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ASYMPTOTICS FOR THE MINIMIZATION
OF A GINZBURG–LANDAU ENERGY IN n DIMENSIONS

BY

PAWE L S T R Z E L E C K I (WARSZAWA)

We prove that minimizers uε ∈W 1,n of the functional

Eε(u) =
1
n

∫
Ω

|∇u|n dx+
1

4εn

∫
Ω

(1− |u|2)2 dx, Ω ⊂ Rn, n ≥ 3,

which satisfy the Dirichlet boundary condition uε = g on ∂Ω for g : ∂Ω →
Sn−1 with zero topological degree, converge in W 1,n and Cα

loc for any α < 1
—upon passing to a subsequence εk → 0—to some minimizing n-harmonic
map. This is a generalization of an earlier result obtained for n = 2 by
Bethuel, Brezis, and Hélein.

An example of nonunique asymptotic behaviour (which cannot occur in
two dimensions if deg g = 0) is presented.

1. Introduction. Let Ω ⊂ Rn be an open, bounded, simply connected
domain with smooth boundary. We consider the following energy of Ginz-
burg–Landau type:

(1) Eε(u) :=
1
n

∫
Ω

|∇u|n dx+
1

4εn

∫
Ω

(1− |u|2)2 dx,

defined for maps u ∈W 1,n(Ω,Rn). For a fixed smooth boundary condition
g : ∂Ω → Sn−1, write

W 1,n
g := {u ∈W 1,n(Ω,Rn) | u = g on ∂Ω}.

It is easily seen that the minimum

(2) min
u∈W 1,n

g

Eε(u)

is achieved by some map uε which solves the Euler–Lagrange system
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(3) −div(|∇uε|n−2∇ui
ε) =

1
εn
ui

ε(1− |uε|2), i = 1, . . . , n.

In general, uε does not have to be unique (see examples in Section 2).
In this paper, we study the asymptotic behaviour of uε as ε→ 0, for n ≥

3, and under the assumption that the boundary condition g : ∂Ω → Sn−1

is topologically trivial, i.e. deg g = 0. Our results are formulated in Section
1.2 below.

1.1. The two-dimensional case. For n = 2, the functional (1) and its
various analogues are often considered in the theory of phase fluctuations
and vortex models of phase transitions.

In diverse applications, the complex-valued function uε is related to

• the density of superconducting electrons in type II superconductors;
|uε| ' 1 corresponds to the superconducting state and |uε| ' 0 corresponds
to the normal state;

• the two-dimensional magnetization vector in magnets;
• the condensate wavefunction in superfluids.

The parameter ε has the dimension of length and is usually very small in
relevant physical applications. Therefore, it is of great mathematical interest
to analyze the asymptotic behaviour of uε as ε → 0 (even if the limiting
problem has no physical meaning).

In a series of recent works [1–4] Bethuel, Brezis and Hélein have proved,
among other things, the following results concerning the asymptotic be-
haviour of uε.

“Easy” case. Assume that g : ∂Ω → S1 is smooth, and deg g = 0. Then
the asymptotic behaviour of the whole family {uε | ε > 0} is fully described
by the following

Theorem 1 (Bethuel, Brezis, Hélein [1, 2]). Let n = 2 and let uε be
a minimizer of Eε in W 1,2

g (Ω,R2). Denote by u0 the unique S1-valued
harmonic mapping with u0|∂Ω = g. As ε → 0, uε tends to u0 in C1,α(Ω)
for any α < 1, and in Ck(K) for any natural k and any compact K ⊂ Ω.

Tough case. If the boundary condition g : ∂Ω → S1 has nonzero degree,
deg g = d > 0, then the situation is more complicated. The main difficulty
stems from the fact that Eε(uε) blows up like |log ε| for ε→ 0. Nevertheless,
one can prove the following.

Theorem 2 (Bethuel, Brezis, Hélein [3, 4]). Assume that Ω ⊂ R2 ≡ C
is starshaped. Then one can find a sequence εk → 0, precisely d points
a1, . . . , ad in Ω, and a smooth harmonic map u∗ : Ω \ {a1, . . . , ad} → S1
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satisfying u∗ = g on ∂Ω such that

uεk
→ u∗ in C1,α(Ω \ {a1, . . . , ad}) for any α ∈ (0, 1),

and in Ck
loc(Ω \ {a1, . . . , ad}) for any k.

Moreover , u∗ coincides with the so-called canonical harmonic map, i.e.

u∗(z) =
d∏

j=1

(
z − aj

|z − aj |

)
exp(iϕ),

where ϕ : Ω → R is a harmonic function with exp(iϕ) =
∏d

j=1

( |z−aj |
z−aj

)
g on

∂Ω.

Another theorem from [3, 4] states that the configuration {a1, . . . , ad} of
singularities of u∗ minimizes a function of d complex variables,

W : Ω × . . .×Ω︸ ︷︷ ︸
d times

→ R,

the so-called renormalized energy . To give an explicit formula for W , one
has first to solve a linear Neumann problem (see [4, Section I.4] for more
details).

The amazingly beautiful analysis of [4] (which should be viewed from an
applied point of view as a first rigorous approach to a model problem in two
spatial dimensions) heavily depends on the linearity of the Laplace operator
and on the nice structure of the multiplicative group of complex numbers
with modulus 1 that we have on S1. In some sense, it also uses the fact that
all regular maps on the boundary of a two-dimensional domain are quasi-
conformal. To deal with more realistic problems arising in the modelling of
phase transitions in magnetic and superconducting media, it seems neces-
sary to gain first some insight into mathematical phenomena occurring for
more general variational problems, with more complicated nonlinearities in
their Euler–Lagrange equations. Some of relevant open problems are listed
in the closing chapter of [4]. One of them, Problem 17, is to describe the
asymptotic behaviour of uε in the general case, for arbitrary n.

1.2. The results. Our result, concerning n ≥ 3 and the easier case deg g =
0, is stated below (see Theorem 5). Roughly speaking, we prove that some
sequence uεk

converges to a minimizing n-harmonic map in the topologies of
W 1,n (this is pretty simple) and Cα

loc, for any α < 1 (convergence in Hölder
norms presents a more delicate problem).

R e m a r k. For the tougher case deg g = d 6= 0, Min Chun Hong [12] has
proved that a subsequence of uε converges weakly in W 1,n(G,Rn), where
G = (Ω except |d| distinct points), to some map u∗.

After having completed this work, the author obtained a very interest-
ing paper [9] of Z. Han and Y. Li, which contains a result more general
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than that of Hong. Han and Li prove that uεk
converges to u∗ strongly in

C0
loc(Ω \{a1, . . . , a|d|}). Their method of proof is different from ours; in par-

ticular, differentiation of systems (which we use to obtain gradient bounds
in Section 3) is replaced by a new regularity theorem, obtained via perturba-
tion arguments, for p-harmonic systems with Hölder continuous coefficients.

Whether, in the nonzero degree case for n ≥ 3, uεk
converges to u∗ in

better norms, say at least Cα, seems to be still an open question.

Let us first formulate some definitions. Consider the n-Dirichlet integral

In(u) =
∫
Ω

|∇u|n dx.

We say that a map u ∈ W 1,n
g (Ω,Sn−1) is (weakly) n-harmonic iff it is a

critical point of In in the class W 1,n
g (Ω,Sn−1) with respect to variations in

the range. Computing the derivative

d

dt

∣∣∣∣
t=0

In

(
u+ tϕ

|u+ tϕ|

)
for an arbitrary ϕ ∈ C∞0 (Ω,Rn), one can easily check that n-harmonic maps
are precisely the weak solutions of the nonlinear degenerate elliptic system

(4) −div(|∇u|n−2∇u) = u|∇u|n.

By a minimizing n-harmonic map we mean here any minimizer of In in the
class W 1,n

g (Ω,Sn−1). For a fixed g : ∂Ω → Sn−1 with deg g = 0, we denote
by Mg the set of all minimizing n-harmonic maps u with u = g on ∂Ω.

Proposition 3. If {uε | ε > 0} is a family of minimizers for the problem
(2), then one can choose a sequence εk → 0, and a minimizing n-harmonic
map u∗ ∈ Mg such that uεk

→ u∗ strongly in W 1,n(Ω,Rn) and a.e. as
k →∞.

P r o o f. Pick a minimizing n-harmonic map w ∈ Mg. (This is the only
place in the proof where the assumption deg g = 0 is used: it implies that
W 1,n

g (Ω,Sn−1) is nonempty!)
Since |w| = 1 a.e., we have

(5)
1
n

∫
Ω

|∇uε|n dx+
1

4εn

∫
Ω

(1− |uε|2)2 dx ≤ Eε(w) =
1
n

∫
Ω

|∇w|n dx.

Hence, the family {uε | ε > 0} is bounded in W 1,n(Ω,Rn). Thus, one can
find a sequence εk → 0 and a map u∗ ∈W 1,n(Ω,Rn) such that

(6)
∇uεk

⇀ ∇u∗ weakly in Ln(Ω,Rn2
),

uεk
→ u∗ strongly in Ln(Ω,Rn) and a.e.
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By (5) and (6),∫
Ω

|∇u∗|n dx ≤ lim inf
k→∞

∫
Ω

|∇uεk
|n dx ≤ lim sup

k→∞

∫
Ω

|∇uεk
|n dx(7)

≤
∫
Ω

|∇w|n dx.

Moreover,

(8)
∫
Ω

(1− |uεk
|2)2 dx ≤ Cεn

k
k→∞−→ 0.

Thus, |u∗| = 1 a.e., and u∗ ∈ W 1,n
g (Ω,Sn−1). By (7), we have u∗ ∈ Mg,∫

Ω
|∇u∗|n dx =

∫
Ω
|∇w|n dx, and

(9)

lim
k→∞

∫
Ω

|∇uεk
|n dx =

∫
Ω

|∇u∗|n dx,

lim
k→∞

1
4εn

k

∫
Ω

(1− |uεk
|2)2 dx = 0.

Now, recall a classical theorem of functional analysis.

Theorem 4. If a sequence of functions (fk) ⊂ Lp, 1 < p <∞, converges
weakly to f ∈ Lp and lim ‖fk‖p = ‖f‖p, then ‖fk − f‖p → 0 as k →∞.

This result combined with (9) implies immediately that uεk
→ u∗ strong-

ly in W 1,n.

R e m a r k. In general, it may happen that, for a fixed boundary condi-
tion g, different sequences of minimizers uε converge to different limits. (See
examples in Section 2.) Such nonunique asymptotic behaviour (in the “easy”
case of a topologically trivial boundary condition) is excluded for n = 2.

The next theorem is the main result of this paper.

Theorem 5. Let uεk
be, as in Proposition 3, a sequence of minimizers

of Eεk
which converges to some minimizing n-harmonic map u∗ in the

W 1,n-norm. Then, for any α ∈ (0, 1) and any compact subset K of Ω, uεk

tends to u∗ in the space Cα(K).

Let us give here a rough idea of the proof of Theorem 5 (the details are
presented in Section 3). The whole proof is similar in spirit to [2], though
some details are technically more complicated due to the degeneracy of the
n-harmonic operator Ln(u) := div(|∇u|n−2∇u).

First, we prove a maximum principle for weak solutions of (3). Then we
obtain a Caccioppoli estimate which, after a standard reasoning, yields the
local boundedness of |∇uε| by a constant C(ε). We also check that C(ε)
behaves—for small ε—like ε−1. Next, we exploit the strong covergence of
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∇uε in Ln to obtain a Caccioppoli estimate with constants independent
of ε (this is the crucial point of the proof; we modify here a trick which
for n = 2 is due to Bethuel, Brezis, and Hélein [2]). Then, after a Moser
iteration, we prove that, for 1 < q <∞, the estimate ‖∇uε‖q,K ≤ C(n, q,K)
holds on all compact subsets K of Ω. The final argument is provided by
the Rellich–Kondrashov compactness theorem and the Sobolev imbedding
theorem.

Theorem 5 is of course not a final result. We expect that it is possible
to obtain at least local C1,α convergence, and Cα convergence of uεk

on Ω,
also in the case of variable boundary data gε sufficiently close to a fixed
map g0 : ∂Ω → Sn−1. This would allow improving the results obtained by
Han–Li [9] and Hong [12] for the nonzero degree case.

The notation throughout the paper is either standard or selfexplanatory.
The barred integral –

∫
A
f dx denotes the average value fA of a function f over

a measurable set A, fA := |A|−1
∫

A
f dx. By Br or B(a, r) we denote the

Euclidean ball in Rn of radius r, centered at a. The length of the gradient
is defined by the formula

|∇u|2 :=
∑

1≤i,j≤n

(
∂ui

∂xj

)2

.

Finally, C denotes a general constant which may change from one line to
another; C(n) denotes a constant depending only on n.

2. Planar n-harmonic maps. In this section, we show an example
of nonuniqueness of minimizing n-harmonic maps from Bn into Sn−1. The
general idea follows the papers of Hardt and Kinderlehrer [10], and Hardt,
Kinderlehrer, and Lin [11]. Some technicalities are simplified here.

For simplicity, let n = 3 and write, for some q > 0 to be specified later,

(10) g(x) = (cos qx3, sin qx3, 0) for (x1, x2, x3) ∈ ∂B3 ≡ S2.

Then define v : B3 → S2 by the same formula. By a straightforward
calculation one verifies that, for every positive q, v is a smooth S2-valued
3-harmonic map with |∇v| ≡ q and I3(v) = 4πq3/3. We shall show that
v is not minimizing in the class W 1,3

g (B3, S2), and that a minimizing u =
(u1, u2, u3) ∈W 1,3

g (B3, S2) cannot be planar, i.e. its coordinate u3 must be
nonzero on a set of nonzero Lebesgue measure.

To this end, pick a cutoff function η ∈ C∞0 (B3) with η ≡ π/2 on a
smaller ball B(0, 1− µ) and |∇η| ≤ 2/µ. Put

w(x) = (cos η(x) cos qx3, cos η(x) sin qx3, sin η(x)).

Then, for µ small and q large, I3(w)<I3(v). Indeed, |∇w|2 = cos2(η)|∇v|2+
|∇η|2. Therefore, by the elementary inequality (a + b)s ≤ 2s−1(as + bs),
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we obtain

I3(w) =
∫

B3

|∇w|3 dx ≤
√

2
∫

B3

(cos3(η)|∇v|3 + |∇η|3) dx

≤ 4π
√

2
3

(1− (1− µ)3)
(
q3 +

8
µ3

)
< 200(µq3 + µ−2).

It is clear that, for µ small and q large, the last expression does not exceed
I3(v) = 4πq3/3. In fact, it is enough to take e.g. q = µ−1 = 100. Therefore
v is not minimizing.

Suppose now that w = (w1, w2, 0) ∈ W 1,3
g (B3, S2) were a minimizing

3-harmonic map. By a theorem of Bethuel and Zheng [5, Lemma 1] one
could write w1 = cos θ, w2 = sin θ for some real-valued function θ of class
W 1,3. Since w satisfies (4) for n = 3, one can easily compute that θ is a
solution of the unconstrained 3-harmonic equation,

div(|∇θ|∇θ) = 0.

Moreover, the boundary condition implies

θ(x1, x2, x3)− qx3 ∈ {2kπ | k ∈ Z} for (x1, x2, x3) ∈ S2.

But if the trace of a Sobolev function has all its values in a discrete subset
of R, then it is constant. Hence, without loss of generality we can assume
that θ(x) = qx3 on S2. By the monotonicity of the 3-harmonic operator we
conclude that θ(x) = qx3 in B3 (there can only be one 3-harmonic function
with given boundary values, and all linear functions are 3-harmonic). Hence,
w ≡ v, and since v is not a minimizer, this is a contradiction. Therefore, no
minimizer can be planar in our case.

Take now a minimizer ψ = (ψ1, ψ2, ψ3). Since |∇(|u|)| ≤ |∇u|, the
above reasoning implies that W 1,3

g contains two distinct minimizers for I3,
i.e. (ψ1, ψ2,+|ψ3|) and (ψ1, ψ2,−|ψ3|), and one nonminimizing planar 3-
harmonic map. Moreover, if one minimizes Eε in the class W 1,3

g , there
are, for small values of ε, at least two distinct minimizers (u1

ε, u
2
ε,±|u3

ε|).
Since minimizers of I3 are not planar, subsequences of (u1

ε, u
2
ε,+|u3

ε|) and
(u1

ε, u
2
ε,−|u3

ε|) cannot converge to the same limit.
It is clear that one can use the same reasoning to construct examples of

nonuniqueness of minimizers for In in the class W 1,n(Bn, Sn−1).
The example presented here raises obvious questions. Can the cardinality

of Mg be an arbitrary natural number? Can Mg be an infinite set? (For
the case of harmonic maps, an example of a boundary condition g : S2 →
S2 for which there exist uncountably many minimizing harmonic mappings
u : B3 → S2 with u = g on S2 has been given in [11].) Can one characterize
those u ∈ Mg which can be limits of subsequences of uε? These problems
shall be object of our further study.
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3. Gradient bounds and Hölder estimates for uε. This section
contains the proof of Theorem 5.

First, we prove a maximum principle for local weak solutions of (3).
Then we differentiate the system (3) and derive a Caccioppoli inequality
(Lemma 8) for wε = |∇uε|2. Finally, we show how to obtain Cacciop-
poli type estimates with constants independent of ε. This allows carrying
out a Moser iteration procedure and applying the Rellich–Kondrashov and
Sobolev theorems to conclude the proof of Theorem 5.

Lemma 6. If u ∈W 1,n
g (Ω,Rn) solves the system

−div(|∇u|n−2∇ui) =
1
εn
ui(1− |u|2), i = 1, . . . , n,

and g : ∂Ω → Sn−1, then |u| ≤ 1 a.e.

P r o o f. For any nonnegative testing function ϕ which vanishes on ∂Ω,
we have ∫

Ω

|∇u|n−2∇ui · ∇(ϕui) dx =
1
εn

∫
Ω

ϕ(ui)2(1− |u|2) dx.

Summing this with respect to i = 1, . . . , n and dropping the nonnegative
term

∫
Ω
ϕ|∇u|n leads to the inequality

1
2

∫
Ω

|∇u|n−2∇(|u|2 − 1) · ∇ϕdx ≤ 1
εn

∫
Ω

|u|2(1− |u|2)ϕdx.

Set a(x) = 1
2 |∇u|

n−2, b(x) = |u|2/εn, and v = |u|2 − 1. Rewriting the last
inequality, we obtain∫

Ω

a(x)∇v · ∇ϕdx+
∫
Ω

b(x)vϕ dx ≤ 0.

Putting now ϕ = min(k, v+) for a fixed k ∈ R+, and defining Ak := {x ∈
Ω | v+(x) < k}, we obtain∫

Ak

a(x)|∇v+|2 dx+
∫

Ak

b(x)(v+)2 dx ≤ 0.

Since a and b are nonnegative, this clearly implies v+ = 0 a.e. Hence,
|u|2 ≤ 1 a.e.

The next lemma justifies the differentiation (in the weak sense) of both
sides of the system (3) with respect to x.

Lemma 7. For any ε > 0, the mapping Gε := |∇uε|(n−2)/2∇uε is of
class W 1,2

loc (Ω,Rn2
).
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The proof of this result is quite standard (one has to consider the differ-
ence quotients of Gε, see e.g. [13] or [6]) and we omit it here.

Lemma 8. If uε is a weak solution to (3), β ≥ 0, n ≥ 3, and wε :=
|∇uε|2, then, for any ζ ∈ C∞0 (Ω),∫

Ω

|∇(w(n+β)/4
ε )|2ζ2 dx ≤ 2(n+ β)

εn

∫
Ω

(1− |uε|2)w(β+2)/2
ε ζ2 dx

+ 9n2
∫
Ω

w(n+β)/2
ε |∇ζ|2 dx.

P r o o f. By Lemma 7, we may differentiate both sides of (3) with respect
to xj to obtain

(11) −div
[
|∇uε|n−2∇

(
∂ui

ε

∂xj

)
+

∂

∂xj
(|∇uε|n−2)∇ui

ε

]
=
∂fε,i

∂xj
,

where i, j = 1, . . . , n and fε,i := ε−nui
ε(1−|uε|2). Equation (11) means that

for any testing function φij ∈W 1,n with compact support we have

(12)
∫
Ω

|∇uε|n−2∇
(
∂ui

ε

∂xj

)
· ∇φij dx

+
∫
Ω

∂

∂xj

(
|∇uε|n−2

)
∇ui

ε · ∇φij dx =
∫
Ω

∂fε,i

∂xj
φij dx.

Now, pick a smooth nonnegative cutoff function ζ ∈ C∞0 (Ω), and take
φij = ζ2|∇uε|β∂ui

ε/∂xj , where β ≥ 0, and insert this into (12). Since
all the integrations on the left hand side are performed only on the set
{|∇uε| > 0}, we are allowed to assume that Lemma 7 implies the existence
of D2uε ∈ Ln

loc. A simple but tedious computation leads to the following
two equalities:

(13)
∑

1≤i,j≤n

∫
Ω

|∇uε|n−2∇
(
∂ui

ε

∂xj

)
· ∇φij dx

=
∑

1≤i,j≤n

∫
Ω

w(n+β−2)/2
ε ζ2

∣∣∣∣∇(
∂ui

ε

∂xj

)∣∣∣∣2 dx
+
β

4

∫
Ω

w(n+β−4)/2
ε |∇wε|2 ζ2 dx

+
∫
Ω

w(n+β−2)/2
ε ∇wε · ζ∇ζ dx;
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(14)
∑

1≤i,j≤n

∫
Ω

∂

∂xj

(
|∇uε|n−2

)
∇ui

ε · ∇φij dx

=
n− 2

4

∫
Ω

w(n+β−4)/2
ε |∇wε|2ζ2 dx

+
(n− 2)β

4

∫
Ω

w(n+β−6)/2
ε ζ2

∑
1≤i≤n

(∇ui
ε · ∇wε)2 dx

+ (n− 2)
∫
Ω

w(n+β−4)/2
ε ζ

∑
1≤i≤n

(∇ui
ε · ∇wε)(∇ui

ε · ∇ζ) dx.

Dealing with the right hand side of (12), we obtain

(15)
∑

1≤i,j≤n

∫
Ω

∂fε,i

∂xj
φij dx

=
1
εn

∫
Ω

(1− |uε|2)w(β+2)/2
ε ζ2 dx

− 2
εn

∑
1≤i,j,k≤n

∫
Ω

wβ/2
ε ζ2ui

εu
k
ε

∂ui
ε

∂xj

∂uk
ε

∂xj
dx

≤ 1
εn

∫
Ω

(1− |uε|2)w(β+2)/2
ε ζ2 dx.

Putting (13)–(15) together, we obtain an inequality of the form

(16) I1 + I2 + I3 ≤ J1 + J2 + J3,

where

(17)

I1 =
n+ β − 2

4

∫
Ω

w(n+β−4)/2
ε |∇wε|2ζ2 dx,

I2 =
(n− 2)β

4

∫
Ω

w(n+β−6)/2
ε ζ2

∑
1≤i≤n

(∇ui
ε · ∇wε)2 dx,

I3 =
∑

1≤i,j≤n

∫
Ω

w(n+β−2)/2
ε ζ2

∣∣∣∣∇(
∂ui

ε

∂xj

)∣∣∣∣2 dx,
and

(18)

J1 =
1
εn

∫
Ω

(1− |uε|2)w(β+2)/2
ε ζ2 dx,

J2 =
∫
Ω

w(n+β−2)/2
ε |∇wε|ζ|∇ζ| dx,

J3 = (n− 2)
∫
Ω

w(n+β−4)/2
ε ζ

∑
1≤i≤n

|∇ui
ε · ∇wε| |∇ui

ε · ∇ζ| dx.
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The Cauchy–Schwarz inequality readily implies that J3 ≤ (n−2)J2. Hence,
dropping the nonnegative terms I2 and I3 on the left hand side of (16), we
obtain

(19) I1 ≤ J1 + (n− 1)J2.

Employing the inequality ab ≤ δa2 + 1
4δ b

2, valid for positive a, b, and δ, we
check that

(n− 1)J2 ≤
1
2
I1 +

2(n− 1)2

n+ β − 2

∫
Ω

w(n+β)/2
ε |∇ζ|2 dx.

This estimate, combined with (19), leads to∫
Ω

|∇(w(n+β)/4
ε )|2ζ2 dx ≤ 2(n+ β)

εn

∫
Ω

(1− |uε|2)w(β+2)/2
ε ζ2 dx(20)

+ 9n2
∫
Ω

w(n+β)/2
ε |∇ζ|2 dx.

The proof of Lemma 8 is now complete.

Applying the Moser and De Giorgi–Stampacchia iteration techniques in
a way mimicking the arguments of DiBenedetto and Friedman [7] one can
obtain from (20) the following standard result.

Corollary 9. The function |∇uε| is of class Lq
loc(Ω) for any q ∈ (1,∞].

Moreover , if K ⊂ Ω is compact , then ‖∇uε‖q ≤ C for some constant C
depending on n, q, ε, dist(K, ∂Ω), and the boundary data g.

In fact, a careful verification shows that for uε with
∫

Ω
|∇uε|n dx ≤ C

we have |∇uε| ≤ C/ε on any compact K ⊂ Ω, with C = C(n,K) (the
interested reader may consult the proof of Lemma 12 in the Appendix). As
a consequence of this estimate, we obtain the following.

Lemma 10. As εk tends to zero, |uεk
| → 1 uniformly on compact subsets

of Ω.

P r o o f. Suppose that the lemma is false. Then, for some η > 0 and
some compact K ⊂ Ω, we can find a sequence of points (xj)j=1,2,... ⊂ K
and εj → 0 such that

|uεj (xj)| ≤ 1− η.

Set 2δ = dist(K, ∂Ω). Since |∇uεj (x)| ≤ C/εj for all x ∈ F , where

F := {x ∈ Ω | dist(x, ∂Ω) ≥ δ} ⊃ K,

we have
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(21) |uεj (x)| ≤ 1− η/2

for small εj and for all x ∈ Bj ≡ B(xj , ηεj/(2C)). Thus, for large j,

1
εn

j

∫
Ω

(1− |uεj |2)2 dx ≥ 1
εn

j

∫
Bj

(1− |uεj |)2 dx ≥ ω(n)(η/2)n+2C−n 6→ 0

as j → 0. This is a contradiction to (9).

3.1. Getting rid of ε. Our main concern is now to show that |∇uε| is
locally bounded in any space Lq, 1 < q <∞, by a constant which does not
depend on ε. The reasoning presented below is a version of a trick which,
in the case n = 2, is due to Bethuel, Brezis and Hélein [2, steps A3 and A4
of the proof].

Pick a cutoff function ζ ∈ C∞0 (Ω), with 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(a, r),
ζ ≡ 0 outside B(a,R), and |∇ζ| ≤ 2/(R−r). By Lemma 10, one can assume
that

(22) |uε(x)|2 ≥ 1/2 for all x ∈ supp ζ and all ε sufficiently small.

Thus, the system (3) implies

1− |uε|2

εn
= −

∑
1≤i≤n

div(|∇uε|n−2∇ui
ε)

ui
ε

|uε|2
.

From this equality, computing the divergence and integrating by parts the
term with the Laplacian ∆uk

ε , we obtain

(23)
∫
Ω

1− |uε|2

εn
w(β+2)/2

ε ζ2 dx

= −
∫
Ω

w(n+β)/2
ε ζ2

∑
1≤i≤n

ui
ε∆u

i
ε

|uε|2
dx

−
∫
Ω

∑
1≤i≤n

∇(w(n−2)/2
ε ) · ∇ui

ε

w
(β+2)/2
ε ζ2ui

ε

|uε|2
dx

≤
∫
Ω

∑
1≤i≤n

∇
(
w(n+β)/2

ε

ζ2ui
ε

|uε|2

)
· ∇ui

ε dx︸ ︷︷ ︸
K1

+ (n− 2)
∫
Ω

w(n+β−1)/2
ε ζ2|∇wε| dx

(the last inequality follows from (22)). We decompose the integral K1 into
four terms as follows.
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K11 =
∑

1≤i≤n

∫
Ω

w(n+β)/2
ε

ζ2

|uε|2
∇ui

ε · ∇ui
ε dx,

K12 = 2
∑

1≤i≤n

∫
Ω

w(n+β)/2
ε

ζui
ε

|uε|2
(∇ζ · ∇ui

ε) dx,

K13 =
n+ β

2

∑
1≤i≤n

∫
Ω

w(n+β−2)/2
ε

ζ2ui
ε

|uε|2
(∇wε · ∇ui

ε) dx,

K14 = −2
∑

1≤i,j≤n

∫
Ω

w(n+β)/2
ε

ζ2

|uε|4
(ui

ε∇ui
ε · uj

ε∇uj
ε) dx.

Obviously, K14 ≤ 0. Moreover, by (22) and Lemma 6, we have

|K11| ≤ 2
∫
Ω

w(n+β+2)/2
ε ζ2 dx,(24)

|K12| ≤ 4n
∫
Ω

w(n+β+1)/2
ε ζ|∇ζ| dx(25)

≤ 2n
∫
Ω

(
w(n+β+2)/2

ε ζ2 + w(n+β)/2
ε |∇ζ|2

)
dx,

|K13| ≤ n(n+ β)
∫
Ω

w(n+β−1)/2
ε |∇wε|ζ2 dx.(26)

Now, combine the inequalities (23)–(26) with Lemma 8 to obtain the esti-
mate ∫

Ω

|∇(w(n+β)/4
ε )|2ζ2 dx ≤ C

[ ∫
Ω

w(n+β+2)/2
ε ζ2 dx(27)

+
∫
Ω

w(n+β−1)/2
ε |∇wε|ζ2 dx

+
∫
Ω

w(n+β)/2
ε |∇ζ|2 dx

]
.

Next, we use a standard trick to get rid of the integral containing |∇wε|
on the right hand side. To this end, check that

C
∫
Ω

w(n+β−1)/2
ε |∇wε|ζ2 dx = C

∫
Ω

w(n+β−4)/4
ε |∇wε|ζ · w(n+β+2)/4

ε ζ dx

≤ 1
2

∫
Ω

|∇(w(n+β)/4
ε )|2ζ2 dx

+
8C2

(n+ β)2
∫
Ω

w(n+β+2)/2
ε ζ2 dx.
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Hence, absorbing the term with |∇(w(n+β)/4
ε )|2 in the left hand side of (27),

we obtain

(28)
∫
Ω

|∇(w(n+β)/4
ε )|2ζ2 dx

≤ C(n, β)
( ∫

Ω

w(n+β+2)/2
ε ζ2 dx+

∫
Ω

w(n+β)/2
ε |∇ζ|2 dx

)
.

An examination shows that one can take here e.g. C(n, β) = 2·103n2(n+β)2.
To deal with the first integral on the right hand side, set p = 2n/(n + 2)
so that the Sobolev conjugate exponent of p is p∗ = np/(n − p) = 2. Put
α = (n+ β + 2)/4. By the Sobolev imbedding theorem, we have∫

Ω

w(n+β+2)/2
ε ζ2 dx =

∫
Rn

(wα
ε ζ)2 dx ≤ C

( ∫
Rn

|∇(wα
ε ζ)|p dx

)2/p

≤ C(n)α2
( ∫

Rn

wαp−p
ε |∇wε|pζp dx

)2/p

+ C(n)
( ∫

Rn

wαp
ε ζp|∇ζ|p dx

)2/p

.

In order to see here again the expressions which appear in (28), note that

αp− p =
n

n+ 2
· n+ β − 4

2
+

2
n+ 2

· n
2
,

and apply the Hölder inequality with exponents (n+ 2)/n and (n+ 2)/2 to
estimate the integrals on the right hand side. This gives

(29)
∫
Ω

w(n+β+2)/2
ε ζ2 dx

≤ C(n)
( ∫

Ω

|∇(w(n+β)/4
ε )|2ζ2 dx

)
·
( ∫
{ζ 6=0}

wn/2
ε dx

)2/n

+ C(n)
( ∫

Ω

w(n+β)/2
ε |∇ζ|2 dx

)
·
( ∫
{ζ 6=0}

wn/2
ε dx

)2/n

.

Set s = (n+ β)/2 and define

(30) Φ(s, ε) :=
∫
Ω

|∇(ws/2
ε )|2ζ2 dx,

(31) Ψ(s, ε) :=
∫
Ω

ws
ε|∇ζ|2 dx,
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(32) I(ε) :=
∫

{ζ 6=0}

wn/2
ε dx ≡

∫
BR

|∇uε|n dx,

Using this notation and combining (28) with (29), we see that

(33) Φ(s, ε) ≤ C0s
2Φ(s, ε)I(ε)2/n + C0s

2(I(ε)2/n + 1)Ψ(s, ε).

Here, the constant C0 depends only on n.
Next, we proceed to prove the following.

Lemma 11. For any compact set K ⊂ Ω and any q ∈ (1,∞) there exists
a constant C, depending only on n, q, K, and the boundary data g, such
that

(34) ‖wq
εk
‖W 1,2(K) ≤ C for k = 1, 2, . . .

Here, εk stands for the sequence selected in Proposition 3.

P r o o f. Fix q ∈ [n/2,∞). Since, by Proposition 3, the sequence ∇uεk

converges strongly in Ln, we may choose η0 ≡ η0(q) > 0 and γ0 ≡ γ0(q) > 0
such that

(35) I(εk) ≡
∫

BR∩Ω

|∇uεk
|n dx ≤ min(1, (2C0s

2)−n/2)

for all R < η0, all εk ∈ (0, γ0), and all s ∈ [n/2, 2q). Assume with no loss of
generality that R = diam(supp ζ) < η0. Then, by (33),

(36) Φ(s, εk) ≤ C(n)s2Ψ(s, εk) for s ∈ [n/2, 2q) and εk ∈ (0, γ0).

To start a Moser iteration, we combine (36) with the Sobolev inequality,( ∫
Br

|f |2
∗
dx

)1/2∗

≤ C(n)
( ∫

Br

|∇f |2 dx
)1/2

+
C(n)
r

( ∫
Br

|f |2 dx
)1/2

.

Here, we set f = w
s/2
εk . Taking into account the properties of ζ, we obtain

the so-called weak reverse Hölder inequality,

(37)
( ∫

Br

wsµ
εk
dx

)1/µ

≤ C(n)s2
(

1
(R− r)2

+
1
r2

) ∫
BR

ws
εk
dx,

where 0 < r < R < η0, n/2 ≤ s ≤ 2q, and µ = 2∗/2 = n/(n− 2) > 1.
Set

m =
[

log(4q)− log n
log n− log(n− 2)

]
.

Fix % < η0/2 and define, for j = 0, 1, . . . ,m+ 1,

%j = %(1 + 2−j), sj = µjn/2.
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Note that sm+1 ≥ 2q. Put

Hj :=
(

–
∫

B%j

wsj
εk
dx

)1/sj

.

Applying (37) with s = sj , R = %j , and r = %j+1, we easily obtain, for
j = 1, . . . ,m,

Hj+1 ≤ C1(n)1/sj · s2/sj

j · 4j/sjHj ≤ C2(n)j/µj

Hj .

Here one can take, for instance, C2(n) = (C1(n)µ2n2)2/n. By induction,
since µ > 1, the last inequality implies

(38) Hm+1 ≤ C(n) · C2(n)Σ
m
i=1i/µi

H0 ≤ C3(n)
(

–
∫

B2%

|∇uεk
|n dx

)2/n

.

As sm+1 ≥ 2q, we can combine (38) with the Hölder inequality to see that(
–
∫

B(a,%)

w2q
εk
dx

)1/(2q)

≤ 2nC3(n)
(

–
∫

B(a,2%)

|∇uεk
|n dx

)2/n

.

Hence, by a covering argument, for any compact K ⊂ Ω the integral∫
K
w2q

εk
dx is bounded by a constant which depends only on n, q, g, and

K. By (30), (31), and (36), the integral
∫

K
|∇(wq

εk
)|2 dx does not exceed

a constant which may depend on n, q, g, and K, but not on εk. This
completes the proof of (34).

We are now in a position to prove Theorem 5.
By the Rellich–Kondrashov theorem, W 1,2 is compactly imbedded in

L2. Therefore, we may use (34) and a standard diagonal procedure to select
from (εk)k=1,2,... a subsequence, denoted also by εk, such that

(39)
|∇uεk

|p/2 → |∇u∗|p/2 strongly in L2(K) and a.e.,

∇uεk
⇀ ∇u∗ weakly in Lp(K,Rn2

),

for any compact K ⊂ Ω and any p of the form p = nk, k = 1, 2, . . .
Applying Theorem 4, we see that (39) implies

uεk
→ u∗ in W 1,p

loc (Ω,Rn), for p = 2n, 3n, 4n, . . .

By the Sobolev imbedding theorem, we conclude that

‖uεk
− u∗‖Cα

loc

k→∞−→ 0

for α = 1
2 ,

2
3 ,

3
4 , . . .

Summarizing, we have proved that any sequence uεk
→ u∗ in W 1,n

contains a subsequence converging to u∗ locally in Cα (for any α < 1).
Therefore, the whole sequence uεk

constructed in Proposition 3 converges
to u∗ locally in Cα. The proof of Theorem 5 is now complete.
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R e m a r k. The assumption that uε minimizes Eε was used only to es-
tablish the convergence uεk

→ u∗ in W 1,n. Therefore, if we just know that

−div(|∇uεk
|n−2∇uεk

) =
1
εn

k

uεk
(1− |uεk

|2)

and, for some reason, there exists a map v ∈W 1,n such that

uεk

W 1,n

−→ v,

then uεk
→ v locally in Cα for any α < 1.

R e m a r k. To obtain convergence of uεk
in C1,α on compact subsets of

Ω, one needs to know, among other things, that

(40)
∫

BR

1− |uεk
|2

εn
k

dx ≤ CRn−δ

for some constant C independent of εk and some δ ∈ [0, 1). The trick used
in [2, Lemma 2] does not seem to be useful here.

A global gradient bound, |∇uεk
| ≤ C on Ω (with C independent of ε),

would imply (40) with δ = 0. It would then be possible to prove that the
family {∇uεk

} is (locally) precompact in Cα for some α > 0, using Morrey–
Campanato estimates, a classical regularity result of Karen Uhlenbeck [13],
and the Dirichlet growth theorem [8].

Appendix. For the convenience of the reader and to render our exposi-
tion self-contained, we prove here a (presumably well known) local bound-
edness result for |∇uε|.

Lemma 12. If uε ∈W 1,n
g (Ω,Rn) is a weak solution to (3), then for any

compact K ⊂ Ω, there exists a constant C(n,K) such that

|∇uε(x)|n ≤ C(n,K)
εn

(
1 +
∫
Ω

|∇uε|n dx
)

for a.e. x ∈ K.

The idea of the proof is taken from Bethuel, Brezis, and Hélein [2, Lemma
A.1]—scaling is the main tool. Linear elliptic estimates for the Laplace
operator are replaced by Moser iteration.

P r o o f. Introduce an auxiliary function v defined by the formula
v(x) = uε(εx) (so that |∇v| = ε|∇uε|) for all x in

G := Ωε ≡ {x | x = y/ε, y ∈ Ω}.

Check that

−div(|∇v|n−2∇v) = v(1− |v|2) on G.
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Of course, |v| ≤ 1. Write h = |∇v|2. Repeating the proof of Lemma 8, and
setting s = (n+ β)/2, s ≥ n/2, leads to the inequality

(41)
∫
G

|∇(hs/2)|2ζ2 dx ≤ Cs
∫
G

hs+1−n/2ζ2 dx+ C
∫
G

hs(1 + |∇ζ|2) dx,

where ζ ∈ C∞0 (G) satisfies 0 ≤ ζ ≤ 1, ζ ≡ 1 on some ball Br ⊂ G, ζ ≡ 0
on G \ BR, |∇ζ| ≤ 2/(R − r). Set now w = max(1, h). Assume that 1

2R <

r < R ≤ 1. Since ws ≥ ws+1−n/2 ≥ hs+1−n/2 and |∇(ws/2)| ≤ |∇(hs/2)|,
we have ∫

Br

|∇(ws/2)|2 dx ≤ Cs

(R− r)2
∫

BR

ws dx.

Moser iteration (as in Section 3.1) yields

(42)
(

–
∫

B%j

wsj dx
)1/sj

≤ C(n)
(

–
∫

B%

wn/2 dx
)2/n

,

where sj = (n/(n− 2))j · n/2, %j = (%/2)(1 + 2−j), and j = 0, 1, 2, . . . Upon
letting j →∞, we conclude that

(43) ess max
x∈B%/2

w(x) ≤ C
(

–
∫

B%

wn/2 dx
)2/n

.

Now, fix K ⊂ Ω and let Kε = {x | x = y/ε, y ∈ Ω}. With no loss of gener-
ality we can take ε small enough and assume that % = 1 < dist(Kε, ∂G) =
dist(K, ∂Ω)/ε. For simplicity assume also that all the balls are centered
at 0. Scaling the variables back from x ∈ G to y = εx ∈ Ω, we obtain

ess max
y∈B(0,ε/2)

ε2|∇uε(y)|2 ≤ C
(

–
∫

B(0,ε)

(max(1, ε2|∇uε|2))n/2 dy
)2/n

.

Raising both sides to the power n/2, and applying the elementary inequality
max(a, b)s ≤ 2s(as + bs), we conclude that

εn|∇uε(y)|n ≤ C
∫

B(0,ε)

(
1
εn

+ |∇uε|n
)
dx ≤ C

(
1 +
∫
Ω

|∇uε|n dx
)
.

This completes the proof of Lemma 12.

Acknowledgements. This research has been started in the spring of
1994, when the author was staying at the University of Paris VI as an
ESF/FBP fellow. He expresses here his gratitude to Professor Häım Brezis
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