

Without the above additional assumption, inequality (6) holds only(for
bounded with respect to the Euclidean metric and ro for somery depending
on (2. We could haver, < diam{2, since it could happen thaﬁ(x,diamfz)
“touches infinity”.

Sanchez-Calle [64], and independently Nagel, Stein and Wainger [61], proved
that in any bounded domaif? C R" there exists a fundamental solution of the
sub-Laplacian

k
AX = _Z>(‘*>(l I
j=1

with growth properties generalizing the well known ones for the fundamental
solution of the classical Laplace operator.
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By the fundamental solution we mean a functib(x, y) defined in{2 x 2,
smooth off the diagonal and such that for everg Cy*(f2) we have

(4 [ Tey)etdy)60 =009, ™)
The growth estimates of [64] and [61] imply that, for> 3, we have
C—l _ p(X?y)Z < F(X y) < C _ p(xﬂy)z
BX, p(x, )| —[B(X, p(x,Y))]
and, forn > 2,
Xrey) < C PN gy < S
B(X, p(x, )| 1B(X, p(x, V)|

for all x,y € (2. In the last two inequalities each of the differentiations can be
performed either with respect toor toy.

In the proof of the main result (Theorem 3.1) we apply only the estimates
for the derivatives ofl’, so the result holds for all Euclidean dimensiong 2.

Example (continued). Abusing slightly the notation, we shall abbreviate
(z,t). Define acontinuous homogeneous normn the Heisenberg grouf; by
IX]| = p(0, x), wherep is the Carnot—Caraéodory metric associated with vector
fields Xy, Xo. Forr > 0 define a dilatior, by &;(z,t) = (rz, r?t). Dilations form

a group of automorphisms dfl;. The homogeneous norm has the following
properties:

@ |1 Hy — R, is continuous;
i) = I
(i) ||orx]|| =r||x]| for all r > 0;
(iv) |Ix|| =0 if and only ifx = 0.

Since the metrig is left invariant, it can be recovered frofh- || by p(x,y) =
Ix~y||. Note also thap commutes with the dilations, i.@(5; X, &) = p(X, y).

Now it is an exercise to prove Theorems 2.1 and 2.3 in this particular situation.
Namely there exists a consta@t > 0 and for every bounded open fetC Hj
there exists a constaf; > 1 such that

Crlx —yl < p(x,y) < Calx —y|?  wheneverx,y € £2,

IB(x,r)]=Cr*  for everyx € Hy andr > 0.

One can also prove that the Hausdorff dimensiofilpfvith respect to the metric
p is equal to 4, see Mitchell [57].

In order to get a glimpse of the behaviourmfconsider another homogeneous
norm || - ||, given by the formuld|(z,t)|’ = (t?> + |z|*)*/. Obviously, it satisfies
the conditions (i)—(iv). Moreoved(x, y) := ||x~1y|’ is a metric which commutes
with dilations. The equivalence af andp is easy to prove; it follows from the
left invariance of both metrics and the fact that they commute with dilations.
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Note that no Riemannian metric is equivalent to the Carnot-Caodibry metric
on Hj.

As was shown by Folland [20] (see also [21], [49]), the fundamental solution
for the sub-Laplacian

B) 2\ 2 B 9\ 2
2 2 . -~ - -
X+ X _<8x1+2X28t) +(0x2 2X18t)

is given by I'((z1, ), (2, ©2)) = G((z1, 1)(22, t2) ), where

const
G(th) - (tz + |Z|4)l/2 . (8)
([l
Multiplying both sides of (7) byu(x) € C;°(f2), integrating with respect
to x and next integrating by parts we easily obtain the following well known
representation formula.

Lemma 2.4. Let 2 C R" be a bounded domain. Then for everycuCg*({2),
and for every xe (2 one has

u(o) = [ X0 Xyuy)dy. ©)

By a cut-off function we mean a functiop which is identically equal to 1 on
some metric ball, vanishes outside the twice enlarged metric ball, and such that
the length of its gradienfX| is bounded by a constant times the inverse of
the radius of this ball. Using the distance function, it is easy to construct such a
function with a bound for the Lipschitz constant instead of the pointwise bound
for the gradient. However, it is not a priori obvious that the distance function is
differentiable in any sense. Indeed, due to Theorem 2.1, the distance function is
only Holder continuous. The fundamental solutibrhas decay properties similar

to those ofp. Citti, Garofalo and Lanconelli, [13], used this property to construct
smooth cut-off functions.

Lemma 2.5. Let X,..., X be as above. Then, given open and bounded’set
R", there exists a constant € 0 such that for every xe {2 and t < diam{2, one
can find a functionp € C§°(B(x,t)) satisfyingd < ¢ < 1, ¢ = 1 on B(x,t/2)
and|Xyp| < Ct~L.

Recently Franchi, Serapioni, and Serra Cassano [29] and Garofalo and Nhieu [33]
have independently proved weak differentiability of Lipschitz functions along
given vector fields, so one can construct cut-off functions starting directly from
the distance function.

With a family of Hbrmander vector fields we can associate a Sobolev space
on an open sef2 C R" as follows

WeP(2) = {u e LP(2) : Xju e LP() forj =1,2,...,k}.
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The derivatives are understood in the distributional sense and the space is
equipped with the nornju||1p = |lul|p + || Xul|,. It was proved independently by
Franchi, Serapioni, and Serra Cassano [29] and by Garofalo and Nhieu [34] that
C< functions are dense iWQ’p(Q). However, the main idea of the proof goes
back to an old paper of Friedrichs [30]. Besides, Sobolev functions with compact
support ing2 can be approximated by compactly supported smooth functions.

Given a bounded open s€tc R" we say thaf) is ahomogeneous dimension
relative to (2 if for some positive constar€@ we have

|§|>c(&>Q, (10)

whereBy is an arbitrary ball centered at some pointf®fof radiusrg < diam{?,
andB = B(x,r), X € By, r < ro.

It is well known that doubling property implies the existence of sud@,a
see Lemma 2.7 below. Howevd, is not unique and it may change with.
Note that anyQ’ > Q is also a homogeneous dimension. In the Heisenberg
group example we clearly have the smallest s@hk 4, and henceés(z,t) =

2-Q
const: (||(z,t)H’) , which looks more familiar than (8).

There are plenty of generalizations of the Sobolev imbedding theorem to
the setting of vector fields. The statement of Theorem 2.6 below can be found
for example in Franchi, Lu, and Wheeden [27], or in Capogna, Danielli, and
Garofalo [8]. Various versions of this theorem appear also in Biroli and Mosco
[3], Franchi [23], Franchi and Lanconelli [26], Franchi, Lu, and Wheeden [28], Lu
[50], [51] Garofalo and Nhieu [34], Haglsz and Koskela [38], [39], Jerison [43],
Maheux and Saloff-Coste [56], Saloff-Coste [63], Varopoulos [72], Varopoulos,
Saloff-Coste, and Coulhon [73].

Theorem 2.6. Let X,..., X be as before. Let Q be a homogeneous dimension
relative to (2. Givenl < p < Q there is a constant C> 0 such that for every
B=B(x,r), x € £2, and r < diam{2 we have

. 1/p* 1/p
(]4 lu—uglP dx) <Cr <]é |XulP dx) ; (11)
B B

where g = Qp/(Q — p).

The imbedding for compactly supported functions is easier and has been obtained
in Rotschild and Stein [62], Capogna, Danielli, and Garofalo [5], [6], Danielli
[16], and Franchi, Gallot, and Wheeden [24].

Note that Sobolev inequality (11) implies the Poirecarequality

1/p 1/p
<]£ lu—ugl? dx) <Cr <]£ [XulP dx) ) (12)
B B

for any 1< p < oo. Indeed, if 1< p < Q, then it suffices to apply &lder
inequality. If 1 < p < oo is arbitrary then, as we have already noticed, any
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numberQ’ > Q is a homogeneous dimension relatives#p so we always can
find Q' > p and proceed as above.

Remark It is much more surprising that one can also deduce Sobolev imbedding
(11) from the Poincdrinequality (12). It seems that for some particular situations
this fact was first observed independently by Grigor'yan [35], and by Saloff-Coste
[63]. Later, the same has also been established in a very general setting by many
other authors, Biroli and Mosco [3], Franchi, Lu and Wheeden [28], Garofalo
and Nhieu [34], Hajasz and Koskela [38], [39], Maheux and Saloff-Coste [56],
and Sturm [69].

2.2 Whitney decomposition and partition of unity

Let Y be a metric space with metric and some positive Borel measure
Assume thay is finite on bounded sets. We say thats doubling onf2 C Y if
there is a constar®y > 1 such that

/J'(B(Xa 2r)) < Cd,U,(B(X, r))a

wheneverx € 2 andr < 5diam{2. Note that, under the assumptions of Theo-
rem 2.3, the Lebesgue measure is doubling on any bounded open sulket of
with respect to the Carnot—Caratidory metric.

In this paper we are concerned with vector fields satisfyiragyntander’s
condition. Nevertheless, we prefer to state auxiliary technical results — whenever
it is possible — for the general case of a metric spéc&his shows much better
which results depend on the doubling property only, and which on the other hand
require more sophisticated information about vector fields.

It is well known that doubling condition implies the lower bound for the
growth of the measure of the ball.

Lemma 2.7. Let ;1 be a Borel measure on a metric space Y, finite on bounded
sets. Assume thatis doubling on a bounded open $@tC Y. Then

u(B(x,r)) > (2 diams2) ~Su(2)r*,
for s = log, Cq4, X € 2 and r < diam{2.

This applies to lBrmander vector fields and implies (10) withcomputed from
the doubling constant.

The familiar Whitney decomposition of an open sefff and an associated
partition of unity has been generalized to the setting of a metric space equipped
with a doubling measure by Coifman and Weiss [15], and isa@and Segovia
[55], respectively. By now it is a standard technique. For the sake of completness
we recall it with some details.

Let, as before? C Y, 2 #Y be open; assume doubling on{2. Forx € {2
definery, = dist (x, 2°)/1000. Then{B(X, ry)}xer iS a covering off2. Select a
maximal subfamily of pairwise disjoint balls and denote it {8(x;,ri)}ic - It
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follows from the maximality that J,., B(x, 3ri) = 2. Moreover the doubling
property implies that there exists an integér > 1 (depending only on the
doubling constanCy) such that no point of? belongs to more thalN balls
B(x, 6ri).

Now with such a (Whitney) decomposition 6f into balls one can associate
a Lipschitz partition of unity that we next describe. L¢tbe a real smooth
function with.) = 1 on [0, 1], ¢y =0 on [3,00), 0< ¢ < 1. Put

0= (SSE)).

Theny; = 1 onB(x,3ri), i = 0 off B(x;, 4r;) and the Lipschitz constant of
@i is Crfl. We define a partition of unity in a standard way,

©i (X)
>k Pk(X)

Note that the sum in the denominator is locally finite — in fact, for any pwint
at mostN terms are nonzero.

Obviously >, 6i(x) = 1 on £2, and sup@; C B(x,6r;). Moreover§; is
Lipschitz with the Lipschitz constant/r;, wherec depends on the doubling
constantCq only. (The proof of Lipschitz estimate fof; is easy; one has to
remember that (a) the denominator in (13) is not less than 1, and (b) ifdoth
andyy do not vanish at some point then their Lipschitz constants are comparable.)

In the case when the metric spa¥ecoincides withR" (equipped with the
Carnot—Carathodory metric), an open set is bounded ands the Lebesgue
measure, we can additionally assume with no loss of generality thét alle
smooth andX#;| < Cr.~*. This follows from the construction of the partition of
unity and existence of smooth cut-off functions, Lemma 2.5. We will apply this
construction in the proof of Lemma 3.2.

0i (x): = (13)

2.3 Fractional Integration Theorem

In this section we state a version of the Fractional Integration Theorem obtained
by Hajlasz and Koskela [39].
Assume thatY is a metric space and let be a Borel measure ovi which
is strictly positive on every ball. Fof2? C Y bounded and opem > 0, 0 > 1,
anda > 0 we define

I = > 2° (7[

1/p
glP du) : (14)
2 <2odiam 2 B(x,2)

The counterpart of fractional integration theorem for these abstract ‘Riesz poten-
tial’ operators reads as follows.
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Theorem 2.8. Let 2 C Y be an open and bounded set dnd o < co. Assume
that the measurg: is doubling on V= {x € Y : dist(x, ) < 2odiam{2}.
Moreover assume that for some constants 13 0 we have

pBO.r) > b (o) ()

whenever xc 2 and r < 2odiam/(?.
If « >0,and0 < p < q < s/a, then

195291

where d =sg/(s — aqg) and C=C(«,0,p,q,b, s, Cqy).

Lo (2, < C(diam2)® u(2)~/%|gl|Lav 5 (15)

3 Main result

As we have already said in the introduction, we are concerned with the regularity
of subelliptic p-harmonic maps into spheres. These are the critical points (with
respect to variations in the range) of the subelliptienergy functional defined

by (3).

To be more precise, assume tiat . . . Xx are smooth vector fields satisfying
Hormander’s condition ilR". From now on,f? shall denote a bounded domain
in R". Assume also that a map = (U, Uz, ..., Un+1) from 2 to S™, the unit
Euclidean sphere iR™, belongs to\NQ’p(Q, S™), i.e. all distributional deriva-
tives X;u; belong toLP(£2) and moreover>_;(u)?> = 1 a.e. Theny is said to
be asubelliptic p-harmonic mapf and only if for every compactly supported
smooth test maw = (¥1, 15, .. ., ¥m+1) ONE has

EP (ut) = 07

d
dt| -

whereu; = IE:E:/@I is the nearest point projection oftty) ontoS™. An elementary

computation of the derivative leads to

d d
. = p72 - _—
i tZOEp () p /Q [XulP~2(Xu; X

U ) dx
t=0

p/Q\Xu|p’2<Xu;X(z/;—(u~z/;)u>>dx

p/ IXu|P~2(Xu; X)) dx—p/ IXulPu - 1y dx.
0 0

The last equality follows from the constraift| = 1, which implies thatu is
orthogonal toX;u for any choice ofj.

Thus, subellipticp-harmonic maps coincide with those (weak) solutions of
the nonlinear system of equations

— X* - (|Xu[P~2Xu) = |Xu|Pu, (16)
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which satisfy the constrain}_;(u)?> = 1. In the Euclidean cask = n, X =
d/0%;, this system has the familiar formdiv (|Vu|P~2Vu;) = |Vu|Pu;, where
i =12 ...,m+1. Note that for weak solutions an appropriate integral identity,

k
/QZ\XU\”_ZX,-U)(,-i/J:/Q|Xu|pU1/), (17)
i=1

holds not only for every) € C§o(£2,R™1), but also for every) W)}’p(Q)
with compact support if2. This follows from the density results mentioned in
Sect. 2.1.

Denote byQ the homogeneous dimension (relativef® associated with the
X;’s. From now on we assume that= Q. Our main result reads as follows.

Theorem 3.1. Every subelliptic Q-harmonic map & WQ’Q(Q,S“’) is locally
Holder continuous.

Both the theorem and its proof have local nature and thus, the same result
holds if the Hbrmander vector fields are defined éhonly. We impose some
global assumptions on the vector fields &h only to simplify notation.

The proof of this theorem consists of three steps. (1) First, we exploit the
constraintju| = 1 to rewrite the Euler-Lagrange system (16) in an equivalent
form. It turns out that the right side resembles the familiar expresBierB,
where one of the two vector fields is divergence free, and the other one is a
gradient field. (2) Next, the ghost of Hardy space enters: we show in Lemma 3.2
that it is possible to integrate the right side again@t — const), where; is a
smooth cutoff function (which behaves nicely on metric balls). This is the crucial
part of the proof and the main novelty of this paper. Then, after a rather standard
computation which involves a hole filling argument, we arrive at a Caccioppoli
type estimate: it turns out that — asgoes to zero %) |Xu|® goes to zero
faster than some fixed, positive power raf (3) In the final step we apply an
abstract, metric version of the classical Dirichlet Growth Theorem and obtain
Holder continuity ofu.

Proof. To begin with, note that a well-known trick, used byéBeric Helein
to rewrite the harmonic map equation in dimension 2, still works. \Get
|Xu|?=2Xy. The constraint conditiod_, u? = 1 implies>", u'V; =0, hence

m+1

Vi = Z u (Vi —uvy). (18)

1=1

By a straightforward computation one checks tHat (u V; — u;V;) = 0. Indeed,

it suffices to show thaX* - (uV;) can be written as an expression symmetric
with respect ta andl. Multiplying by ¢ € Cg*, integrating and invoking (16),
we obtain
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/Qulvi-xw /Qvi-X(uup)—/Qwvi-Xu
/|Xu|Quiu|¢—/ Y|Xu|Q2Xy - Xu .
(9] (9]

The right hand side of this identity is obviously symmetric with respeétdad
I, and the claim follows. Taking now the generalized divergence of both sides of
(18), we obtain

m+1
X (IXu[@72Xu) =Y X (uEiy), (19)
1=1
whereE | = (uV; — uVy) € L¥/Q-1 is of zero generalized divergencs; -
Ei, = 0. To derive a Caccioppoli type estimate, we integrate (19) against a

suitable test function constructed fram

In a more classical situation as inétlgin [40], or Strzelecki [67], the test
function n(u-const) belongs tW'Q(B?) c BMO, and the right hand side of
(19) belongs locally to7#* due to the theorem of Coifman, Lions, Meyer and
Semmes, [14]. Thus one can integrate (19) against such a test function, employing
the duality of.7#* and BMO.

Here the theory of Hardy spaces is not available but, as we shall see, a suitable
duality inequality still holds. In the proof of the duality inequality stated below
we follow some ideas of Coifman, Lions, Meyer and Semmes [14},d4ajland
Koskela [39], and Semmes [65].

Lemma 3.2 (duality inequality). For any pair of indices jl, and any metric
ball B C 200B C {2, the inequality

* : Q .
[ @B 8] < CIXUIE, o X

holds for everyy € Wy ?(B) with compact support. The constant C does not
depend orB.

Proof. It is enough to prove the lemma for smooth compactly suppogteth
the sequel, we drop the subscriptand|. Fix a smooth cut-off functiom with
n=1on3B,n=0off 4B, |Xy| < C(diamB)~L. By the representation formula,
see Lemma 2.4, we obtain

/é,x; - (UE)(X)p(x) dx / X; - (UE)On()(x) dx

/ / X, - (UE)()n0OXy (Y, X)X, o(y) dy dx

Here, the subscripts andy denote the variable with respect to which the dif-
ferentiation is performed. Set

Aly) = / X? - (UE)(X)(X)% T'(y. ) dx.
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We claim that

1Al /o g, < ClIXU[® (20)

Lo(10eB)
Of course, the lemma follows from (20) andolder inequality. The idea of

the proof of inequality (20) is to estimat by a generalized Riesz potential

of [Xul® € L, say|A| < CJj;(IXu[?) for somep < 1, and then to apply

a generalized fractional integration theorem (Theorem 2.8) which implies that
J Sl o LQ/Q-1),

Note that the above version of the fractional integration theorem provides
a replacement for the theory of Hardy spaces. Indeed, in general, the classical
Riesz potential, of aL! function onR" does not belong ta"/"-1 unless the
function belongs to the Hardy space. As we obtain estimates by a better Riesz
potential, we do not need Hardy spaces any more.

Now it remains to prove the desired estimate AorHere are the details.

Fix y € B and let{6’}ic; be a smooth partition of unity associated to the
Whitney decomposition of? \ {y} (with respect to the Carnot—Carétidory
metric, see Sect. 2.2). WritB; = B(x, 6r;) to denote the Whitney ball which
supports. (In the sequel, we drop the superscipt Recalling thatiX* - E = 0,
and integrating by parts, we obtain

AY) > /B X - (UE)()n(x)6 )Xy I(y, x) dx

i€l

=y / X; - (U — Ug )E)On06 ()%, (Y, X) dx

i€l

= —Z/(U(X) Ug JE(X) - X [n(¥)0 )X, Iy, x)] dx.  (21)

i€l

Pick1’ C I which consists of all the indices such that sdpp4B # (. Note that
|Xn| # 0 in the annulus B \ 2B only. Hence,[X7(x)| < Cp(x,y)~! for every
X. We also havéXé; (x)| < Cp(x,y)~ 1 fori € I’. Therefore, the bounds for the
derivatives of the fundamental solutidi(y, x), see Sect. 2.1, directly imply that
fori el’

X [1()6 ()X, Ty, X)]| < C[B(Y, p(x, y))| . (22)

Now, the doubling condition implies that, for € Bi andi € I/, the right hand
side of (22) is comparable ti®;|~1. Since the terms in the sum (21) are equal
to zero fori ¢ |’ we obtain

Ay)| < cZ][ u— uz | E] dx
iel’
/Q?* - Q*-1/Q*
< CZ( |u—u~|Q dx) (~|E|Q/(Q‘l)dx)
iel’ VB Bi
Q+1)/Q
<

cH ( Xu|? /(Q”)dx)

iel’
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In the Iast inequality, we have applied Sobolev inequality (Theorem 2.6) for

p = —ﬂ and the estimatéE| < C|Xu|®~1. Now it is not surprising that the
right hand side of the last inequality can be bounded by the generalized Riesz

potentlaIJ288(|Xu\Q) wherep = Q/(Q + 1) < 1 (see Sect. 2.3 for definition).

_Leti € 1”.If x € B(y, 2<%\ B(y, 2¢"?), for somek € Z, thenr; ~ 2,
Bi C B(y, 2¥), and by the doubling property we haii | ~ |B(y, 2¢)|. Hence

i Q+1/Q
ri ( F [ Xul? /<Q+1>dx>
Bi

<Cc2 (ﬁ Xu|@/@*) gy

(Q+1)/Q
B(y,2) )

Moreover the number of those indicése 1’ for which x € B(y, 2¢"1) \

B(y, 2~2) is bounded by a constant depending on the doubling constant only
(because the ballé@. are pairwise disjoint and their radii are comparable to the
diameter of the annuILB(y,Zk l)\B(y 24=2) ) Finally, note that whek is large,

say X2 > diam &, then there is nd € |’ with x, € B(y, 2¢71) \ B(y, 2¢72).

Thus

) s onn .\ @0 i
Aisc Y (£ pxehed T =cor (i),
2k <4diam B BO.Z9
Now Theorem 2.8 implies that
I+ 141008) — LY/Q-2)(8B),
) Q+1
which completes the proof of (20) and of the whole lemma. O

Proof of Theorem 3.1 continuedsix 2, cc {2 and Ry > 0 such that
§(x,400?0) c 2 for all x € £2,. Fix a small metric balB = §(x,r), X € (2,
r < Ry and integrate both sides of equation (19) against the test function given
by

Yir=nlu — (U)g),

wheren = 1 onB, 5 = 0 off 2B, and |Xn| < Cr~1, see Lemma 2.5. After a
routine calculation, using Lemma 3.2, Poirganequality (12), and bearing in
mind thatX7n = 0 onB, we obtain

fxueax < €3 [l — gl ox
i

+Z‘/2,BVX* (Ui E 1 dx

(Q-1)/Q 1/Q
Q Q
C(/ZB\ [Xul dx> </2§|Xu| dx)
1/Q
+C (/Zo(g IXu|® dx> Z(/Zg X |9 dx) . (23)

IN

IN
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By Poincaé inequality we also have

E X519 d e C Xul®d Ve
i < .
< X x> (/2?3’ uj x)

2B

Hence, settind (r) = fE(r) |Xu|Q dx, we can rewrite (23) in the form

I(r)

IN

c (l @2r) -1 (r))(Q_l)/Q| (2r)Y/2 +C 1(200r)1 (2r)¥/Q

IN

C (l (200) —1 (r)>(Q_l)/Q| (200r)Y/R + C | (200r)@*D/Q

Now, we claim that this implies the existence of numbers- 0 and\ € (0, 1)
(which do not depend on the size and centeBdfsuch that

I(r) < AlI(200r) forall r <ro. (24)

To prove this, we argue by contradiction. Were (24) false, for amy(0, 1) we
would find an arbitrarily smalt with 1 (r) > A\l (200r), and hence

A (200) < 1(r) < C(1 — N)Q~Y/Q1(200r) + C 1(200r)Q*V/Q |
In particular for any\ € [1/2,1) we would find an arbitrarily small such that

% <CL-NQ VR +ci(200)/Q.

By the absolute continuity of integral, this is absurd foclose to 1 and small
r. Hence, (24) follows.

A standard iteration argument implies now that there exists a number
(0, 1) such that a decay estimate of the form

0= [ xuy)dy<or (25)
X,r

is satisfied for allx € 21 and allr < ry. Finally, we apply an abstract version
of the so-called Dirichlet Growth Theorem due to N&x and Segovia [55]
(Lemma 3.3 and Lemma 3.4), to deduce locdllder continuity ofu. For the
sake of completness we provide a short proof following Bsgl and Kinnunen
[37].

Let 0 < o, 8 < o0 andR > 0. Recall that, for a locally integrable function
f, thefractional maximal functiorof f is defined by

Ao gF(X) = sup r“]é If| dy.
0<r<R B(x,r)
Moreover, thefractional sharp maximal functioof f is defined by
fi.(x)= su r“?][ f—fs . |dy.
sRX) o<roR Ei(x,r)l e Y

If R=o0c we simply writef §(x).
We need the following.
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Lemma 3.3. Suppose that:f2 — [—o0, 0] is locally integrable and leD <
[ < oo. Then there is a constant ¢ (which depends only@md on the doubling
constant) such that for every R Ry

)~ F)] < cpx.y)’ (fg#,ZR(x) . fg*‘,ZR(y)) (26)

for almost every xy € (2, such thato(x,y) < R.

Proof. Let x € 21, 0 < r < R and denoteB; = B(x,27'r), i =0,1,... Let N

be the the complement of the set of Lebesgue points (defined with respect to the
Carnot-Caratbodory balls!) forf in 2. Since the Lebesgue measure is doubling
with respect to the Carnot—Caratidory metric, the Lebesgue theorem implies
IN| =0, see Coifman and Weiss [15]. For everg (2; \ N we havefg, — f(x)

asi goes to infinity and hence

|f (X) B(x r)| < Z |fBi+1 - fBi |

Z |BI fBi ‘

|B|+1| B.

< c Z;@*ir)ﬁ(z” r>"]§ N

< Crltf ().

IN

Takey € 1\ N such thatp(x,y) < R. Theny € B(x r) for somer =
(1 +e)p(X,y) < R. SinceB(x,r) C B(y, 2r) we get

FO) ~ fpnl < IFO) Ty * g — e

8 —f
Cra 1Ty

Critia ).

IN

IN

Now

00 = F )] < 100 = T | +IFO) = Fry )
and the preceding inequalities lead to

f(x) — f()| < C p(x,y)’ (f,g,zR(X) + fg,zR(Y))

for everyx,y € 2, \ N with p(x,y) < R. The proof of Lemma 3.3 is complete.
O

Lemma 3.4. Let ue WyP(£2), 0 < « < 1. Then for R< Ry
U(X) = uy)| < ¢ p(X,y)' " (Aa2rXU|(X) + Ao orIXUI(Y))  (27)

for almost every xy € 21 with p(x,y) < R.
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Proof. The Poincag inequality

r"‘*ljé U= Uy < cro‘]é |Xul,
B(x,r) ’ B(x,r)

which holds for allx € 2; and allr < 2Ry, implies thatuf_mm(x) <

C Abq 2r | XU|(X) for R < Ry. Then Lemma 3.3 gives (27). O
Now, Holder inequality, the decay estimate (25), and the definition of the

homogeneous dimension imply that fer= 1 — % and anyx € (2; we have

, 1/Q
Mo XU|(X) < (,,//zoa,,0|xU|Q(x)) <cC.
Hence, by Lemma 3.4 we obtain

u(x) = u(y)| < cp(x,y)/?

for x,y with p(X,y) < ro/2. Thusu is locally Holder continuous with respect to
p and, by Theorem 2.1, with respect to the Euclidean metric. This concludes the
whole proof of Theorem 3.1. O
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