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in the critical dimension∗

Paweł Goldstein, Paweł Strzelecki, Anna Zatorska-Goldstein

version of January 7, 2009

Abstract

We prove that every polyharmonic map u ∈ W m,2(Bn, SN−1) is smooth in the critical dimension
n = 2m. Moreover, in every dimension n, a weak limit u ∈ W m,2(Bn, SN−1) of a sequence of
polyharmonic maps uj ∈ W m,2(Bn, SN−1) is also polyharmonic.

The proofs are based on the equivalence of the polyharmonic map equations with a system of lower
order conservation laws in divergence-like form. The proof of regularity in dimension 2m uses estimates
by Riesz potentials and Sobolev inequalities; it can be generalized to a wide class of nonlinear elliptic
systems of order 2m.

1 Introduction

In this paper we study extrinsic m-polyharmonic maps from Bn into an (N − 1)-dimensional round sphere
SN−1 = {x ∈ Rn : |x|2 = 1} — that is, roughly speaking, critical points of the functional

Em(u) =
1
2

∫
Bn

|Dmu|2 dx, u : Bn → RN , u(Bn) ⊂ SN−1, (1.1)

with respect to variations in the range. Since m ≥ 2 is fixed in the sequel, and we do not investigate
intrinsic polyharmonic maps, we drop the adjective and m, and adopt the following definition.

Definition 1.1. We say that a map u ∈ Wm,2(Bn, SN−1) is polyharmonic iff

d

dt
Em

(
πSN−1(u + tψ)

)∣∣∣
t=0

= 0 for all ψ ∈ C∞
0 (Bn, RN ), (1.2)

where πSN−1(y) = y/|y| denotes the nearest point projection of RN onto SN−1.

Our paper is devoted to regularity of such maps in the critical dimension n = 2m and to their weak
convergence; this research has been prompted in 2007 by Andreas Gastel’s lecture on the results of his
research on polyharmonic map flow [8]. Before stating the results, let us briefly sketch the perspective.

Polyharmonic mappings are (one of possible) natural generalizations of harmonic mappings. The main
difficulty in the study of regularity of minimizers and critical points of Em, and other analytical issues asso-
ciated with this functional, is that the nonlinearity of the Euler-Lagrange equations (1.2) is just integrable.
In dimensions n > 2m there is no hope to obtain even partial regularity in general: there exist examples, see
[18], of harmonic maps u ∈ W 1,2(B3, S2) which are everywhere discontinuous. In the dimension n = 2m
the nonlinearity is critical. Examples, see e.g. Frehse [7], show that general elliptic systems of that type
may have discontinuous solutions even if the solutions belong to L∞ ∩ V MO.

∗2000 Mathematics Subject Classification: Primary: 35J60 Secondary: 35J65, 42B35. This work was supported by a MNiSzW
grant no 1 PO3A 005 29.
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However, F. Hélein proved that harmonic mappings from a two-dimensional disk into a compact Rie-
mannian manifold N are smooth1. Such mappings satisfy the system

−Δu = A(u)(∇u,∇u), (1.3)

where A(u) stands for the second fundamental form of the target manifold. In particular, if N is a round
sphere or a homogeneous space, then (1.3) is equivalent to a system of conservation laws in divergence
form. This implies that A(u)(∇u,∇u) is not only integrable (this follows by Schwarz inequality from
a priori assumptions), but in fact lies in the Hardy space H1(Rn). Also for a general targets, the key
ingredient of his proof is the use of Coulomb moving frames in order to expose Jacobian-like structure
of the critical terms. This, by a combination of results of [5], the duality of H1(Rn) and BMO, and the
embedding of appropriate Morrey spaces into V MO, allows one to absorb (locally) these critical terms.

Hélein’s result has been extended by Evans [6] and Bethuel [3] to stationary harmonic maps in higher
dimensions. Their proofs also rely on symmetries of the nonlinearity that, via the duality of H1(Rn) and
BMO, lead to cancellation phenomena and hence allow one to deal with the critical nonlinear terms.
Recently, new proofs of these results — based on conservation laws and avoiding direct use of Hardy space
and BMO duality — have been discovered by Rivière [19] and Rivière and Struwe [20].

For m = 2, the critical points of (1.1) are known as (extrinsic) biharmonic maps.2 Chang, Wang and
Yang [4] proved that such mappings from a 4-dimensional disc into a sphere are smooth, and that stationary
mappings from higher-dimensional disks are Hölder continuous outside a closed singular set of Hausdorff
codimension 4. These results have been generalized to arbitrary Riemannian target manifolds by Wang
[28]; the codimension estimate has been recently improved from 4 to 5 by Scheven [22]. Another proof for
maps from 4-dimensional domains into spheres has been given by the second author of this paper in [25].
A new proof of regularity of biharmonic maps in dimension 4 has been discovered by Lamm and Rivière
[15].

For m > 2 there are very few results. First, the paper of Gastel [8] extends earlier results on harmonic
map flow to the polyharmonic case and establishes the existence of the unique eternal solution, regular
except at finitely many time instants. Next, there is a preprint of Angelsberg and Pumberger who prove
smoothness of polyharmonic maps which are small in an appropriate Morrey norm, under a rather strong
extra assumption that Dmu is integrable with some power larger than 2 (in the critical dimension n = 2m
this immediately implies continuity of u). Up to our knowledge, no other regularity or existence results
have been known up to now.

Then, very recently, Gastel and Scheven [9] have proved the regularity of both extrinsic and intrinsic
m-polyharmonic maps from n = 2m dimensional domains into general compact Riemannian manifolds.
Their proof is based on Wang’s generalization of Hélein’s moving frame technique, combined with higher
order estimates for moving frames which are obtained via a clever application of Lorentz space estimates
for Hodge decomposition and Uhlenbeck’s gauge theorem [26]. This allows them to obtain the decay
estimates for Lorentz L2,∞ norm of

∑
j |Dju|m/j on small balls, which is is enough to obtain Hölder

continuity of u.

The present work was essentially completed when the authors have learned about the results of [9].
Due to the symmetry of SN−1, our proof is somewhat simpler and shorter, and in fact we use only standard
tools of harmonic analysis, which can be applied in basically the same way to obtain regularity of a large
class of nonlinear elliptic systems of order 2m in dimension n = 2m. As a byproduct, we are also able to
prove that a weak limit of polyharmonic mappings in Wm,2 is polyharmonic. Here are the results.

Theorem 1.2. If a sequence of polyharmonic maps uk ∈ Wm,2(Bn, SN−1) converges weakly in Wm,2 to
u ∈ Wm,2(Bn, SN−1), then u is polyharmonic, as well.

Theorem 1.3. Let n = 2m. Then every polyharmonic map u ∈ Wm,2(Bn, SN−1) is smooth.

In fact, our proof of the latter result can be generalized to obtain the following.

1See his book [14] for an excellent account of this topic.
2These are usually defined as critical points of

R |Δu|2, but these two definitions are equivalent.
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Theorem 1.4. Let n = 2m ≥ 4. Assume that u ∈ L∞ ∩ Wm,2(Bn, RN) solves the elliptic system

Lu =
∑

|α|=m

Eα · Dαu + F (u, Du, . . . , Dmu), (1.4)

where L is an elliptic operator with smooth coefficients, Eα ∈ L2(Bn, RN) satisfy a higher order cancel-
lation condition ∑

|α|=m

DαEα = 0 in Bn, (1.5)

and F (. . .) is smooth and satisfies the growth condition

|F (u, Du, . . . , Dmu)| �
∑

j=(j1,...,jm)∈J

m∏
k=1

|Dku|jk , (1.6)

where J is a fixed finite set of m-tuples j = (j1, . . . , jm) of nonnegative reals jk such that

m∑
k=1

kjk = n and 0 ≤ jm < 2 for each j ∈ J. (1.7)

Then u is smooth in Bn.

Remark. Conditions (1.6) and (1.7) combined with standard Gagliardo–Nirenberg interpolation inequal-
ities imply that F (u, Du, . . . , Dmu) is of class L1 whenever u ∈ L∞ ∩ Wm,2. To see this, one applies
Young’s inequality with exponents n(kjk)−1 to each term in the sum in (1.6). The point is that the right
hand side of F does not contain the squares of Dmu, and therefore, by Young’s inequality again, for each
ε > 0 we have

|F (u, Du, . . . , Dmu)| ≤ ε|Dmu|2 + C(ε)
m−1∑
k=1

|Dku|n/k (1.8)

for some constant C(ε).

The main idea in the proof of Theorem 1.3 has its origin in the paper of Hajłasz and the second author
[13] on subelliptic p-harmonic maps into spheres. The same idea was later reworked and applied in other
contexts, for biharmonic maps and for higher order differential operators, in [24, 25]. We rewrite the Euler-
Lagrange equations of (1.1) in a particular divergence-like form (see Section 3), and use a test function
quadratic in u. Careful inspection of all the emerging terms reveals a general structure which is, in fact,
similar to (1.4) and leads to local reverse Hölder inequalities for derivatives of u. This point is, in fact,
rather delicate and requires the use of generalized Riesz potentials to cope with the terms of the form∑

EαDαu; here, cancellation properties are crucial. Gehring’s lemma gives higher integrability of Dmu;
that, in turn, implies higher integrability of all lower order derivatives of u. Next, we prove the existence
of derivatives of order m + 1, . . . , 2m − 1 in various Lp spaces. Standard bootstrap and Schauder theory
arguments conclude the proof of smoothness of u.

The rest of the paper is organized as follows. In Section 2 we explain some notation and recall the
necessary tools. Section 3 contains various equivalent forms of the Euler–Lagrange equations of poly-
harmonic maps and the proof of Theorem 1.2. In Section 4 we prove reverse Hölder’s inequalities for
V =

∑
j |Dju|n/j . In Section 5 we explain in some detail how to pass from higher integrability of Dmu

to smoothness, since this part of the proof is not entirely trivial.

2 Notation and tools

Barred integrals denote averages, i.e.∫
B(x,r)

u dy =
1

|B(x, r)|
∫

B(x,r)

u dy,

3
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where B(x, r) stands for an open ball with a center x ∈ Rn and a radius r. From time to time we write Br

instead of B(x, r) and (u)Br instead of
∫

Br
u dy.

If A and B are two positive expressions, we write A � B if A ≤ C · B for some constant C which
depends only on n, N and possibly on the exponents of integrability which enter into the definitions of A
and B. (In the computations in Section 4, all constants denoted by C depend in fact only on n and N .)

Notation for derivatives. Greek letters α, β and γ denote multiindices in Rn. We employ the commonly
used abbreviations: |α| = α1 + α2 + · · · + αn is the length of a multiindex α = (α1, α2, . . . , αn), where
all αi are nonnegative integers; we write α! = α1!α2! · · ·αn! and xα = xα1

1 xα2
2 . . . xαn

n for x ∈ Rn. For
v ∈ W k,1

loc , k = 1, 2, . . ., we write

T k
z v(y) =

∑
|β|≤k

Dβv(z)
(y − z)β

β!

to denote the Taylor polynomial of v; moreover,

T k
Av(y) : =

∫
A

T k
z v(y) dz

denotes the averaged Taylor polynomial of v.

The letter D with latin superscripts is used to denote the whole collection of partial derivatives of given
order. Thus, for v : Rn ⊃ Ω → R, Dkv := (Dαv)|α|=k stands for a vector valued function whose range is
RMk , where Mk :=

∑
|α|=k 1 is the number of all multiindices of length k.

Sobolev’s inequalities in the critical dimension. We record two simple consequences of Sobolev’s imbed-
ding. (Related interpolation inequalities are used for the polyharmonic map flow, see [8, Section 3].)

Lemma 2.1. Let n = 2m, u ∈ Wm,2(Ω, RN ), Ω ⊂ Rn. Fix an arbitrary δ > 0. There exists a number
r0 = r0(ε, u) > 0 and a constant C (which depends only on n) such that for each k = 1, 2, . . . , m− 1 and
each ball Br = B(a, r) ⊂ Ω with r ∈ (0, r0) we have

∫
Br

|Dku|n/k dx ≤ δ

∫
Br

|Dmu|2 dx + Crn
m−1∑
j=k

( ∫
Br

|Dju| dx

)n/j

. (2.1)

Proof of Lemma 2.1. Since n/k is the Sobolev conjugate exponent of n/(k+1) for each k = 1, 2, . . . , m−
1, where m = n/2, Sobolev’s inequality yields∫

Br

|Dku|n/k dx �
∫

Br

|Dku − (Dku)Br |n/k dx + rn|(Dku)Br |n/k

�
(∫

Br

|Dk+1u|n/(k+1) dx

) k+1
k

+ rn|(Dku)Br |n/k

� φ(r, u)
∫

Br

|Dk+1u|n/(k+1) dx + rn|(Dku)Br |n/k,

where

φ(r, u) := sup
B(y,r)⊂Ω

[
max

k=1,2,...,m−1

(∫
B(y,r)

|Dk+1u|n/(k+1) dx

) 1
k

]
. (2.2)

By the absolute continuity of integral, φ(r, u) → 0 as r → 0. Thus, the lemma follows easily by induction.
�

We recall also the Gagliardo–Nirenberg interpolation inequalities in an endpoint case.
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Theorem 2.2. Assume that u ∈ Wm,p(Rn) for some p ≥ 1 and 1 ≤ k ≤ m, k, m ∈ N. If u ∈ L∞(Rn),
then Dku ∈ Lq(Rn) for q = m

k p and

‖Dku‖2
Lq ≤ C‖u‖1−θ

L∞ ‖Dmu‖θ
Lp where θ = k/m, (2.3)

for some constant C = C(k, m, p, n).

Riesz potentials and fractional integration. We will extensively use the theory of Riesz operators. For
the reader’s convenience we state the basic facts.

Definition 2.3. Let a ∈ (0, n). The Riesz potential operator of order a is an integral operator Ia defined
as

Iaf(x) =
1

γ(a)

∫
Rn

|x − y|a−nf(y) dy (2.4)

where

γ(a) = 2aπn/2 Γ(a/2)
Γ(n

2 − a
2 )

.

Theorem 2.4 (Fractional Integration Theorem). Let a ∈ (0, n), 1 < p < q < ∞. Then the Riesz potential
operator

Ia : Lp → Lq where
1
q

=
1
p
− a

n
(2.5)

is bounded.

In the suite, we shall use a more refined version of Riesz potentials, discussed by Hajłasz and Koskela
[12] and applied in the manner we need e.g. in [24]. The definition and properties given below are essen-
tially rewritten from the latter paper.

Definition 2.5. For g ∈ Lp(B20r) the generalized Riesz potential Iν,pg(y), where ν > 0, is given by

Iν,pg(y) =
[log2 9r]∑
l=−∞

2lν

(∫
B(y,2l)

|g(x)|pdx

)1/p

.

The above integral is well defined for any y ∈ B2r

We have (see e.g. [12])

Lemma 2.6. Assume that g ∈ Lq(B20r) and that 0 < p < q < n/ν. Then Iν,pg ∈ Lq∗
(B2r), where

q∗ = nq/(n − νq) and
‖Iν,pg‖Lq∗(B2r) � ‖g‖Lq(B20r).

Finally, we shall use the well-known Gehring–Giaquinta–Modica Lemma on self improving property
of reverse Hölder’s inequalities and Campanato characterization of Hölder continuous functions. Both facts
can be found e.g. in the book of Giaquinta [10].

3 Euler–Lagrange equations and weak convergence

To write down the Euler–Lagrange equation which follows from the definition (1.2), note that, as |u| = 1
a.e.,

d

dt

( u + tψ

|u + tψ|
)∣∣∣∣∣

t=0

= ψ − 〈u, ψ〉u.

5



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Thus, differentiating under the integral sign, we obtain

∑
|α|=m

N∑
k=1

∫
Bn

Dαuk Dαψk dx =
∑

|α|=m

N∑
k=1

N∑
i=1

∫
Bn

Dαuk Dα(ukuiψi) dx (3.1)

for every ψ ∈ C∞
0 (Bn, RN ). Equivalently,

∑
|α|=m

∫
Bn

Dαuj Dαφ dx =
∑

|α|=m

N∑
k=1

∫
Bn

Dαuk Dα(φujuk) dx (3.2)

for every j = 1 . . .N and every φ ∈ C∞
0 (Bn).

Lemma 3.1. Let u ∈ Wm,2(Bn, RN ). The following conditions are equivalent:

1. u is polyharmonic, i.e. (3.2) holds;

2. the identity ∑
|α|=m

∫
Bn

(
DαujDα(θul) − Dα(θuj)Dαul

)
dx = 0 (3.3)

holds for all j, l = 1 . . .N and θ ∈ C∞
0 (Bn).

Proof. 1. ⇒ 2. By density (3.2) holds for every φ ∈ Wm,2(Bn) which is bounded. We set φ = θul,
where θ ∈ C∞

0 (Bn). Then the equation (3.2) takes form

∑
|α|=m

∫
Bn

Dαuj Dα(θul) dx =
∑

|α|=m

N∑
k=1

∫
Bn

Dαuk Dα(θulujuk) dx.

The right hand side is symmetric with respect to l and j. Obviously, the left hand side must have the same
property. Thus we obtain ∑

|α|=m

∫
Bn

(
DαujDα(θul) − Dα(θuj)Dαul

)
dx = 0.

2. ⇒ 1. Again, by a density argument, we may use θ ∈ L∞ ∩ Wm,2(Bn). Taking θ = φul with φ ∈
C∞

0 (Bn) we obtain ∑
|α|=m

∫
Bn

(
DαujDα(φ(ul)2) − Dα(φujul)Dαul

)
dx = 0

for every j, l = 1 . . .N . Summing over l = 1 . . . N and using the constraints
∑N

l=1(u
l)2 = 1 leads to

(3.3).

We may rewrite the equation (3.3) in yet another convenient equivalent form, namely∑
|α|=m
α≥β>0

∫
Bn

DβϑF jl
αβ dx = 0 for all j, l = 1, . . . , N and all ϑ ∈ C∞

0 (Ω), (3.4)

where

F jl
αβ ≡ F jl

αβ(u) :=
(

α

β

)(
DαujDα−βul − DαulDα−βuj

)
. (3.5)

Proof of Theorem 1.2. If uk ∈ Wm,2(Bn, SN−1) converges weakly to u ∈ Wm,2(Bn, SN−1), then,
by the Rellich-Kondrashov compactness theorem, Dα−βuk → Dα−βu strongly in L2 for every α with
|α| = m and every β > 0. Thus, F jl

αβ(uk) → F jl
αβ(u) in the sense of distributions, and therefore one can

pass to the limit in the polyharmonic map equation (3.4). This completes the proof. �

6
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4 Reverse Hölder’s inequalities and energy decay

The key result needed to prove continuity of a polyharmonic map u and higher integrability of its derivatives
Dku, k = 1, 2, . . . , m, is the following reverse Hölder’s inequality.

Lemma 4.1. Assume that u ∈ Wm,2(Bn, SN−1), n = 2m, is a polyharmonic map. There exists a constant
C0, depending only on n and N , such that for every ε > 0 there exists a number r0 = r0(ε, u) > 0 with
the following property:

∫
Br

V 2 dx ≤ C0

ε

(∫
B2r

V p dx

)2/p

+ ε

∫
B20r

V 2 dx (4.1)

for all radii r ∈ (0, r0), where

V :=
m∑

j=1

|Dju|m/j

and 1 < p := 2n/(n + 1) < 2.

Proof. We shall use the third equivalent form of the Euler-Lagrange equation, i.e. (3.4),

∑
|α|=m
α≥β>0

∫
Bn

Dβϑ F jl
αβ(u) dx = 0 for all j, l = 1, . . . , N and all ϑ ∈ C∞

0 (Ω), (4.2)

where the F jl
αβ(u) are defined by (3.5). Throughout the whole proof, C and Ci denote various constants

which depend only on n and N .

Step 1. The test function and separation of different terms. For fixed j, l, we use

ϑ := ζulũj , where ũj := uj − T m−1
B2r

uj, (4.3)

as the test function in (4.2). Here, ζ ∈ C∞
0 (B2r) is a standard nonnegative cut-off function with ζ ≡ 1 on

Br and |Dk(ζ)| � r−k for k = 1, 2, . . . , m; by T m−1
B2r

uj we denote, as usual, the mean value of the Taylor
polynomial of uj of order m − 1 over the ball B2r. Using Leibniz’ formula, we split

Dβϑ = Φβ
1 + Φβ

2 + Φβ
3 , (4.4)

where
Φβ

1 := ulDβ(ζũj), Φβ
3 := ζũjDβul, (4.5)

and

Φβ
2 :=

∑
β1,β2>0
β1+β2=β

(
β

β1

)
Dβ1ulDβ2(ζũj). (4.6)

Inserting these expressions into (4.2) and summing with respect to j and l, we obtain an identity of the
form

W1 + W2 + W3 = 0, (4.7)

where

Wi :=
∑
j,l

∑′

α,β

∫
Bn

F jl
αβ(u)Φβ

i dx for i = 1, 2, 3, (4.8)

and the summation in
∑′

α,β

is performed over all α, β such that α ≥ β > 0, |α| = m.

Before proceeding further, let us now give an informal explanation of the structure of the whole proof.
The splitting (4.4) is arranged in such a way that W3 corresponds to the crucial part of the critical nonlin-
earity in the polyharmonic map equation; to cope with this term, one really has to use the structure of this

7
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equation and a subtle estimate in terms of Riesz potentials. This part of estimates is based on cancellation.
On the other hand, the leading term W1 gives the integral

∫
ζ |Dmu|2 dx up to a perturbation term which

can be controlled by more or less standard applications of Hölder’s, Poincaré’s and Sobolev’s inequalities.
W2 is just a perturbation term, which can be controlled in an analogous way. The estimates of W1 and W2

employ the constraints |u|2 = 1 but otherwise are based only on growth properties.

To see all that, we further decompose these terms, starting with W1 and then W2.

Step 2. The leading term. In W1, we separate the terms with α = β from the remaining ones to obtain

W1 = W1,1 + W1,2

where

W1,1 :=
∑

1≤j,l≤N
|α|=m

∫
Bn

Φjl
αα(u)ulDα(ζũj) dx, (4.9)

W1,2 :=
∑
j,l

∑
|α|=m
α>β>0

∫
Bn

Φjl
αβ(u)ulDβ(ζũj) dx. (4.10)

We insert the definition (3.5) of F jl
αβ into (4.9) and deal with the sum W1,1, using the constraints |u|2 = 1

a.e., their consequence ∑
l

ulDαul = −1
2

∑
0<γ<α

∑
l

(
α

γ

)
DγulDα−γul, (4.11)

and Leibniz’ formula in the following way:

W1,1 ≡
∑

1≤j,l≤N
|α|=m

∫
Bn

(
ulDαuj − ujDαul

)
ulDα(ζũj) dx

=
∑

1≤j,l≤N
|α|=m

∫
Bn

(ul)2Dαuj Dα(ζũj) dx +
1
2

∑
1≤j,l≤N
|α|=m
0<γ<α

∫
Bn

(
α

γ

)
ujDγulDα−γulDα(ζũj) dx

≥
∫

B2r

ζ|Dmu|2 dx − C(S1 + S2(ζũ, u, u)), (4.12)

where the two sums S1 and S2(. . .) — which do not contain the squares of m-th derivatives of u — are
given by

S1 := r−k
m∑

k=1

∫
B2r

|Dmu| |Dm−kũ| dx (4.13)

S2(f, g, h) :=
m−1∑
k=1

∫
B2r

|Dmf | |Dm−kg| |Dkh| dx for f, g, h ∈ L∞ ∩ Wm,2. (4.14)

Now, we estimate S1 in a standard way, applying Hölder’s and Sobolev’s inequalities to obtain

S1 �
m∑

k=1

rn−k

(∫
B2r

|Dm−kũk|p′
k dx

) 1
p′

k

(∫
B2r

|Dmu|pk dx

) 1
pk

�
m∑

k=1

rn

(∫
B2r

|Dmu|pk dx

) 1
pk

(∫
B2r

|Dmu|pk dx

) 1
pk

,

(4.15)
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which holds provided we choose each pk such as to have p′k = p∗...∗
k = np/(n−kp). This condition yields

pk = 2n/(n + k); in particular, for each 0 < k ≤ m we have pk ≤ p1 ≡ p := 2n/(n + 1) < 2. Thus, by
Hölder’s inequality, we can estimate

S1 ≤ Crn

(∫
B2r

|Dmu| 2n
n+1

)n+1
n

. (4.16)

Step 3. Lower order terms. The estimate of S2(ζũ, u, u) is very similar to the estimates of W1,2 and W2.
It is easy to check that, by triangle inequality,

|W1,2| + |W2| ≤ C
(
S2(u, u, ζũ) + S3(u, u, u, ζũ)

)
, (4.17)

where S3(. . .) is defined by

S3(f, g, h, φ) : =
∑

k+l+t=m
k,l,t≥1

∫
B2r

|Dmf | |Dkg| |Dlh| |Dtφ| dx (4.18)

whenever f, g, h, φ ∈ L∞ ∩ Wm,2. Our general aim now is to estimate S2(. . .) and S3(. . .) by

(a small constant) ·
∫

Bσr

|Dmu|2 + lower order, harmless terms, (4.19)

with σ = 2. This is done in a fairly routine way, using Young’s inequality and Lemma 2.1. Here are the
details.

Fix a small number η > 0, η << ε. The value of η shall be specified later on.

Applying Young’s inequality with exponents 2, n/k and n/(m − k), we obtain

S2(ζũ, u, u) ≤ η

∫
B2r

|Dm(ζũ)|2 dx +
C

η
S4(u),

where

S4(f) :=
m−1∑
k=1

∫
B2r

|Dkf |n/k dx for f ∈ L∞ ∩ Wm,2. (4.20)

Leibniz’ formula and Poincaré’s inequality yield∫
B2r

|Dm(ζũ)|2 dx ≤ C

∫
B2r

|Dmu|2 dx (4.21)

(we use the bounds |Dkζ| � r−k here), so that

S2(ζũ, u, u) ≤ Cη

∫
B2r

|Dmu|2 dx +
C

η
S4(u), (4.22)

where C depends only on n and N .

Next, applying Young’s inequality in a similar way, we obtain

S2(u, u, ζũ) ≤ Cη

∫
B2r

|Dmu|2 dx +
C

η
S4(u) +

C

η
S4(ζũ), (4.23)

S3(u, u, u, ζũ) ≤ Cη

∫
B2r

|Dmu|2 dx +
C

η
S4(u) +

C

η
S4(ζũ). (4.24)

It remains now to obtain appropriate estimates of S4(u) and S4(ζũ). Applying Lemma 2.1 for δ :=
η2/(C1m), we obtain

C1

η
S4(u) ≤ η

∫
B2r

|Dmu|2 +
C2

η
rn

m−1∑
k=1

(∫
B2r

|Dku| dx

)n/k

(4.25)
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for all radii r ∈ (0, r1), where r1 = r1(η, u) > 0.

Next, by Sobolev inequality for compactly supported functions,

S4(ζũ) =
m−1∑
k=1

∫
B2r

|Dk(ζũ)|n/k dx

�
m−1∑
k=1

(∫
B2r

|Dm(ζũ)|2 dx

)m/k (4.21)
�

m−1∑
k=1

(∫
B2r

|Dmu|2 dx

)m/k

.

Since all the exponents m/k in the last sum above are greater than 1, we can use absolute continuity of the
integral to conclude that

C1

η
S4(ζũ) ≤ η

∫
B2r

|Dmu|2 dx (4.26)

for all radii r ∈ (0, r2), where r2 = r2(η, u) > 0.

Step 4. A combined estimate of W1+W2. We are now in a position to plug the estimates (4.25) and (4.26)
of S4(. . .) into the right hand sides of (4.22), (4.23) and (4.24) to obtain

S2(ζu, u, u) + |W1,2| + |W2| ≤ Cη

∫
B2r

|Dmu|2 +
C

η
rn

m−1∑
k=1

(∫
B2r

|Dku| dx

)n/k

for all r < min(r1, r2). Combining this estimate with (4.12) and (4.16), we obtain the following estimate
of the leading term and all the lower order perturbations:

W1 + W2 ≥
∫

B2r

ζ|Dmu|2 dx − C3η

∫
B2r

|Dmu|2 dx

− C4r
n

(∫
B2r

|Dmu| 2n
n+1

)n+1
n

− C4

η
rn

m−1∑
k=1

(∫
B2r

|Dku| dx

)n/k

≥
∫

B2r

ζ|Dmu|2 dx − C3η

∫
B2r

|Dmu|2 dx − C5

η
rn

(∫
B2r

|V | 2n
n+1 dx

)n+1
n

(4.27)

where V =
∑m

k=1 |Dku|m/k. In the last step, we used Hölder’s inequality and the obvious properties of
s �→ sq for s ∈ [0,∞) and q > 1.

Step 5. Employing cancellation, i.e. the estimates of W3. This is the heart of the proof. We now pass to
the most troublesome term

W3 =
∑
j,l

∑′

α,β

∫
Ω

ζũjDβul F jl
αβ(u) dx, (4.28)

where the summation
∑′

α,β

is, as in (4.7), performed over α, β such that |α| = m, 0 < β ≤ α.

Our general aim is to prove that, for sufficiently small r, each of the N2 terms W3,jl of W3,

W3,jl :=
∑′

α,β

∫
Ω

(
α

β

)
ζũjDβulF lj

αβdx, (4.29)

can be estimated by a small multiple of
∫

B20r
|Dmu|2.

From now on we fix j and l. Set φ := ζũj . We shall use the representation formula

φ(x) =
∫

B2r

K(x − y)Dmφ(y)dy, |DγK(x − y)| � |x − y|−m−|γ|. (4.30)
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(Such a formula can be obtained for smooth compactly supported functions, using the fundamental solution
of (Δ)m in Rn and integration by parts. The constants in estimates of DγK depend only on n and γ.)

Let ζ1 ∈ C∞
0 be such that ζ1 ≡ 1 on B2r, ζ1 ≡ 0 off B3r, Dkζ1 � r−k. We can safely multiply the

integrand of (4.29) by ζ1, as the support of ζ (and thus of φ) is contained in B2r:

W3,jl =
∑′

α,β

∫
Rn

∫
B2r

ζ1(x)K(x − y)Dmφ(y)Dβul(x)F jl
αβ(x) dx dy

=
∫

B2r

Dmφ(y)
∑′

α,β

∫
Rn

ζ1(x)K(x − y)Dβul(x)F jl
αβ(x) dx dy.

(4.31)

Since u ∈ Wm,2, we have Dmφ ∈ L2, and ‖Dmφ‖L2 � ‖Dmu‖L2(B2r) by Poincaré’s inequality. We thus
face the following crucial question: does

A(y) :=
∑′

α,β

∫
Rn

ζ1(x)K(x − y)Dβul(x)F jl
αβ(x) dx (4.32)

belong to L2(B2r), with possibly good estimates of its L2-norm? In order to provide a positive answer, and
to obtain

|W3,jl| � ‖Dmu‖L2(B2r)‖A‖L2(B2r), (4.33)

let us fix y ∈ B2r and consider a Whitney decomposition

Rn \ {y} =
⋃
i∈I

Bi,

where for all i ∈ I we have Bi = B(ai, ri) and ri = 1
1000 |ai − y|. In particular, |x − y| ≈ ri for every

x ∈ Bi; this yields
|DγK(x − y)| � r

−m−|γ|
i for all x ∈ Bi, i ∈ I.

By J we denote the set of all these indices i ∈ I for which Bi ∩ B3r �= ∅ (recall that ζ1 ∈ C∞
0 (B3r)).

Next, we choose a Whitney partition of unity θi ∈ C∞
0 (Bi),

∑
θi ≡ 1 on Rn \ {y}, |Dsθi| � r−s

i ,
s = 1, 2, . . ., i ∈ I . Moreover, we assume that the family {10Bi | i ∈ I} has finite overlap property: there
exists an L = L(n) such that ∑

i∈I

χ10Bi(x) ≤ L for all x ∈ Rn.

Then, using the Euler equation (4.2) for ϑ(x) = ζ1(x)K(x− y)θi(x)[u(x)−T
|β|−1
Bi

u] on each ball Bi, we
observe that

|A(y)| : =

∣∣∣∣∣∣
∑′

α,β

∫
Rn

ζ1(x)K(x − y)Dβul(x)F̃ jl
αβ(x) dx

∣∣∣∣∣∣
≤

∑
|α|=m

α≥β≥γ>0

∑
i∈J

∣∣∣∣
∫

Rn

(
β

γ

)
Dγ(ζ1Kθi)Dβ−γ [u − T

|β|−1
Bi

u]F̃ jl
αβ dx

∣∣∣∣
�

∑
|α|=m

α≥β≥γ>0

∑
i∈J

r
−m−|γ|
i

∫
Bi

|Dβ−γ [u − T
|β|−1
Bi

u]||F jl
αβ | dx

=:
∑

|α|=m
α≥β≥γ>0

Aαβγ(y) .

(4.34)

We fix α, β and γ and deal with each term Aαβγ(y) separately. We need to consider several possible cases:
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Case 1: α = β = γ. Fix i ∈ J . The i-th term of the sum Aαβγ(y) can be estimated as follows:∫
Bi

r−2m
i |u − T m−1

Bi
u||F jl

αα| dx �
∫

Bi

|u − T m−1
Bi

u||Dmu| dx

�
(∫

Bi

|u − T m−1
Bi

u|q dx

) 1
q

(∫
Bi

|Dmu|p dx

) 1
p

� rm
i

(∫
Bi

|Dmu|q∗···∗ dx

) 1
q∗···∗

(∫
Bi

|Dmu|p dx

) 1
p

(4.35)

using first Hölder’s, then Sobolev’s inequality. The exponents in Hölder’s inequality are chosen in such a
way as to have q∗···∗ = p, that is q = np

n−mp = p
p−1 . In our case m = n

2 , which gives p = 4
3 , q = 4.

Altogether we estimate our term with

∫
Bi

r−2m
i |u − T m−1

Bi
u||F jl

αα| dx � rm
i

(∫
Bi

|Dmu| 43 dx

) 3
2

�
(∫

Bi

|Dmu(x)|4/3 dx

|x − y|n−n/3

) 3
2

.

(4.36)

Summing over i ∈ J and applying the inequality
∑

ci
3/2 ≤ (∑

ci

)3/2
, we obtain an estimate by a Riesz

potential

|Aαβγ(y)| �
(
In

3
(χB4r |Dmu| 43 )(y)

) 3
2

=
(∫

B4r

|Dmu(x)|4/3 dx

|x − y|n−n/3

) 3
2

.

This term, by the fractional integration theorem (see Section 2, Theorem 2.4), lies in L2(B2r), and

‖Aαβγ‖L2(B2r) � ‖(In
3
(χB4r |Dmu| 43 ))

3
2 ‖L2(B2r) � ‖Dmu‖2

L2(B4r). (4.37)

Case 2: α = β > γ > 0. As in the previous case, we first fix i ∈ I . In order to simplify the notation we
shall write |γ| = s, β − γ = δ. Using the standard properties of Taylor polynomials,

Dβ−γ [u − T
|β|−1
Bi

u] = Dβ−γu − T
|γ|−1
Bi

Dβ−γu,

we can estimate the i-th term of (4.34) in the following way:

r−m−s
i

∫
Bi

|Dδ[u − T
|β|−1
Bi

u]||F jl
αβ | dx

� r−m−s
i

∫
Bi

|Dδu − T s−1
Bi

Dδu||Dmu| dx

� rm−s
i

(∫
Bi

|Dδu − T s−1
Bi

Dδu|q dx

) 1
q

(∫
Bi

|Dmu|p dx

) 1
p

� rm
i

(∫
Bi

|Ds(Dδu)|q∗···∗ dx

) 1
q∗···∗

(∫
Bi

|Dmu|p dx

) 1
p

.

(4.38)

We choose p and q similarly as in (4.35), to get q∗···∗ = p, that is q = np
n−sp = p

p−1 . This yields p = 2n
n+s ;

in particular, for every choice of γ we have p ≤ 2n
n+1 . Moreover, |DsDδu| ≤ |Dmu|, and we continue the

estimates like in (4.36):

r−m−s
i

∫
Bi

|Dδ[u − T
|β|−1
Bi

u]||F jl
αβ | dx � rm

i

(∫
Bi

|Dmu| 2n
n+1 dx

)1+ 1
n

�
(∫

Bi

|Dmu| 2n
n+1

|x − y|n−m n
n+1

dx

)1+ 1
n

.

(4.39)
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In the same way as in Case 1, summing over i ∈ J we obtain an estimate by a Riesz potential

|Aαβγ(y)| � Ia(χB4r |Dmu| 2n
n+1 )

n+1
n =

(∫
B4r

|Dmu(x)| 2n
n+1 dx

|x − y|n−a

)1+ 1
n

, (4.40)

where a = mn/(n + 1). Like before, Theorem 2.4 gives Ia(χB4r |Dmu| 2n
n+1 ) ∈ L

2(n+1)
n , and

‖Aαβγ‖L2(B2r) � ‖Dmu‖2
L2(B4r) , (4.41)

as in Case 1.

Case 3: α > β ≥ γ > 0. In this case we need to estimate

|Aαβγ(y)| :=
∑
i∈J

r
−m−|γ|
i

∫
Bi

|Dβ−γ(u − T
|β|−1
Bi

u)||Fαβ | dx. (4.42)

We shall, as before, use abbreviations: s = |γ|, δ = β − γ, t = |α − β|. By Hölder’s and Sobolev’s
inequalities,

|Aαβγ(y)|
�

∑
i∈J

rm−s
i

∫
Bi

|Dδu − T s−1Dδu||Dmu||Dtu| dx

�
∑
i∈J

rm
i

(∫
Bi

|Dm−tu|p1,s,∗ dx

) 1
p1,s,∗

(∫
Bi

|Dmu|p2 dx

) 1
p2

(∫
Bi

|Dtu|p3 dx

) 1
p3

.

(4.43)

The exponent p1,s,∗, obtained by first using Hölder’s, and then Sobolev’s inequality, is equal to np1/(n +
sp1). As s ≥ 1, we can use Hölder’s inequality once again, in order to lose the dependence on s, replacing
p1,s,∗ by its maximal possible value p1,∗ := np1/(n + p1).

We may choose the exponents in Hölder’s inequality in such a way that p3 = mp2
t , p1,∗ = mp2

m−t . The
condition that p1, p2, p3 are Hölder conjugate implies that p2 = 4m

2m+1 = 2n
n+1 < 2.

Next we estimate the sum of products in (4.43) by a product of three sums, splitting rm
i into them to

obtain

|Aαβγ(y)| �
(∑

i∈J

rν1
i

(∫
Bi

|Dm−tu|p1,∗
) 1

p1,∗
)

×
(∑

i∈J

rν2
i

(∫
Bi

|Dmu|p2

) 1
p2

)

×
(∑

i∈J

rm−ν1−ν2
i

(∫
Bi

|Dtu|p3

) 1
p3

)
.

(4.44)

We estimate each of the sums by the means of generalized Riesz potentials Iν,p as in [24, Proof of Thm. 2],
grouping the balls Bi with radii ri ≈ 2−�. (For each fixed �, the number of such balls Bi is bounded by a
constant depending only on n, and they are all contained in B(y, const · 2−�).) This leads to the following
inequality

|Aαβγ(y)| � Iν1,
mp2
m−t

(|Dm−tu|) × Iν2,p2(|Dmu|) × Im−ν1−ν2,
mp2

t
(|Dtu|). (4.45)

Gagliardo-Nirenberg inequalities give |Dm−tu| ∈ L2m/(m−t)(B20r), |Dtu| ∈ L2m/t(B20r). By assump-
tion |Dmu| ∈ L2(B20r). We choose ν1 and ν2 in such a way that the assumptions of Lemma 2.6 are
satisfied, i.e. that

0 < ν1 < m − t, 0 < ν2 < m, ν1 + ν2 > m − t,
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and the lemma yields

f1 := Iν1,
mp2
m−t

(|Dm−tu|) ∈ L
2m

m−t−ν1 (B2r) =: Lq1(B2r),

f2 := Iν2,p2(|Dmu|) ∈ L
2m

m−ν2 (B2r) =: Lq2(B2r),

f3 := Im−ν1−ν2,
mp2

t
(|Dtu|) ∈ L

2m
t−(m−ν1−ν2) (B2r) =: Lq3(B2r),

(4.46)

with the following estimates

‖fi‖Lqi(B2r) � ‖Dkiu‖Ln/ki(B20r), i = 1, 2, 3; k1 = m − t, k2 = m, k3 = t. (4.47)

One can easily check that q1
2 , q2

2 , q3
2 are Hölder conjugate. Thus, conditions (4.45)–(4.47) combined with

Hölder and Young’s inequalities imply that Aαβγ(y) ∈ L2 and

‖Aαβγ‖L2(B2r) � ‖Dmu‖L2(B20r)

m−1∑
j=1

‖Dju‖2
Ln/j(B20r). (4.48)

Step 6. Conclusion. Gathering the estimates (4.37), (4.41) and (4.48) of Aαβγ obtained in the three cases
above, plugging them into (4.33), and using absolute continuity of integral, we conclude that

|W3| < C6 η

∫
B20r

|Dmu|2 dx (4.49)

for all 0 < r < r3, where r3 is chosen so that

sup
B(a,20r3)⊂Bn

max
j=1,2,...,m

‖Dju‖Ln/j(B(a,20r3)) < min(1, η).

Combining (4.49) with (4.27), and choosing η = ε/2m(C3 + C6), we obtain

∫
Br

|Dmu|2 dx ≤ ε

2m

∫
B20r

|Dmu|2 dx +
C

ε
rn

(∫
B2r

|V | 2n
n+1 dx

) n+1
n

. (4.50)

It is now a routine job to apply Lemma 2.1 with sufficiently small δ = δ(ε, m) in order to incorporate lower
order derivatives of u into the left hand side of (4.50), and to complete the whole proof.

Combining Lemma 4.1 with Gehring–Giaquinta–Modica Lemma on self improving property of reverse
Hölder’s inequalities and with Sobolev–Morrey imbedding theorem, we obtain the following.

Corollary 4.2. If u ∈ Wm,2(Bn, SN−1) is a polyharmonic map, then u is locally Hölder continuous.
Moreover, there exists an exponent q > 2 such that

Dsu ∈ L
mq
s

loc (Bn), s = 1, 2, . . . , m.

5 From continuity to smoothness

Let u ∈ Wm,2(Bn, SN−1) be a polyharmonic map. By Corollary 4.2, we may assume u is Hölder contin-
uous and

Dsu ∈ L
mq
s , s = 1, 2, . . . , m, (5.1)

for some fixed q > 2. To prove that u ∈ C∞, we first establish existence of Dm+tu in appropriate Lebesgue
spaces (see Section 5.1). Next, we apply linear elliptic estimates and classical bootstrap reasoning based
on Schauder theory to prove that u is smooth.
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5.1 Existence of higher order derivatives

We shall prove, by induction with respect to t, that

Dm+tu ∈ L
2m

m+t

loc (Bn), t = 0, 1, . . . , m − 1. (5.2)

Let
L = (−1)m

∑
|α|=m

D2α.

To achieve (5.2), we shall prove by induction another claim. Namely, it turns out that for every ζ ∈ C∞
0 (Bn)

and every t = 0, 1, . . . , m − 1 one has

〈Luj, ζ〉 =
∑

Λ∈At

N∑
k=1

cΛkt

∫
Bn

Dλ0ζ Dλ1ukDλ2ukDλ3uj dx , (5.3)

where the coefficients cΛkt are constant and depend only on n, N, t, and At denotes the set of these quadru-
ples Λ = (λ0, λ1, λ2, λ3) of multiindices λi which satisfy the following conditions:

λ0 ≤ m − t − 1, |λi| ≤ m + t for i = 1, 2, 3, (5.4)

|λ0| + |λ1| + |λ2| + |λ3| = 2m, (5.5)

|λi| ≥ m for at least one i ∈ {1, 2, 3}. (5.6)

Remark. It is easy to see that if Λ ∈ At, then |λi| ∈ (0, m] for some i ∈ {1, 2, 3}.

For t = 0 (5.2) does hold. To verify (5.3) for t = 0, we use the constraints |u|2 = 1 to rewrite the
polyharmonic map equation (3.2) as follows:

〈Luj , ζ〉 :=
∑

|α|=m

∫
Bn

Dαuj Dαζ dx

(3.2)=
∑

|α|=m

N∑
k=1

∫
Bn

Dαuk Dα
(
ζujuk

)
dx =: Σ1 + Σ2,

where

Σ1 =
∑

|α|=m

N∑
k=1

∫
Bn

ujukDαuk Dαζ dx

and

Σ2 =
∑

|α|=m

N∑
k=1

∑
β<α

(
α

β

) ∫
Bn

Dαuk Dβζ Dα−β(ujuk) dx .

The second sum, Σ2, already has the required form (5.3) for t = 0. Invoking (4.11), we can replace∑
k ukDαuk in Σ1 by

−1
2

∑
0<γ<α

∑
k

(
α

γ

)
DγukDα−γuk.

Then, after one integration by parts, moving one partial derivative from ζ to the other terms, we rewrite Σ1

in the required form (i.e., using only the derivatives of ζ of order m − 1).

Thus, for t = 0 both (5.2) and (5.3) are satisfied.

Fix now some t ∈ {0, 1, . . . , m− 2} and assume that (5.2) and (5.3) hold for that t. As it is easy to see,
(5.3) combined with (5.1) and Hölder’s inequality imply that for each r ∈ (0, 1) the distribution Luj can
be extended to a continuous linear functional

Luj ∈
(
W

m−t−1,2m/(m−t−1)
0 (Br)

)∗
, Br ≡ B(0, r). (5.7)
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Note that W
m−t−1,2m/(m−t−1)
0 �⊂ L∞ and to guarantee the boundedness of terms∫

Br

ζDλ1ukDλ2ukDλ3uj dx

for |λ1|+|λ2|+|λ3| = 2m, max |λi| ≤ m+t, one really must use (5.1); mere knowledge that Dsu ∈ L2m/s

does not suffice here.

To show that (5.7) implies (5.2) for t + 1, we shall apply the following useful lemma.

Lemma 5.1. Let k = 1, 2, . . ., 1 < p < ∞ and pq = p + q. If U is a smooth bounded domain in Rn and

Φ ∈ (
W k,p

0 (U)
)∗

,

then there exist functions (vβ)|β|=k ∈ (
Lq(U)

)Mk , where Mk :=
∑

|β|=k 1 is the number of all multiindi-
ces of length k, such that

Φ(ζ) =
∑
|β|=k

∫
U

vβDβζ dx ζ ∈ C∞
0 (U).

Sketch of the proof. It is well known, see e.g. [1, Theorem 3.8], that

Φ(ζ) =
∑
|β|≤k

∫
U

vβDβζ dx, ζ ∈ C∞
0 (U), (5.8)

with vβ ∈ Lq(U) for each β. To replace vβ with |β| ≤ k − 1 by zeroes – possibly changing the vβ with
|β| = k in (5.8), of course! – one repeatedly solves linear elliptic equations and applies [11, Theorem
9.15]. Full details are left to the reader; here is a hint: if v0 in Lq(U), then −Δw0 = v0 has a unique weak
solution w0 ∈ W 1,q

0 (U) ∩ W 2,q(U), and∫
U

ζv0 dx =
∫

U

∇ζ∇w0 dx

for each ζ ∈ C∞
0 (U). Using this identity, one can remove the term corresponding to |β| = 0 from (5.8);

other terms with |β| ≤ k − 1 can be treated similarly. �

Remark. Note that the assumption 1 < p < ∞ (which is not necessary to write down the representation
formula (5.8)) is crucial in the above proof.

Combining Lemma 5.1 and (5.7), we see that for every fixed r ∈ (0, 1)

〈Luj, ζ〉 =
∑

|β|=m−t−1

∫
Br

vβ,t Dβζ dx for all ζ ∈ C∞
0 (Br), (5.9)

where vβ,t ∈ L2m/(m+t+1)(Br) for each |β| = m − t − 1.

Now, fix a multiindex γ with |γ| = m+ t+1. It is an easy (formal) exercise in Fourier analysis to show
that

D̂γuj(ξ) =
∑

|β|=m−t−1

mβ,t(ξ)v̂β,t , (5.10)

where the multipliers mβ,t are given by

mβ,t(ξ) = const · ξβ+γ

σL(ξ)

and σL(ξ) :=
∑

|α|=m ξ2α ≈ |ξ|2m. As |γ|+|β| = 2m, all mβ,t satisfy the assumptions of Marcinkiewicz–
Hörmander multiplier theorem, see e.g. [23, Theorem 3.2], and the operator

T : Lp � (vβ)|β|=m−t−1 �→ Dγuj ∈ Lp, p = 2m/(m + t + 1),
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is continuous. Since r ∈ (0, 1) is arbitrary, this means that the derivative

Dγuj ∈ L
2m/(m+t+1)
loc (Bn) .

(To check that (5.10) in fact implies the existence of Dγuj , note that (5.9) is linear and consider smooth
convolution approximations uj ∗ϕε, vβ,t ∗ϕε of uj and all vβ,t. Since T is linear and continuous, Dγ(uj ∗
ϕε) converge in Lp as ε → 0, and the limit is equal to Dγuj .)

Hence, we have established (5.2) for t + 1. To obtain (5.3) for t + 1, just perform an integration by
parts, to take away one derivative from ζ.

Thus, (5.2) does indeed hold for all t = 0, 1, . . . , m − 1.

5.2 Bootstrap: some details

By (5.2) for t = m − 1, the polyharmonic map equation can be written as

Luj =
∑
Λ,k

cΛ,k Dλ1uk Dλ2uk Dλ3uj , (5.11)

where the summation is performed over k = 1, . . . , N and over the set of all triples Λ = (λ1, λ2, λ3) of
multiindices λi such that

|λ1| + |λ2| + |λ3| = 2m, |λi| ≤ 2m − 1 for all i,

|λj | ≥ m for at least one j ∈ {1, 2, 3}.

Integrability conditions (5.1) and (5.2) imply that

Lu = F ∈ Lr0
loc(B

n, RN ) for some r0 > 1. (5.12)

Assume w.l.o.g. that r0 is irrational. Since D2mu = T (Lu) = TF , where T is a Calder"on–Zygmund
singular integral operator, we have D2mu ∈ Lr0

loc. By definition, D2m−1u ∈ W 1,r0
loc ; Sobolev’s imbedding

gives D2m−1u ∈ Lq0
loc, where 1

q0
= 1

r0

(
1 − r0

n

)
. Since u ∈ L∞, we may apply standard Gagliardo–

Nirenberg inequalities to obtain

Dju ∈ L
(2m−1)q0/j
loc , j = 0, 1, 2, . . . , 2m − 1.

By Hölder inequality, this means that whenever |λ1| + |λ2| + |λ3| = 2m = n, we have

Dλ1uk Dλ2uk Dλ3uj ∈ Lr1
loc,

where
1
r1

=
1
q0

|λ1| + |λ2| + |λ3|
2m− 1

=
1
q0

n

n − 1
=

1
r0

n − r0

n − 1
.

Iterating this procedure, we prove that

D2m−1u ∈ L
qj

loc, Lu = F ∈ L
rj+1
loc , D2mu ∈ L

rj+1
loc ,

where r0 > 1 is fixed above, the increasing sequences rj , qj are defined by

rj+1 := rj
n − 1
n − rj

, qj := rj
n

n − rj
for j = 0, 1, 2, . . . , M,

and M is chosen so that rM < n < rM+1. Thus, by Morrey–Sobolev imbedding theorem, we obtain
D2m−1u ∈ Cα

loc for α = 1 − n/rM+1 > 0. All derivatives of u of lower orders are continuous, too.

Thus, Lu = F ∈ Cα
loc, and smoothness of u follows from Schauder theory.
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6 A generalization to other elliptic systems

In this Section, we briefly sketch the proof of Theorem 1.4, leaving numerous technical details to the
interested reader.

The first step is to prove that the conclusion of Lemma 4.1 holds also for solutions of (1.4). We fix
B(a, r) ≡ Br, r < 1

20 dist(a, ∂Bn) and test (1.4) with

ψ := ζ
(
u − T m−1

B2r
u
)

where ζ denotes, as in Section 4, a nonnegative cutoff function of class C∞
0 (B2r), with ζ ≡ 1 on Br and

|∇ζ| � r−1.

Estimates of critical nonlinearity, part I. Since u is bounded by assumption, we have

‖ψ‖L∞ ≤ 2‖u‖L∞ + C

m−1∑
k=1

rk

∫
B2r

|Dku| dx

≤ 2‖u‖L∞ + C

m−1∑
k=1

( ∫
B2r

|Dku|n/k dx

)k/n
(6.1)

by Hölder’s inequality. The last expression does not exceed 3‖u‖L∞ when r is sufficiently small. Thus,
one can estimate the integral ∫

|ψ| |F (u, Du, . . . , Dmu)| dx,

using (1.8) and mimicking the arguments used in Step 3 of the proof in Section 4.

Estimates of critical nonlinearity, part II. To estimate the term containing
∑

α EαDα, we apply the
following lemma.

Lemma 6.1. Assume that n = 2m ≥ 2, � > 0 and a ∈ Rn. If u ∈ Wm,2(B(a, 10�)), and if E =
(Eα)|α|=m ∈ L2(B(a, 10�)) satisfies the cancellation condition ∇m · E = 0, i.e.

∑
|α|=m

∫
EαDαϕdx = 0 for all ϕ ∈ C∞

0 (B(a, 10�)),

then there exists a constant C = C(n) such that for all functions ψ ∈ Wm,2
0 (B(a, r)) we have∣∣∣∣

∫
B(a,�)

ψ
∑
|α|=k

EαDαu dx

∣∣∣∣ ≤ C‖Dmψ‖L2‖E‖L2‖Dmu‖L2 ; (6.2)

the norm of Dmψ is taken on the smaller ball B(a, �), and two other norms, of E and Dmu, on the larger
ball B(a, 10�).

The proof of this Lemma is very similar to the proof of [24, Thm 2.2]. One can obtain it, mimicking
Step 4 of the proof of Lemma 4.1 given in Section 4.

Thus, on sufficiently small balls with radius 0 < � < �0 = �0(ε, E), we have∣∣∣∣
∫

B�

ψ
∑
|α|=k

EαDαu dx

∣∣∣∣ ≤ ε

C
‖Dmψ‖L2(B�)‖Dmu‖L2(B10�) ≤ ε

∫
B10�

|Dmu| dx (6.3)

(the first inequality follows from Lemma 6.1 and the absolute continuity of the integral, the second one
from Poincaré’s inequality). We use this estimate for � = 2r.

These two observations allow one to estimate the right hand side of (1.4), i.e.,∫
|ψ| |F (u, Du, . . . , Dmu)| dx +

∣∣∣∣
∫

ψ
∑
|α|=k

EαDαu dx

∣∣∣∣, (6.4)
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by

C · ε
∫

B20r

|Dmu| dx + lower order terms (6.5)

(when r is sufficiently small).

The rest of the proof is standard: we combine the inequality (6.4) ≤ (6.5) with routine estimates of
the left hand side 〈Lu, ψ〉 to obtain a reverse Hölder’s inequality, which implies continuity of u and higher
integrability of its derivatives. Smoothness of u follows next from a bootstrap argument, similar to the one
presented in Section 5. All details are left to the reader.
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