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INVITATION TO H-SYSTEMS IN HIGHER DIMENSIONS:

KNOWN RESULTS, NEW FACTS, AND RELATED OPEN PROBLEMS

ARMIN SCHIKORRA AND PAWEŁ STRZELECKI

Abstract. In this paper, we discuss two well-known open problems in the regularity theory
for nonlinear, conformally invariant elliptic systems in dimensions n ≥ 3, with a critical
nonlinearity: H-systems (equations of hypersurfaces of prescribed mean curvature) and
n-harmonic maps into compact Riemannian manifolds.

For n = 2 several solutions of these problems are known but they all break down in
higher dimensions (unless one considers special cases, e.g. hypersurfaces of constant mean
curvature or manifolds with symmetries). We discuss some of the known proofs and hint

at the main difficulties.
We also state a few new results (such as positive answers for all solutions of class W n/2,2

for even n, instead of W 1,n) and list some open questions of independent interest — in-
cluding specific endpoint variants of the Coifman-Rochberg-Weiss theorem, addressing the
boundedness of commutators of fractional and singular integrals with multiplication by
bounded functions of class W 1,n — that would lead to solutions of these two problems.
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1. Introduction

25 years ago F. Hélein [32] proved that all harmonic maps from planar domains into
compact Riemannian manifolds are smooth. Besides Hélein’s own insight into the method
of using the moving frames to rewrite the right-hand side of the harmonic map equa-
tion and reveal its divergence structure, the main analytical ingredient of this achieve-
ment was the discovery that certain nonlinear expressions – like the Jacobian of a map
u ∈ W 1,n(Rn,Rn), or various ‘div-curl’ quantities – enjoy, due to cancellation phenomena,
slightly better regularity or integrability properties than those that would follow only
from their growth properties.

Hélein’s ideas and the powerful Hardy space methods based on [44, 5] have triggered
a stream of research. In particular, F. Bethuel [2] proved that all weak solutions u ∈
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2 A. SCHIKORRA AND P. STRZELECKI

W 1,2(B2,R3) of the equation of surfaces in R3 that have prescribed mean curvature, ∆u =
2H(u)ux × uy, where H : R3 → R is bounded and Lipschitz, are continuous.

Fifteen years later, in an influential paper [49], T. Rivière has derived a general con-
servation law for solutions u ∈ W 1,2(B2,Rm) of

(1.1) ∆u = Ω ·∇u,

where Ω is an L2-matrix with values in so(m) ⊗ R2. An important point of [49] was that
the antisymmetry of Ω can be used to replace the divergence structure; due to this, all
weak solutions of ∆u = Ω ·∇u are continuous. To an untrained eye, the result looks dry
and technical, but two long-standing open problems were its corollaries: a conjecture by
S. Hildebrandt claiming that critical points of elliptic conformally invariant Lagrangians
in two dimensions are continuous (this was known before only under a boundedness as-
sumption on the map or a stronger smoothness assumption on the target manifold, due to
P. Choné [4]), and a conjecture by E. Heinz asserting that the solutions to the prescribed
mean curvature equation with only bounded mean curvature are continuous.

Some of the generalizations and extensions of Hélein’s work – we discuss them in more
detail below – were concerned with applications of the ideas and techniques of [5] in
dimensions n ≥ 3, to conformally invariant problems, in particular to equations involving
the n-Laplace operator. One of them is

(1.2) − div
(

|∇u|n−2∇u
)

= Ω · |∇u|n−2∇u, u ∈ W 1,n(Bn,Rm)

with an antisymmetric Ω of class Ln, cf. [50, eq. III.23] and Problem 2.5 below. Despite the
efforts and interest of numerous authors, three naturaln-dimensional counterparts of the
results of [32], [2] and [49], in particular the regularity questions for n-harmonic maps
and for H-systems in dimension n > 2, are still open; only partial results are known. For
n = 2, some of the milestones described above were due to successful applications of linear
harmonic analysis to nonlinear problems; it seems that for n > 2 a deeper understanding
of the nonlinearity (and maybe of the underlying geometry) is simply missing.

It is our aim to describe these problems and some attempts at their solutions. There
is a lot of circumstantial evidence – in the form of partial positive results in simplified
cases or under extra assumptions that do not trivialize the problems – that the answers
might be positive, and the counterexamples, if they exist at all, would have to be rather
subtle.

This paper is, for the most part, a survey. However, later on, we do insert a few new
results which provide part of the evidence alluded to above. These new observations in-
clude

• regularity of bounded solutions to H-systems with the mean curvature H being
just bounded and Hölder continuous;

• in even dimensions, regularity of allW n/2,2–solutions toH-systems withH bounded
and Lipschitz;

• a splitting result for H-systems, allowing to write the right side as a sum of the
determinant terms and a term Ωij · |∇u|n−2∇uj with an antisymmetric matrix Ω
in the Lorentz space L(n,n/2) ! Ln;

• a higher integrability result for a toy non-local version of (1.2).

However, our main wish is to attract the attention of the reader (a) to those specific regu-
larity problems involving the n–Laplace operator, (b) to some related problems of analysis
that in our opinion are interesting in their own right.



REGULARITY FOR H-SYSTEMS ? 3

2. Statement of the problems

2.1. Regularity of n-harmonic maps into compact Riemannian manifolds. Let N
be a compact closed Riemannian manifold, isometrically embedded in Rm, with π : Rm ⊃
Bδ(N ) → N being the standard nearest point projection of a tubular neighbourhood of N
onto N . Let Ω ⊂ Rn be open and bounded, and let p ∈ (1, n]. Consider mappings u : Ω → N
such that the p-Dirichlet energy of u, given by the functional

(2.1) Ep[u] : =
1

p

∫

Ω
|∇u|p dx =

1

p

∫

Ω

(

∑

i,j

(

∂ui

∂xj

)2
)p/2

dx ,

is finite. Here, u = (u1, . . . , um) : Ω → Rm is a mapping with all coordinates uj ∈ W 1,p(Ω),
satisfying the extra constraint u(x) ∈ N for a.e. x ∈ Ω. The class of all such maps is
traditionally denoted by W 1,p(Ω,N ).

Definition 2.1. A map u ∈ W 1,p(Ω,N ) is (weakly) p-harmonic if and only if u is a critical
point of Ep with respect to variations in the range, i.e.

(2.2)
d

dt

∣

∣

∣

∣

t=0

Ep

[

π ◦ (u+ tϕ)
]

= 0 for each ϕ ∈ W 1,p
0 (Ω,Rm) ∩ L∞(Ω,Rm).

For p = 2 one simply says that u is a harmonic map into N .
A computation (see e.g. M. Fuchs [21] or Hélein [33]) shows that (2.2) yields the Euler–

Lagrange system

(2.3) − div (|∇u|p−2∇u) ⊥ Tu N in the sense of D′(Ω,Rn),

or, equivalently,

(2.4) − div (|∇u|p−2∇u) = |∇u|p−2Au(∇u,∇u),

where A denotes the second fundamental form of the embedding N ⊂ Rd.
For an excellent review of numerous issues concerning (partial) regularity of harmonic

and p-harmonic maps, we refer to R. Hardt’s survey [29] (the case of p ̸= 2 is reviewed
briefly in [29, Sec. 8]; we give more references below).

In the case p < n, one cannot expect any regularity for weakly p-harmonic maps with-
out an extra assumption. Already for p = 2 and n > 2, Rivière [48] showed the existence
of everywhere discontinuous harmonic maps into the round sphere. If one considers mini-
mizing p-harmonic maps one has sharp partial regularity results: such maps are regular
outside a closed singular set which has Hausdorff dimension at most n−⌊p⌋−1, see C.B.
Morrey [41] and R. Schoen and K. Uhlenbeck [58] for p = 2, and for p ≥ 2 R. Hardt and
F.H. Lin [30], Fuchs [18, 19] and S. Luckhaus [39]. L. Simon [60] proved that the singu-
lar set of a minimizing harmonic map is rectifiable. For stationary p-harmonic maps into
symmetric targets, the singular set satisfies Hn−p(singu) = 0, see Fuchs [20], Takeuchi
[67], Toro and Wang [70], the second author’s [61, 62], and the recent work by A. Naber,
D. Valtorta and G. Veronelli [46].1 For generalizations we also refer to [27, 73, 64].

Despite several results that we describe in the next section, the following problem is
still open.

Problem 2.2 (p = n). Are all weakly n-harmonic maps u ∈ W 1,n(Bn,N ) continuous?

1For p = 2, Naber and Valtorta [45] prove new results on the rectifiability of the strata of the singular set
of a stationary harmonic map.
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2.2. H-systems. The H-systems are closely related to n-harmonic maps, and from the
viewpoint of regularity theory they present the same analytical difficulties in an a bit
simpler framework. They come up as the Euler–Lagrange systems for the n-Dirichlet
energy plus a volume term; one of the sources of motivation is that conformal solutions
of an H-system parametrize hypersurfaces of prescribed mean curvature.

Let u = (u1, . . . , un+1) : Bn → Rn+1 be of class W 1,n. Set

Ju =
∂u

∂x1
× · · ·×

∂u

∂xn
;

for x ∈ Bn this is a vector in Rn+1 with coordinates given by the n×n minors of the Jacobi
matrix of Du.

Definition 2.3. For a bounded function H : Rn+1 → R, an H-system is

(2.5) − div
(

|∇u|n−2∇u
)

= H(u)Ju, u ∈ W 1,n(Bn,Rn+1).

For constant H, solutions of (2.5) are also known as n-harmonic maps with prescribed
volume. Namely, for a map u = (u1, . . . , un+1) : Bn → Rn+1 of class W 1,n one can define
the volume of the cone over u(Bn) with vertex at 0 ∈ Rn+1 as

V (u) =
1

n+ 1

∫

Bn
u · Ju dx .

For the minimization problem

min
u

∫

Bn
|∇u|n dx

under a prescribed Dirichlet boundary condition for u on ∂Bn and prescribed volume
V (u) = const, (2.5) is the Euler–Lagrange system and the constant H is just the Euler–
Lagrange multiplier. For variable H, a variational approach to the existence of solutions
of (2.5) is set forth by F. Duzaar and J. Grotowski in [12].

Problem 2.4. Let n > 2. Suppose that H : Rn+1 → R is bounded and Lipschitz. Are all
weak solutions u ∈ W 1,n(Bn,Rn+1) of (2.5) continuous?

For n = 2 the answer is positive, see Bethuel [2]. We discuss known partial evidence
for n > 2, including a few new observations, in the next section. In dimension n = 2,
Problems 2.2 and 2.4 are closely related: the same tools of mathematical analysis (Hardy
space and BMO duality, or its variants) can be used to prove regularity of solutions.
Basically, Hélein’s Coulomb moving frame allows one to rewrite the equation of harmonic
maps in a form analogous to (2.5), and the case of symmetric target manifolds corresponds
to H being constant. For n > 2, Wang [74], in his paper on weak limits of n-harmonic
maps, gives a construction of an appropriate moving frame, see also [40]. Thus, we are
tempted to think that a solution to Problem 2.4 would open the way to Problem 2.2.

Rivière in his survey article [50, eq. III.23] poses the following problem on regularity
of degenerate systems with an antisymmetric potential. A positive answer to his question
would imply a positive answer to Problem 2.4 with H just of class L∞, and to Problem 2.2
for all C2-manifolds.

Problem 2.5. Let u ∈ W 1,n(Bn,Rm) satisfy a system of the form

(2.6) − div
(

|∇u|n−2∇u
)

= Ω · |∇u|n−2∇u.
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Assume that Ω = (Ωα
ij)

1≤α≤n
1≤i,j≤m ∈ Ln(Rm×m ⊗ Rn) is antisymmetric, i.e. Ωα

ij = −Ωα
ji for all

1 ≤ i, j ≤ m. Is it true that u is continuous?

3. Partial evidence for regularity

3.1. Results on n-harmonic maps into symmetric targets. Shortly after the appear-
ance of Hélein [32], Bethuel [2] and Evans [15], several authors have noted that the fol-
lowing result holds true.

Theorem 3.1. Assume that N ⊂ Rd is a round sphere Sd−1, or, more generally, a com-
pact homogeneous space with a left-invariant metric. Then, all n-harmonic maps u ∈
W 1,n(Bn,N ) are locally of class Cβ for some β > 0.

To the best of our knowledge, for N being a round sphere, the theorem was indepen-
dently stated and proved by M. Fuchs [20], L. Mou and P. Yang [43], H. Takeuchi [67],
and the second named author in [61]. The more general version for compact homogeneous
spaces is due to T. Toro and C.Y. Wang [70].

There are, basically, three proofs of that result. Two rely on the duality of BMO and
the Hardy space, combined with the observation that for symmetric targets N the right-
hand side of (2.4) belongs to the (local) Hardy space. One of these two proofs is modelled
on Evans’ indirect blow-up argument, the other one employs a simple hole-filling trick.
The third one [52] interprets the equation as a nonlocal system in the spirit of fractional
harmonic maps, cf. [8, 7, 54, 9].

Let us describe the argument in rather general terms, with emphasis on how the right–
hand side is estimated.

3.1.1. A possible approach to regularity. Let u ∈ W 1,n be a solution to the system

div (|∇u|n−2∇u) = f(u,∇u),

with |f(u,∇u) ! |∇u|n. Let [·]X be a critical semi-norm. Critical means: for any σ > 0 an
estimate of the form

(3.1) sup
Br

r−σ[u]X,Br < ∞ ,

where the supremum is taken over balls Br with radius r, implies that u is Hölder con-
tinuous.

Typical choices of such critical seminorms include

[u]X,Br :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∥∇u∥Ln(Br),

sup
Bϱ(z)⊂Br

(

ϱp−n
∫

Bϱ(z)
|∇u|p

)1/p

for some p < n,

∥∇u∥L(n,∞)(Br),

[u]BMO,Br .

(For definitions of the Lorentz spaces L(p,q) and the space BMO of functions having
bounded mean oscillation we refer to L. Grafakos’ monographs [23, 24]).

In all instances that we are aware of, one works with a semi-norm that satisfies

(3.2) [u]BMO,Br ! [u]X,Br ! ∥∇u∥Ln(Br) .
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The goal is usually to obtain a decay estimate of the form

(3.3) [u]X,Br ≤ (τ̃ + C∥∇u∥γLn(B2r)
)[u]X,B2r ,

with some fixed constants τ̃ ∈ (0, 1), C and γ > 0, independent of the specific ball Br. It
is good to think that τ̃ is responsible simply for localization and cutting off the solution,
whereas C and γ are related to the structure of the right-hand side, f(u,∇u). Here, the
right choice of the semi-norm becomes extremely important; we shall come to that point
later on.

On all balls B2r with r small enough, due to the absolute continuity of the integral, we
can estimate (3.3) further to obtain

[u]X,Br ≤ τ [u]X,B2r , for some τ ∈ (τ̃ , 1).

Once such estimate is ensured, we can employ an iteration scheme on smaller and smaller
balls, see [22, Chapter III], to obtain

[u]X,Br ! rσ [u]X,Rn .

According to (3.1), this then implies Hölder continuity.
So how to obtain an estimate of type (3.3)? There are two ingredients needed: Firstly2,

for an estimate of the left-hand side we need to find a seminorm [·]Y so that

(3.4) [u]n−1
X ! sup

[ϕ]Y ≤1

∫

|∇u|n−2∇u ·∇ϕ.

And then we need to obtain the right-hand side estimate of the form

(3.5)

∫

fϕ ! [u]sX [ϕ]Y , where s > n− 1 .

(Typically, one strives for s = n, reflecting the degree of homogeneity of the right hand
side in u; values of s ≤ n− 1 do not yield any significant gain).

One of the sources of the difficulties is that the canonical choice X = Y = W 1,n(Rn)
contains unbounded functions. This is why one is often forced to look for ‘non-standard’
function spaces X and Y in the scheme described above. For the same reason, the struc-
ture of f matters a lot.

3.1.2. Example: How this approach works in the sphere case. To give an idea how this
works in practise, let us regard the case of the second author’s proof of Theorem 3.1, [61]:

The n-harmonic map system is

(3.6) − div (|∇u|n−2∇u) = u|∇u|n.

Now,

ui|∇u|n =
(

ui|∇u|n−2∇uj − uj|∇u|n−2∇ui
)

·∇uj.

This is due to the fact that uj∇uj = 1
2∇|u|2 = 0 since u belongs to the sphere – we remind

the reader that we use Einstein’s summation convention. This formulation is useful, since
(3.6) implies

div
(

ui|∇u|n−2∇uj − uj |∇u|n−2∇ui
)

= 0 ;

2A word of caution: one has to be careful with the boundary data, localize the solution properly etc., but
these technical difficulties are minor or at best moderate; here and in the sequel, we have decided to sweep
them under the rug in order to show only the essence of the arguments.
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that is, the initial system can be equivalently written as

(3.7) − div (|∇u|n−2∇u) = Ω ·∇u.

where divΩ = 0. Then, by the div-curl lemma [5], the term Ω ·∇u belongs to the Hardy
space H1 and the duality of Hardy space and BMO implies that

∫

ϕ (Ω ·∇u) ! [ϕ]BMO ∥Ω∥Ln′ ∥∇u∥Ln ! ∥∇u∥nLn ∥∇ϕ∥Ln .

So taking [ϕ]X = [ϕ]Y := ∥∇ϕ∥Ln , we obtain a right-hand side estimate as in (3.5), with
s = n. The corresponding left-hand side estimate as in (3.4) is easy:

∥∇u∥n−1
Ln ≤ sup

∥∇ϕ∥Ln≤1

∫

|∇u|n−2∇u ·∇ϕ.

All this yields (3.3) with γ = 1, and allows to conclude that u ∈ Cβ for some β > 0.

3.1.3. Why this is problematic in the general case. The main problem in the general case
is that the right-hand side potential Ω in (3.7) may not be divergence free. For the H-
system (2.5) it is divergence free up to the multiplication of H(u), a term which belongs
to L∞∩W 1,n. As it is done in [49] for Rivière’s general system (1.1) for n = 2, one might try
to adopt Uhlenbeck’s gauge transform for the case n > 2 and (2.6), see [71, 74, 49, 53, 40].
This could essentially reduce (2.6) to a system with a potential Ω̃ ∈ Ln′

which is divergence
free up to a multiplicative term which belongs to L∞ ∩W 1,n.

However, while this is sufficient for n = 2 and (1.1), for n > 2 and (2.6) this leads to
problems: for example, if we choose to work with Lorentz spaces Lp,q, and consider the
right-hand side of the H-system. A slight extension of the div-curl estimate [5] coupled
with Hardy-BMO-inequality gives that

(3.8)

∫

H(u)Juϕ ! ∥∇u∥L(n,q1) . . . ∥∇u∥L(n,qn) ∥∇(H(u)ϕ)∥L(n,qn+1) ,

where qi ∈ [1,∞] and
∑n+1

i=1
1
qi

= 1. The first observation is that the test-function ϕ should

belong to L∞ to make the right-hand side bounded. By Sobolev embedding we should
then choose in (3.4) Y = L(n,1), and thus X = L(n,∞). Hence, in order to at least formally
match (3.4) and (3.5) to an estimate of the form (3.3), we need the L(n,∞)-norm of ∇u to
appear at least (n− 1) times in (3.8). That is we should take q1, . . . , qn−1 = ∞. But since
∇H(u) ∈ Ln = L(n,n), qn+1 can be at most n. Thus qn has to be at least n′. And unless

n = n′ = 2, we have L(n,n′) ! Ln, so that the natural assumption u ∈ W 1,n does not suffice
to close the argument.

That is, this kind of numerology magically fits and leads to the desired result when
n = 2, i.e. when working with harmonic maps. But for n > 2 the exponents simply do not
add up. This happens for all the choices for X and Y that we are aware of.

Let us also remark that even the additional assumption ∇u ∈ L(n,n′), would not solve
this dilemma. The left-hand side estimate (3.4) is to our best knowledge unknown for
X = L(n,∞) and Y = L(n,1). A reformulation of this additional problem is the following.

Problem 3.2. Let R = (R1, . . . ,Rn) be the vectorial Riesz transform. Is it true or false
that

∥f∥p−1
L(p,∞) ≤ C ∥

n
∑

α=1

Rα(|Rf |p−2Rαf)∥L(p′,∞) ?
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Note that this problem can be easily solved for p = 2: for some constant c ∈ R we
have

∑n
α=1RαRα = c id and we can argue simply by L2,1-L2,∞ duality. If instead of L(p,∞)

and L(p′,∞) one considers Lp and Lp′ , respectively, then it follows from the same simple

duality argument. Also, if one replaces L(p,∞) and L(p′,∞) by L(r,q) and L( r
p−1 ,

q
p−1 ), respec-

tively, then the analogue estimate holds whenever |p− r| is small but non-zero. This uses
Iwaniec’ stability theorem [34] which follows from a nonlinear commutator estimate (see
his monograph [35], and for an adaptation of the idea to another context [57]).

Such a commutator estimate can be interpolated, but since it is nonlinear the inter-
polation can only take place between the space where the operator is Lipschitz (which
happens exactly for Lp) and where the commutator is bounded. Thus one cannot obtain
any interpolation estimates for the L(p,q)-Lorentz spaces: they cannot be represented as
interpolation spaces between Lp and some Lr (the best one can try is to work with the
grand Lp)-space, cf. [25]).

A remark in passing: all the attempts at a proof in the general case try to save the
main idea of a hole–filling trick. Is any other approach possible?

3.2. H-systems: results that use additional hypotheses on H or u. For n = 2, H :
R3 → R, and u ∈ W 1,2(R2,R3) the H-system is

(3.9) ∆u = 2H(u)ux × uy.

It was probably the first time that compensation effects for these kind of systems was
observed, when H. Wente [75] proved what later should become to be known as Wente’s
inequality, see [3, 68]: Whenever H is constant, any solution to (3.9) is continuous. F. Tomi
[69] proved that bounded solutions u to (3.9) are C1,α when H is Lipschitz. E. Heinz [31]
considered unbounded solutions u for H being Lipschitz and satisfying an extra decay-
at-infinity condition.

Later on, M. Grüter [26] proved regularity for all solutions to (3.9) under the condition
that u is conformal and H is bounded. Dropping the conformal parametrization, following
the work on harmonic maps by Hèlein [32], Bethuel [2] was able to prove regularity for
possibly unbounded solutions whenever H is bounded and Lipschitz.

Finally, Rivière [49] proved that any W 1,2-solution u to (3.9) is Lipschitz, whenever
H is just bounded – which proved a conjecture by Heinz. For further properties and an
overview we refer to [14].

For n ≥ 2, much less is known for W 1,n-solutions u to the n-dimensional H-system
(2.5). Mou and Yang [42] showed continuity of conformal solutions u for H is bounded.
For H Lipschitz and decaying at infinity,3 Wang [72] proved that solutions of (2.5) are
continuous. For H = const all solutions of class W 1,n are regular; this is proved by the
same argument as Theorem 3.1, see e.g. Mou and Yang [43].

When H is Lipschitz and u not necessarily conformally parametrized, the following is
known.

Theorem 3.3 (Continuity under additional assumptions on u). Let

u = (u1, u2, . . . , un+1) ∈ W 1,n(Ω,Rn+1)

3Basically, one chooses the decay speed so that H(u)u is of class W 1,n ⊂ BMO; this allows to cope with
the fact that BMO itself is not an algebra.
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be a weak solution of the H-system (2.5), where H : Rn+1 → R is bounded and Lipschitz.
If moreover one of the following conditions holds

(1) u ∈ L∞

(2) u ∈ W n−1,n′

(3) ∇u ∈ Ln logn−1−ε L for a certain ε > 0

then u is continuous.

The first statement, regularity of bounded weak solutions for n > 2, is due to Duzaar-
Fuchs [11]. We sketch a proof of a slightly generalized version below, see Proposition 3.5.
The second statement is due to S. Kolasiński, [37] who combined Hodge decomposition,
the Iwaniec stability theorem [34], and sharp Gagliardo-Nirenberg estimates due to the
second author [65]. We describe a slight improvement on Kolasiński’s argument below
in Proposition 3.6. The third statement in Theorem 3.3 is due to the first-named author
[55]. Instead of using the Gagliardo-Nirenberg-estimate, exponential Orlicz-spaces and
Trudinger’s inequality are used.

Observe that for n = 2, the second condition reduces to the usual assumptions. All of
the conditions above do not trivialize the problem: one can easily construct systems with
the same growth properties that have solutions with singularities of the type log log 1/|x|.

If, as in the first statement above, all coordinate functions are bounded, one can essen-
tially test the equation with u itself (we use this for the proof of Proposition 3.5 below).
This is not possible any more if u is unbounded: since the right-hand side is merely in-
tegrable, all test functions have to be in W 1,n ∩ L∞. This is also related to the fact that
W 1,n is not an algebra, but W 1,n ∩ L∞ is.

A remark in passing: due to the Jacobian term on the right-hand side of (2.5) one
might hope that it suffices to assume that only some coordinate functions are bounded,
integrating by parts on the right-hand side. However the following is still open:

Problem 3.4. Let u = (u1, u2, . . . , un+1) ∈ W 1,n(Ω,Rn+1) be a weak solution of the H-
system (2.5), where H : Rn+1 → R is bounded and Lipschitz. Assume that k of the coordi-
nate functions ui are bounded, where k ∈ {1, 2, . . . , n}. Is u continuous?

3.3. How could a counterexample look like? Duzaar and Fuchs [10] have proved
that isolated singular points of n-harmonic maps are removable. Therefore, a possible
counterexample to regularity would have to be singular on a perfect set; it is hard to
imagine how a construction of such an example might look like when no nesting of isolated
singular points is possible.

On the other hand, C. Wang [74], see also [40], and the second named author with
A. Zatorska-Goldstein [66] have proved that for (2.4) and (2.5) – and for the correspond-
ing approximate problems with a small perturbation in (W 1,n)∗ added to the right hand
side – the spaces of weak solutions are closed in the weak topology of W 1,n. We do not
know whether these results could be used to construct counterexamples from sequences
of singular solutions to perturbed versions of (2.4) and (2.5).

3.4. New observations. If u is a bounded solution to the H-system, actually any Hölder
continuous H suffices to obtain continuity (which is a slight improvement from Theo-
rem 3.3 where Lipschitz-continuity is required).
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Proposition 3.5. Assume that u ∈ W 1,n(Bn,Rn+1) is a bounded weak solution of (2.5),

where H : Rn+1 → R is a bounded function of class Cα for some α ∈ (0, 1). Then, u ∈ Cβ
loc

for some β > 0.

The proof is based on the fact that all BMOp–norms are equivalent for 1 < p < ∞.
Thus for any α ∈ (0, 1],

[H(u)]BMO ! [H]Cα [u]αBMO.

Since moreover

[fg]BMO ! ∥f∥L∞ [g]BMO + ∥g∥L∞ [f ]BMO,

we can estimate

[H(u)ϕ]BMO ! ∥ϕ∥∞[H]C0,α [u]αBMO + ∥H∥L∞ [ϕ]BMO.

With the equation (2.5) we then have the estimate
∫

|∇u|n−2∇u∇ϕ ! ∥∇u∥nn (∥ϕ∥∞[H]C0,α [u]αBMO + ∥H∥L∞ [ϕ]BMO) .

Since u is bounded, we we can proceed as explained above for the equation (3.6). Just pick
ϕ to be a cut-off version of u to obtain (3.3). "

Proposition 3.6. If n = 4 and u ∈ W 2,2(B4,R5) is a weak solution of (2.5), with H

Lipschitz and bounded, then, u ∈ Cβ
loc for some β > 0.

Again, let us explain the argument briefly; an interested reader will easily fill in all
the missing technical details. The three essential tools are: the Hodge decomposition (in-
cluding a stability theorem due to Iwaniec); the Coifman–Rochberg–Weiss commutator
theorem [6], and the Gagliardo–Nirenberg inequalities in a sharp form, involving BMO
norms instead of L∞ [65].

Fix a small parameter ε > 0. Assuming w.l.o.g. that u is compactly supported in B2r,
we construct the test function ϕ via the Hodge decomposition,

|∇u|−ε∇u = ∇ϕ+ V,

where the divergence-free term V is small due to the Stability Theorem [34],

(3.10) ∥V ∥L(n−ε)/(1−ε) ! ε∥∇u∥Ln−ε .

The main point is that (n− ε)/(1 − ε) > n, and thus by Sobolev imbedding

(3.11) oscϕ ! r(n−1)ε/(n−ε)

(
∫

B2r

|∇u|n−ε

)
1−ε
n−ε

.

After a routine argument (let us assume here for the sake of simplicity that also ϕ is
compactly supported), the left-hand side of the equation, due to the stability estimate
(3.10), gives

(3.12)

∫

|∇u|n−2∇u∇ϕ ≥

∫

Br

|∇u|n−ε − τ

∫

B2r

|∇u|n−ε

with τ = τ(n, ε) ∈ (0, 1).
To estimate the right hand side, we use the Hodge decomposition again, this time in

Ln. It is convenient here to use the language of differential forms. We write the H-system
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as (4.2) and work separately with each of the equations of the system. W.l.o.g. let i = n+1;
write

H(u) du1 = dα+ δβ .

Let T denote the linear operator which maps a 1-form to the exact component of its Hodge
decomposition; i.e. T

(

H(u)du1
)

= dα. Then, the coexact term

δβ = H(u)T (du1)− T
(

H(u)du1
)

= [H,T ](du1),

where [H,T ] is the commutator of T and the multiplication by H(u). Since H is Lipschitz,
by the Coifman-Rochberg-Weiss commutator theorem [6]

∥δβ∥Ln ! [u]BMO∥∇u∥Ln .

Now, we split the right-hand side as
∫

ϕH(u) du1 ∧ . . . ∧ du4 =

∫

ϕ dα ∧ du2 ∧ du3 ∧ du4 +

∫

ϕδβ ∧ du2 ∧ du3 ∧ du4 .

The first term, after one integration by parts – taking d from one of the uj to ϕ – and
an application of the duality of the Hardy space and BMO, is controlled by a constant
multiple of

[u]BMO∥∇ϕ∥L(4−ε)/(1−ε)∥∇u∥3L4−ε ! [u]BMO,B2r

∫

B2r

|∇u|4−ε .

The assumptions n = 4 and u ∈ W 2,2 are crucial in the estimate of the second term, the
one containing δβ. We have

∣

∣

∣

∣

∫

ϕδβ ∧ du2 ∧ du3 ∧ du4
∣

∣

∣

∣

≤ ∥ϕ∥L∞∥δβ∥L4∥∇u∥3L4

! r3ε/(4−ε)

(
∫

B2r

|∇u|4−ε

)
1−ε
4−ε

[u]BMO,B2r

∫

B2r

|∇u|4 + L.O.T.

! r3ε/(4−ε)

(
∫

B2r

|∇u|4−ε

)
1−ε
4−ε

[u]3BMO,B2r

∫

B2r

|D2u|2 + L.O.T.

In the last step, we used the sharp Gagliardo-Nirenberg inequality [65]; L.O.T. stands
for unimportant lower order terms. Now, by Poincaré inequality, we have

[u]BMO,B2r ! M(p, 2r) := sup
B(z,ϱ)⊂B2r

(

1

ϱn−p

∫

B(z,ϱ)
|∇u|p

)1/p

.

Thus, for p = n− ε = 4− ε the estimate of the second term can be written as

(3.13)

∣

∣

∣

∣

∫

ϕδβ ∧ du2 ∧ du3 ∧ du4
∣

∣

∣

∣

! rε
∫

|D2u|2 · M(4− ε, 2r)4−ε .

Combining this with the estimate of the first term of the right side, we finally obtain

(3.14)

∣

∣

∣

∣

∫

ϕH(u) du1 ∧ . . . ∧ du4
∣

∣

∣

∣

! rε
(

[u]BMO,B2r +

∫

B2r

|D2u|2
)

M(4 − ε, 2r)4−ε .
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Going back to (3.12), dividing both sides by rε, and using the monotonicity of M(p, 2r) as
a function of the ball, one is now able to use a standard iterative argument and prove
that

1

rε

∫

Br

|∇u|4−ε ! rσ for a fixed σ > 0 and all radii r < r0.

By the Dirichlet Growth Theorem, u must be Hölder continuous.

Remark 3.7. One can check that the above argument, generalized to even dimensions
n = 2k bigger then 4, yields the following:

If n = 2k is even and u ∈ W n/2,2(Bn,Rn+1) is a weak solution of (2.5), with H Lipschitz

and bounded, then, u ∈ Cβ
loc for some β > 0.

Remark 3.8. It is easy to see that the argument used to prove Proposition 3.6 breaks
down if we assume that H is only C0,α instead of Lipschitz: if H ∈ C0,α, then the exponent
of M(4 − ε, 2r) in (3.13) is in fact 2 + (1 − ε) + α, so that for α < 1 the estimates of both
sides simply do not match.

4. Approaches based on non-local problems and commutator estimates

4.1. Questions concerning commutators. One of the methods that allow to bypass
the duality of Hardy space and BMO in the proofs of regularity of solutions to similar
problems involves, roughly speaking, representing the test function as a Riesz potential
of its gradient. The operator

If(x) =

∫

Rn
K(x− y)f(y) dy

where K(x) = cnx/|x|n is the gradient of the fundamental solution of the Laplacian, is
bounded on the Hardy space, I : H1(Rn) → Ln/(n−1)(Rn), see [16, 59]. Variants of that
approach have been successfully applied in [27] or [63].

However, when dealing e.g. with (2.5) and using a compactly supported test function
ϕ = I(∇ϕ), one immediately arrives at the expressions of the form
∣

∣

∣

∣

∫

ϕH(u) du1 ∧ . . . dun
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∇ϕ · I
(

H(u) du1 ∧ . . . dun
)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

H(u)∇ϕ · I
(

du1 ∧ . . . dun
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∇ϕ · [H(u), I]
(

du1 ∧ . . . dun
)

∣

∣

∣

∣

The key term here is the commutator [b, I] of I and the multiplication by b = H(u). It
is known that such commutators are not bounded on the Hardy space, cf. [28], but are
bounded on certain subspaces of H1(Rn), cf. Perez [47] and Ky [38]. Differentiation of
[b, I]f gives the term ∇b · If plus a commutator [b, S]f , where S is a singular integral
operator. Thus, the following general problem – which might be of independent interest
to harmonic analysts – is linked with the regularity questions that we consider here.

Problem 4.1. Fix H bounded and Lipschitz on Rn+1, and u ∈ W 1,n(Rn,Rn+1), so that
b = H(u) ∈ W 1,n(Rn) ∩ L∞(Rn).

(a) What is the largest subspace V ⊂ H1(Rn) such that [b, I] : V → Ln/(n−1)(Rn)? What

is the answer if we replace Ln/(n−1)(Rn) by W 1,1(Rn)? Does this V contain the n × n
minors of Du?
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(b) What is the largest subspace V ⊂ H1(Rn) such that all commutators [b,Rα] of the
multiplication by b with the Riesz transforms Rα, α = 1, . . . , n, map V → L1(Rn)?
Does V contain all the n× n minors of Du?

(c) Does du1 ∧ . . . ∧ dun have an atomic decomposition into b-atoms, i.e. standard atoms
that are, in addition, orthogonal to b? (Cf. [47] for definitions.)

(d) Do the answers to the above questions change if u is not just an element of W 1,n, but
also a solution to an H-system?

The characterizations in Perez [47] and Ky [38] do not seem to be directly applicable
here: formally, there are abstract definitions of V ’s on which the commutators of frac-
tional or singular integrals are bounded but there is no clear, practical way of telling
whether a given Jacobian belongs to such a space or not.

Again, a positive answer to questions (a)–(c) would pave the way to Problems 2.4
and 2.2.

4.2. Systems with antisymmetric potentials. For n = 2 Rivière [49] observed that
Euler-Lagrange systems of conformally invariant variational functionals and in partic-
ular the H-system can be brought into the form of (1.1). This allowed him to conclude
regularity for solutions if H is bounded.

This reformulation is also possible for n ̸= 2 for harmonic maps and the H-system, see
[50, eq. III.23], where (1.1) becomes (2.6). But even for toy cases (see below) it does not
seem clear how solutions would regularize when Ω belongs merely to Ln.

For the H-system with Lipschitz H, one can split the right-hand side of the equation
into a part which has a purely determinant structure and a part with an antisymmetric
potential which is in the smaller Lorentz space L(n,n/2) ! Ln.

Proposition 4.2. Let u ∈ W 1,n(Rn,Rn+1) be a solution to the H-System (2.5) for some H
satisfying ∥H∥∞ + ∥∇H∥∞ < ∞. Then we can write

div (|∇u|n−2∇ui) = A+B,

for A and B as follows: A is a sum over determinants of the form

detn×n(∇ωi1 ,∇ui2 , . . . ,∇uin),

for some ω ∈ W 1,n
loc (R

n,Rn+1). B can be written as

B = Ωij · |∇u|n−2∇uj,

with an Ω ∈ L
(n,n2 )
loc (Rn, so(n+ 1)⊗ Rn).

Proof. Again, it will be beneficial to use the language of differential ℓ-forms
∧ℓ Rn+1. Let

yi be the coordinates on Rn+1. An orthonormal basis for
∧ℓRn+1 is then

(4.1)
{

dyi1 ∧ . . . ∧ dyiℓ : 1 ≤ i1 < . . . < iℓ ≤ n+ 1
}

.

The Hodge-star operator ⋆ :
∧ℓRn+1 →

∧n+1−ℓRn+1 maps ℓ-forms ω into n+ 1− ℓ-forms
⋆ω so that

ω ∧ ⋆ω = |ω|2.

Here |ω| is the norm on
∧ℓ Rn+1 induced by the orthonormal basis in (4.1).
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If we denote u∗ as the pullback of differential forms via u, the H-system (2.5) can be
written

(4.2) div (|∇u|n−2∇ui) = H(u) u∗(⋆dyi).

Since

⋆dyi = ⋆(dyi ∧ dyj ∧ dyk) ∧ dyj ∧ dyk,

we can write (2.5) as

div (|∇u|n−2∇ui) = Γik ∧ duk,

for

Γik :=
1

2n
u∗ ⋆ (dyi ∧ dyj ∧ dyk) ∧ u∗(Hdyj).

Γ is clearly antisymmetric, Γik = −Γki. By Hodge decomposition on Rn,

u∗(Hdyj) = dωj + δβj ,

where ωj ∈ W 1,n
loc (R

n) and βj ∈ W 1,n
loc (R

n,
∧2 Rn) satisfy the equations

∆ωj = div (H(u)∇u),

and

(4.3) ∆βj = dH(u) ∧ duj .

Elliptic estimates then give

∥ωj∥W 1,n ! ∥H∥∞∥∇u∥Ln .

Equation (4.3) has a Jacobian structure on the right-hand side and H(u) ∈ W 1,n. That is
why the estimates for β is a little bit better,

∥∇β∥
L(n, n2 ) ! ∥∇u∥2Ln .

We set

Ωik := |∇u|2−n 1

2n

n
∑

j=1

u∗ ⋆ (dyi ∧ dyj ∧ dyk) ∧ δβj ,

which is still antisymmetric in i,k. Moreover, by the estimate above, Ω ∈ L(n,n2 ).
On the other hand,

u∗ ⋆ (dyi ∧ dyj ∧ dyk) ∧ dωj ∧ duk

is the n-form

(−1)i+j+kdu1 ∧ . . . dui−1 ∧ dui+1 ∧ . . . duj−1 ∧ duj+1 . . . duk−1 ∧ duk+1 ∧ . . . dun+1 ∧ dωj ∧ duk

which is the (−1)i+j+k times the volume element of Rn times the determinant

detn×n(∇u1, . . . ,∇ui−1,∇ui+1, . . . ,∇uj−1,∇uj+1, . . . ,∇uk−1,∇uk+1, . . . ,∇un+1,∇ωj,∇uk).

"

Let us now consider the right-hand side terms in Proposition 4.2 separately. If we
consider solutions to

div (|∇u|n−2∇ui) = A,

where A has the determinant structure as in Proposition 4.2, then continuity follows
immediately via Hardy-BMO duality.
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Solutions of the equation
div (|∇u|n−2∇ui) = B,

where B has the structure as in Proposition 4.2, are still not understood, even if the
the antisymmetric potential Ω satisfies a sharper Lorentz-space estimate. If n = 2, the
antisymmetric potential belongs to L(2, 1) and the equation regularizes without any use
of the antisymmetry by standard potential estimates. If n > 2, it is unclear how the
antisymmetry improves our chances. We thus propose a simplified version of Problem 2.5.

Problem 4.3. Let u ∈ W 1,n(B,Rm) be a solution to (2.6) for where Ω is an L(n,p)-matrix
with values in so(m)⊗ Rn. For which p ∈ [1, n] is u necessarily continuous?

If p = 1, i.e. Ω ∈ L(n, 1), Lipschitz continuity of solutions follows – even without anti-
symmetry of Ω. This is due to Duzaar and Mingione [13]. We know of no argument which
shows any improvement of regularity for solutions to (2.6) with antisymmetric potential
Ω ∈ L(n,p) for p > 1. Recall, that this is not only a problem of right-hand side estimates,
but also the left-hand side estimates for this equation are unclear, see Problem 3.2.

One way to gain more insight in this situation is to derive somewhat simplified sub-
problems of regularity for solutions to

div (|∇u|n−2∇ui) = Ω · |∇u|n−2∇ui.

Let Rα be the α-th Riesz transform. For any vector field F = (F1, . . . , Fn) we have a zero
order Hodge decomposition

Fα = RαRβFβ +Rβ(RβFα −RαFβ).

Applying this to |∇u|n−2∂αu, we can decompose

|∇u|n−2∂αu = Rαw + eα,

where
w := Rβ(|∇u|n−2∂βu).

Since u ∈ W 1,n and the Riesz transforms Rβ are bounded on Lp, 1 < p < ∞, the natural

assumption here is w ∈ Ln′

. The above equation then changes into

(−∆ )
1
2wi = Ωα

ijRα[w
i] + Ωα

ijeα.

Ignoring the error eα-part, this equation is of the form

(−∆ )
1
2wi = Ω[wi]

where Ω is acting as a linear operator (and not just as a pointwise multiplication). In
[56] it was shown that these potentials regularize the equation in R2 (a generalization of
the arguments developed for pointwise multiplication operators [7], see also [51]). This
argument can be extended to obtain the following

Theorem 4.4. Let w ∈ Ln′

(Rn) be a solution to

(−∆ )
1
2wi = Ωα

ijRα[w
i].

If we assume Ω to be antisymmetric and Ω ∈ L(n,2), then w ∈ Lp for some p > n′.

The proof is very technical (because the equation is non-local). It follows closely the
arguments in [56], and we are not going to give it here. We rather give an argument for
a related situation.
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Theorem 4.5. Let u ∈ W 1,n′

(Bn,Rm) be a solution to

(4.4) −∆ui = Ωα
ij∇u.

If Ω is antisymmetric and Ω ∈ L(n,2), then ∇u ∈ Lp
loc(B

n) for some p > n′.

Proof. Since this is a local result, we may assume that ∥Ω∥L(n,2) ≤ ε for a small enough
ε > 0. Then, with Rivière’s extension [49] of Uhlenbeck’s [71], see also [53], we obtain a
gauge P ∈ W 1,n(Bn, SO(m)) and ∥∇P∥L(n,2) ≤ ∥Ω∥L(n,2) so that

div (P T∇P + P TΩP ) = 0.

Plugging this into (4.4) we have

(4.5) − div (P T∇u) = (P T∇P + P TΩP )P T∇u.

We test the right-hand side with ϕ ∈ C∞
c (Bn) and use a slightly improved div-curl-

estimate, cf (3.8):
∫

F ·∇g h ! ∥F∥L(p,q1) ∥∇h∥L(p′ ,q2) ∥∇g∥L(n,q3) ,

which holds whenever p ∈ (1,∞), 1
q1

+ 1
q2

+ 1
q3

= 1, 1 ≤ q1, q2, q3 ≤ ∞ and div (F ) = 0.

Then,
∫

(P T∇P+P TΩP )∇(P Tϕ)u

! ∥∇u∥L(n′,∞) ∥P T∇P + P TΩP∥L(n,2) ∥∇(ϕP )∥L(n,2)

! ∥∇u∥L(n′,∞) ∥Ω∥L(n,2) (∥ϕ∥L∞ + ∥∇ϕ∥L(n,2)).

Using the Sobolev inequality

∥ϕ∥L∞ ! ∥∇ϕ∥L(n,1) ,

and (4.4), we obtain for any ϕ ∈ C∞
c (Bn),

∣

∣

∣

∣

∫

P T∇u ·∇ϕ

∣

∣

∣

∣

! ε ∥∇u∥L(n′ ,∞) ∥∇ϕ∥L(n,1) .

Thus, using Hodge decomposition and suitably localizing, we obtain that for some τ < 1
on any small balls Br it holds

∥∇u∥Ln′,∞(Br)
≤ τ∥∇u∥Ln′ ,∞(B2r)

.

An iteration argument now gives.

sup
B2r⊂B

r−σ∥∇u∥Ln′,∞(Br)
! ∥∇u∥Ln′ (B).

Having this estimate, one repeats the above argument with (−∆ )
ε
2ϕ instead of ϕ, and

obtains that

sup
B2r⊂B

r−σ∥(−∆ )
ε
2∇u∥

L
n

n−1+ε ,∞
(Br)

< ∞

Then Adams’ estimates on Riesz potentials in Morrey spaces [1] give the claim. "
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Let us remark that for n = 2 a much more beautiful argument works for Theorem 4.5.
Under a smallness-assumption on ∥Ω∥L2 , one can not only find P as in (4.5), but Rivière
[49] was able to find A ∈ W 1,2 ∩ L∞(B2, GL(m)) so that

div (∇A+AΩ) = 0.

Then u actually satisfies a conservation law,

−div (A∇u− (∇A+AΩ)u) = 0,

and regularity follows from a simple duality argument. The construction of A however
crucially depends on Wente’s inequality [75, 68, 3]: if

∆ f = G ·∇h in R2,

and div (G) = 0, then

∥f∥L∞ ≤ C ∥G∥L2 ∥∇h∥L2 .

It is unknown how to construct such a map A in Rn for n > 2: the counterpart of Wente’s
inequality for n > 2 is missing.

Indeed, there are well known counterexamples that show ∆nu = g ∈ H1 ̸⇒ u ∈ C0, see
Firoozye [17], and also Iwaniec and Onninen’s counter-example for right-hand side in an
Orlicz space [36].
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