
  

Homogeneity without Loss of Generality

Paweł Parys

University of Warsaw

FSCD 2018



  

Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion

In other words:
Recursion schemes = context-free grammars, in which nontermi-

 nals can have (typed) arguments

We use them to generate (infinite) trees



  

Higher-order recursion schemes – definition

Types:
a ::= o | a→b

● o – type of a tree
● o→o – type of a function that takes a tree, and produces a tree
● o→(o→o)→o – type of a function that takes a tree and a function

    of type o→o, and produces a tree
    

abbreviation of o→((o→o)→o)



  

Higher-order recursion schemes – definition

Types:
a ::= o | a→b

Order:          
ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

 



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

 
order 0 order 2 order 2

Order of a HORS = maximal order of (a type of) its nonterminal



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

It is required that:
1) types are respected
    e.g. D of type (o→o)→o→o is applied to f of type o→o,

     A of type (o→o)→o is applied to D f of type o→o, etc.
2) right side of every rule is of type o



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b c



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b

c



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

b

c
A (D b)



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

a

A (D (D b))

b

cD b c



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)

a

a

A (D (D b))

b

cb

c

b



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a

A (D (D (D b)))

b

cb

c

bb

b

b

b

c



  

Higher-order recursion schemes – definition by example

Ranked alphabet:
ao→o→o of rank 2, bo→o of rank 1, co of rank 0

Nonterminals:
So (starting), A(o→o)→o, D(o→o)→o→o

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a

a

b

cb

c

bb

b

b

b

b

b

b

b

b

b

b

b

c

c

...



  

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes
(everything was known here, we only provide new proofs)

arbitrary
(unsafe) Damm-safesafe

(syntax)



  

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes
(everything was known here, we only provide new proofs)

arbitrary
(unsafe) Damm-safesafe

homogeneous

non-homogeneous

(syntax)



  

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes
(everything was known here, we only provide new proofs)

arbitrary
(unsafe) Damm-safesafe

homogeneous

non-homogeneous

(syntax)

trees generated 
by safe schemes

trees generated by schemes
(generated

trees)



  

Homogeneous schemes

A type a1→...→ak→o is homogeneous if ord(a1)≥…≥ord(ak), and
all a1, ..., ak are homogeneus (defined by induction)

E.g., (o→o)→o→o is homogeneous
        o→(o→o)→o is not homogeneous



  

Homogeneous schemes

A type a1→...→ak→o is homogeneous if ord(a1)≥…≥ord(ak), and
all a1, ..., ak are homogeneus (defined by induction)

E.g., (o→o)→o→o is homogeneous
        o→(o→o)→o is not homogeneous

A recursion scheme is homogeneous if all nonterminals 
(and all subterms appearing in rules) have homogeneous types        



  

Homogeneous schemes

A type a1→...→ak→o is homogeneous if ord(a1)≥…≥ord(ak), and
all a1, ..., ak are homogeneus (defined by induction)

E.g., (o→o)→o→o is homogeneous
        o→(o→o)→o is not homogeneous

A recursion scheme is homogeneous if all nonterminals 
(and all subterms appearing in rules) have homogeneous types        

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Proof [Broadbent – PhD thesis]

recursion schemes
collapsible pushdown

automata



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Proof [Broadbent – PhD thesis]

recursion schemes
collapsible pushdown

automata
of a special form

homogeneous
recursion schemes



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Proof [Broadbent – PhD thesis]

recursion schemes
collapsible pushdown

automata
of a special form

homogeneous
recursion schemes

Disadvantages:
● The translations between shcemes and collapsible pushdown 

automata are complicated itself; observing that the result can be of
a special form is even more complicated

● The resulting scheme looks completely unrelated to the original scheme;
how the homogeneity was ensured?



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms

Suppose that we have a rule D x f → ?, where ord(x)<ord(f)
● First idea (invalid) – swap parameters: consider D' f x → ?
● This causes problems: maybe there are places, where we give only 

the first argument to D, e.g. E (D a); we cannot replace there D by D'



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms

Suppose that we have a rule D x f → ?, where ord(x)<ord(f)
● Second idea (correct) – increase the order of x
● We consider a rule D' x' f → ?, where ord(x')=ord(f)>ord(x);

x' is a constant function that returns x when given something



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms

Suppose that we have a rule D x f → ?, where ord(x)<ord(f)
● Second idea (correct) – increase the order of x
● We consider a rule D' x' f → ?, where ord(x')=ord(f)>ord(x);

x' is a constant function that returns x when given something
● Every use of x is replaced by (x' something)  
● Every use of D argument is replaced by D' (constant_function argument)
● constant_function is a new nonterminal 



  

Homogeneous schemes

Theorem 1. For every scheme G one can construct (in logarithmic 
space) a homogeneous scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms

Suppose that we have a rule D x f → ?, where ord(x)<ord(f)
● Second idea (correct) – increase the order of x
● We consider a rule D' x' f → ?, where ord(x')=ord(f)>ord(x);

x' is a constant function that returns x when given something
● Every use of x is replaced by (x' something)  
● Every use of D argument is replaced by D' (constant_function argument)
● constant_function is a new nonterminal 
● notice that if ord(x)=ord(f)-1, we have ord(argument)=ord(something), 

so the sort of constant_function is homogeneous
● if ord(x)<ord(f)-1, it would not be homogeneous;

we have to raise the order of x gradually by 1, applying e.g.
constant_function1 (constant_function2 (constant_function3 argument))



  

Safe schemes

A modern definition:
● variables, constants, nonterminals are safe
● an application M=K L1 ... Ln is safe if ord(x)≥ord(M) for all free 

variables x of M, and all K, L1, ..., Ln are safe (defined by induction)
(notice that subterms K L1 ... Lk for k<n need not to be safe) 

● roughly: a subterm of order k cannot have free variables of order <k 



  

Safe schemes

A modern definition:
● variables, constants, nonterminals are safe
● an application M=K L1 ... Ln is safe if ord(x)≥ord(M) for all free 

variables x of M, and all K, L1, ..., Ln are safe (defined by induction)
(notice that subterms K L1 ... Lk for k<n need not to be safe) 

● roughly: a subterm of order k cannot have free variables of order <k 

A definition by Damm:
● variables, constants, nonterminals are Damm-safe
● an application M=K L1 ... Ln is Damm-safe if ord(Li)≥ord(M) for 1≤i≤n,

and all K, L1, ..., Ln are Damm-safe (defined by induction)
(again, notice that subterms K L1 ... Lk for k<n need not to be Damm-safe) 

● roughly: if we apply an argument of order k, then we need to apply
all arguments of order ≥k



  

Safe schemes

A modern definition:
● variables, constants, nonterminals are safe
● an application M=K L1 ... Ln is safe if ord(x)≥ord(M) for all free 

variables x of M, and all K, L1, ..., Ln are safe (defined by induction)
(notice that subterms K L1 ... Lk for k<n need not to be safe) 

● roughly: a subterm of order k cannot have free variables of order <k 

A definition by Damm:
● variables, constants, nonterminals are Damm-safe
● an application M=K L1 ... Ln is Damm-safe if ord(Li)≥ord(M) for 1≤i≤n,

and all K, L1, ..., Ln are Damm-safe (defined by induction)
(again, notice that subterms K L1 ... Lk for k<n need not to be Damm-safe) 

● roughly: if we apply an argument of order k, then we need to apply
all arguments of order ≥k

Easy to prove (by induction):
● Every Damm-safe term is safe.



  

Safe schemes

Easy to prove (by induction):
● Every Damm-safe term is safe.

Difficult to prove [P. – LICS 2012]:
● There is a tree generated by an (unsafe) recursion scheme of order 2

that is not generated by any safe recursion scheme.



  

Safe schemes

Easy to prove (by induction):
● Every Damm-safe term is safe.

Difficult to prove [P. – LICS 2012]:
● There is a tree generated by an (unsafe) recursion scheme of order 2

that is not generated by any safe recursion scheme.

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Theorem 3. For every Damm-safe scheme G one can construct 
(in logarithmic space) a homogeneous Damm-safe scheme H of the 
same order as G, such that H and G generate the same tree.



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Theorem 3. For every Damm-safe scheme G one can construct 
(in logarithmic space) a homogeneous Damm-safe scheme H of the 
same order as G, such that H and G generate the same tree.

Proof [Carayol & Serre; Blum]

safe recursion schemes
higher-order 

pushdown automata

homogeneous Damm-safe
recursion schemes

Disadvantages:
● as for theorem 1



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Theorem 3. For every Damm-safe scheme G one can construct 
(in logarithmic space) a homogeneous Damm-safe scheme H of the 
same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms
● Split every rule of G into multiple simpler rules

(create a new nonterminal for every subterm of the right side of every
rule of G)



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms
● Split every rule of G into multiple simpler rules

(create a new nonterminal for every subterm of the right side of every
rule of G)

Example:
W((o→o)→o)→o f(o→o)→o → Y((o→o)→o)→o (Xo→(o→o)→o (Y((o→o)→o)→o f))
● everything is safe here
● subterm X (Y f) is not Damm-safe, because ord(Y f)=0<2=ord(X (Y f))



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.

Our proof – simple transformation of terms
● Split every rule of G into multiple simpler rules

(create a new nonterminal for every subterm of the right side of every
rule of G)

Example:
W((o→o)→o)→o f(o→o)→o → Y((o→o)→o)→o (Xo→(o→o)→o (Y((o→o)→o)→o f))
● everything is safe here
● subterm X (Y f) is not Damm-safe, because ord(Y f)=0<2=ord(X (Y f))

We transform this rule to:
W((o→o)→o)→o f(o→o)→o → Y((o→o)→o)→o (S((o→o)→o)→(o→o)→o f)
S((o→o)→o)→(o→o)→o f(o→o)→o go→o →Xo→(o→o)→o (Y((o→o)→o)→o f) g  



  

Safe schemes

Theorem 2. For every safe scheme G one can construct (in logarithmic 
space) a Damm-safe scheme H of the same order as G, such that 
H and G generate the same tree.  

Why is this correct?
After the transformation, right sides are in one of the following forms:
● x y1 ... yn

● a (X1 y11 ... y1k1
) ... (Xn yn1 ... ynkn

)
● Y (X1 y11 ... y1k1

) ... (Xn yn1 ... ynkn
)

For subterms Xi yi1 ... yiki
 safety = Damm-safety.

The whole term is of order 0, so it is (Damm-)safe.

Recall that:
● M=K L1 ... Ln is safe if ord(x)≥ord(M) for all free variables x of M, and all K, L1, ..., Ln are safe
● M=K L1 ... Ln is Damm-safe if ord(Li)≥ord(M) for 1≤i≤n, and all K, L1, ..., Ln are Damm-safe



  

Safe schemes

Theorem 3. For every Damm-safe scheme G one can construct 
(in logarithmic space) a homogeneous Damm-safe scheme H of the 
same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

Remark: the construction from Theorem 1 does not work: even if we 
start with a Damm-safe scheme G, the resulting homogeneous scheme 
H is not safe / Damm-safe.
Indeed, a subterm constant_function argument is not Damm-safe, because 
it waits for a second argument of the same order as the first argument.
Moreover, if argument is a variable, it is not safe.



  

Safe schemes

Theorem 3. For every Damm-safe scheme G one can construct 
(in logarithmic space) a homogeneous Damm-safe scheme H of the 
same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

Suppose that we have a rule D x f → ?, where ord(x)<ord(f)
● This time we simply swap parameters: we consider D' f x → ?
● Because our scheme is Damm-safe, whenever we give the first 

argument x to D, we also give the second argument f 
(a subterm D something is not Damm-safe), 

● Thus, we can swap the arguments whereever D is used.

● Remark: it is important to assume that the scheme is Damm-safe.
For a safe scheme, the transformation does not work 
(we have to transform to a Damm-safe scheme first)



  

Thank you!

arbitrary
(unsafe) Damm-safesafe

homogeneous

non-homogeneous

(syntax)

trees generated 
by safe schemes

trees generated by schemes
(generated

trees)


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42

