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1. A NAIVE QUESTION. Has it ever occurred to you that one could use a thread to
measure volume? Or area? We do not mean imprecise guesses of the following sort:
“This parcel must be horribly large, as 23.5 yards of cord were needed to wrap it up.”
The answer “Sure, I can use a thread to measure the length and width of my bedroom;
it is a rectangle 15 feet by 16 feet, so its area is 240 square feet,” is also unsatisfactory.
What we mean is a sort of black box that helps you to determine the volume of every
reasonable object once you know the length of a certain piece of thread.

Here is the idea. Imagine an ideal, perfectly elastic thread, say of unstretched length
one, imprinted with a scale to measure length. Imagine further that this thread is very
densely packed into a unit cube C—some Brave Little Tailor, much braver than the
Brothers Grimm hero, stretches it (in the process distorting the length scale), pulls it,
and twists it so that finally the thread passes through every tiniest speck of the cube,
through every cubic millimeter. You can measure the volume of a subset A of C as
follows: color all points of A (and hence all points of the thread that lie in A) with a
red dye, unpack the thread from the cube, and use the scale to record the total length
(we stress: this means total original length, before stretching!) of the colored red pieces
of the thread. This total length is equal to the volume of A! No matter where the set
A lies in the cube, no matter what shape it has! This sounds almost magical, yet it is
possible, at least in an abstract sense.

Before you start questioning our sanity, let us abandon our analogy and for-
mulate our question in purely mathematical terms, just to avoid misunderstanding
and misinterpretation. We ask: Does there exist a continuous, one-to-one mapping
ϕ: [0, 1) → (0, 1)n (this ϕ gives the rule for packing the thread into the cube; the
condition that ϕ be one-to-one is quite natural—after all, a thread should have no
self-intersections) with the following crucial property: for each Borel subset A of
(0, 1)n the one-dimensional measure of its preimage ϕ−1(A) should be equal to the
Lebesgue measure of A (i.e., standard volume for n = 3). (In the previous paragraph
A was described as a set whose points were stained with “red dye,” and the Lebesgue
measure of the preimage ϕ−1(A) corresponded, of course, to “total original length of
the colored red pieces of the thread before stretching.”)

2. THE ANSWER. Here is the answer to our question; some of you might find it
unexpected. In what follows Lk denotes k-dimensional Lebesgue measure.

Thread Theorem. For each n ≥ 2 there exists a continuous, one-to-one mapping
ϕ : [0, 1) → (0, 1)n such that L1(ϕ−1(A)) = Ln(A) for all Borel subsets A of [0, 1]n.

We postpone the proof of the theorem for a second and quickly mention a few
properties of ϕ. First of all, the image of ϕ fills almost the whole cube in the measure-
theoretic sense (i.e., Ln([0, 1]n \ ϕ([0, 1))) = 0). Otherwise there would be a compact
subset K of [0, 1]n \ ϕ([0, 1)) with Ln(K ) > 0, which would contradict the theorem.
However—unlike the classical Peano curve!—ϕ does not map [0, 1) onto (0, 1)n, be-
cause it is one-to-one. Of course, we also have L1(B) = Ln(ϕ(B)) for each Borel
subset B of (0, 1). Thus, if 0 < a < b < 1, then ϕ|[a,b] parametrizes an arc of posi-
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tive measure. Finally, since ϕ is measure-preserving, we immediately obtain a result
that is well known to functional analysts: for each n and each p satisfying 1 ≤ p ≤ ∞,
L p([0, 1]n) is isometric to L p([0, 1]) (see also the last corollary). The desired isometry
is simply defined by the correspondence u 	→ u ◦ ϕ.

The thread theorem is a direct consequence of a beautiful old theorem of von Neu-
mann, Oxtoby, and Ulam (see [4, Theorem 2, p. 886] or [2, p. 89]). One of our purposes
here is to illustrate the power of this surprising result. In what follows we denote the
closed unit cube [0, 1]n in R

n by Qn .

Homeomorphic Measures Theorem (von Neumann, Oxtoby, Ulam). Let µ be a
Borel measure on Qn such that µ(Qn) = 1, µ({x}) = 0 for all points x of Qn,
µ(∂Qn) = 0, and µ(U) > 0 for all nonempty open subsets U of Qn. Then there exists
a homeomorphism h : Qn → Qn such that Ln(A) = µ(h(A)) for every Borel set A
in Qn. Moreover, any such h must fix each point of ∂Qn.

We now apply this result to prove the thread theorem.

Proof of the thread theorem. Let ϕ̃ : [0, 1) → (0, 1)n be an arbitrary continuous one-
to-one mapping whose image is dense in Qn . (If you are not sure whether such map-
pings ϕ̃ exist, please read the remark following this proof.) The measure µ defined on
the collection of Borel subsets of Qn by

µ(A) = L1
(
ϕ̃−1(A)

)
satisfies the assumptions of the homeomorphic measures theorem. Set ϕ = h−1 ◦ ϕ̃,
where h is a homeomorphism with the properties stipulated in that result. Because
L1(ϕ−1(A)) = L1(ϕ̃−1(h(A))) = µ(h(A)) = Ln(A), we see that ϕ satisfies the claim
of the thread theorem.

Remark. There are uncountably many such ϕ̃. We give a quick sketch of how to
construct one. Let the sequence a1, a2, . . . be dense in (0, 1)n . Set ϕ̃(0) = a1, and
extend ϕ̃ to a linear mapping of [0, 1/2] onto the line segment A1 from a1 to a2 so
that ϕ̃(1/2) = a2. Assume that for some m ≥ 1 the map ϕ̃ has already been defined
on Im: = [0, 1 − 2−m] so that ϕ̃ |Im is a smooth embedded curve that passes through
a1, . . . , am (and possibly through lots of other a j ). Pick the first point a jm in the
sequence (ai ) that is not in the compact set ϕ̃(Im). Set ϕ̃(1 − 2−m−1) = a jm , join the
points ϕ̃(1 − 2−m−1) and ϕ̃(1 − 2−m) with a smooth arc Am that lies except for the point
ϕ̃(1 − 2−m) in (0, 1)n \ ϕ̃(Im), and extend ϕ̃ to a smooth embedding of Im+1 that maps
[1 − 2−m, 1 − 2−m−1] to Am . Take care to avoid a cusp at ϕ̃(1 − 2−m). All other details
are left to you, the reader. Proceeding inductively, one extends ϕ̃ to

⋃
m Im = [0, 1).

We end this section with the following result:

Corollary. If k ≥ n and 1 ≤ p ≤ ∞, then there exists an isometric isomorphism
� : L p([0, 1]k) → L p([0, 1]n) such that �(u) is continuous in (0, 1)n for each u in
L p([0, 1]k) that is continuous in (0, 1)k .

Sketch of proof. Take a continuous, one-to-one mapping ϕ̃: (0, 1)n → (0, 1)k whose
image is dense in Qk . (The construction of such ϕ̃ should present no difficulties to
a mathematically mature reader who has mastered the preceding remark.) As in the
proof of the thread theorem, take ϕ = h−1 ◦ ϕ̃, where h is given by the homeomor-
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phic measures theorem for an appropriate µ. The desired isometry � is defined by
u 	→ u ◦ ϕ. If u is continuous in (0, 1)k , then �(u) is plainly continuous in (0, 1)n .

Does the corollary also hold true when k < n? We do not know.

3. EXTENSIONS. The thread theorem is in fact the tip of an iceberg. First of all,
it provides merely one example of a more general phenomenon. The proof uses two
ingredients: the existence of a one-to-one mapping ϕ : [0, 1) → (0, 1)n such that
ϕ([0, 1)) is dense in Qn , and the homeomorphic measures theorem. Let us now as-
sume that a topological space X is endowed with a nonatomic Borel probability
measure µ that is positive on open sets. It follows easily from the homeomorphic
measures theorem that if X can be densely and injectively mapped into (0, 1)n , then
there also exists an injective mapping ϕ: X → (0, 1)n that is measure preserving (i.e.,
µ(ϕ−1(A)) = Ln(A) for all Borel subsets A of [0, 1]n). Thus, one could just as well
use µ to measure the volume of Borel subsets of the cube.

Oxtoby and Prasad extended the homeomorphic measures theorem to the Hilbert
cube Q = [0, 1]ℵ0 (see [3]). The sufficient conditions for a complete Borel mea-
sure µ to be obtainable from Lebesgue product measure λ on Q via a homeomorphism
h: Q → Q are even simpler than in the finite dimensional version: µ should be a prob-
ability measure that is nonatomic and positive on nonempty open sets. One does not
have to assume that µ vanishes on the boundary (if µ vanishes on a sum S of finitely
many faces of Q, then h(x) = x for each x in S). Thus, it is also possible to use a
thread to measure the infinite dimensional volume—one just has to mimick the proof
of the thread theorem (i.e., one should (a) construct an injective continuous mapping
ϕ : [0, 1) → Q with ϕ([0, 1)) dense in Q and (b) invoke [3] instead of the classical
n-dimensional homeomorphic measures theorem).

A. H. Stone [5] posed the question: For which metric measure spaces (X, µ) does
there exist a measure-preserving homeomorphism from X onto some topological sub-
space Q0 of the Hilbert cube (Q, λ). He was able to obtain a partial answer: if X is a
finite dimensional separable metric space endowed with a nonatomic complete regu-
lar Borel measure µ such that µ(X) < 1, then there exists a homeomorphism h from
(X, µ) onto a subspace of (Q, λ) such that λ(A ∩ h(X)) = µ(h−1(A)) for all Borel
sets A in Q.

To compare Stone’s result with the thread theorem, note that we obtain a mapping
ϕ : [0, 1) → (0, 1)n that is not a homeomorphism onto ϕ([0, 1)). However, the same
mapping restricted to any compact subinterval of [0, 1) becomes a homeomorphism.
This suggests that the assumption µ(X) < 1 in Stone’s theorem is natural. On the
other hand, the assumption that µ be positive on open sets is not present in Stone’s
result. This is maybe not so surprising (for example, if X = [a, b] with µ ≡ 0, then it
is pretty easy to find a homeomorphism of X onto a subspace that has the additional
desired property).

Finally, one could also wander in a different direction and ask which measures
µ = f dx on [0, 1]n can be obtained from Lebesgue measure by a homeomorphism
with preordained differentiability properties. This amounts to looking for maps with
prescribed Jacobians (see, for example, the work of Dacorogna and Moser [1]) and
belongs to the realm of partial differential equations.
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