Homogeneity without Loss of Generality

Paweł Parys

University of Warsaw

<u>Higher-order recursion schemes – what is this?</u>

Definition

Recursion schemes = simply-typed lambda-calculus + recursion

In other words:

Recursion schemes = context-free grammars, in which nonterminals can have (typed) arguments

We use them to generate (infinite) trees

Types:

$$\alpha := o \mid \alpha \rightarrow \beta$$

- *o* type of a tree
- $o \rightarrow o$ type of a function that takes a tree, and produces a tree
- $o \rightarrow (o \rightarrow o) \rightarrow o$ type of a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

abbreviation of $o \rightarrow ((o \rightarrow o) \rightarrow o)$

Types:

$$\alpha := o \mid \alpha \rightarrow \beta$$

Order:

$$ord(o) = 0$$

 $ord(\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o) = 1 + max(ord(\alpha_1), ..., ord(\alpha_k))$

- ord(o) = 0,
- ord $(o \rightarrow o)$ = ord $(o \rightarrow o \rightarrow o)$ = 1,
- ord $(o \rightarrow (o \rightarrow o) \rightarrow o) = 2$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

Order of a HORS = maximal order of (a type of) its nonterminal

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

Rules:

$$S \rightarrow Ab$$

$$Af \rightarrow a (A (D f)) (f c)$$

$$Df x \rightarrow f (f x)$$

It is required that:

- 1) types are respected
 - e.g. *D* of type $(o \rightarrow o) \rightarrow o \rightarrow o$ is applied to *f* of type $o \rightarrow o$, *A* of type $(o \rightarrow o) \rightarrow o$ is applied to *D f* of type $o \rightarrow o$, etc.
- 2) right side of every rule is of type o

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$A(Db)$$
 bc

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet:

$$a^{o \rightarrow o \rightarrow o}$$
 of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet:

$$a^{o \rightarrow o \rightarrow o}$$
 of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

A (D (D b)) D b c

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \to A b \to a (A (D b)) (b c)$$

 $A (D b) \to a (A (D (D b))) (D b c)$
 $D b c \to b (b c)$
 $A (D (D b)) \to a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \to D b (D b c) \to b (b (D b c))$

Ranked alphabet:

 $a^{o \rightarrow o \rightarrow o}$ of rank 2, $b^{o \rightarrow o}$ of rank 1, c^{o} of rank 0

Nonterminals:

$$S^o$$
 (starting), $A^{(o \rightarrow o) \rightarrow o}$, $D^{(o \rightarrow o) \rightarrow o \rightarrow o}$

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$

$$S \to A b \to a (A (D b)) (b c)$$

 $A (D b) \to a (A (D (D b))) (D b c)$
 $D b c \to b (b c)$
 $A (D (D b)) \to a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \to D b (D b c) \to b (b (D b c))$

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes (everything was known here, we only provide new proofs)

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes (everything was known here, we only provide new proofs)

Restrictions on recursion schemes

Goal of this paper: compare subclasses of recursion schemes (everything was known here, we only provide new proofs)

A type $\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o$ is <u>homogeneous</u> if $ord(\alpha_1) \geq ... \geq ord(\alpha_k)$, and all $\alpha_1, ..., \alpha_k$ are homogeneus (defined by induction)

E.g., $(o \rightarrow o) \rightarrow o \rightarrow o$ is homogeneous $o \rightarrow (o \rightarrow o) \rightarrow o$ is **not** homogeneous

A type $\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o$ is <u>homogeneous</u> if $ord(\alpha_1) \geq ... \geq ord(\alpha_k)$, and all $\alpha_1, ..., \alpha_k$ are homogeneus (defined by induction)

E.g.,
$$(o \rightarrow o) \rightarrow o \rightarrow o$$
 is homogeneous $o \rightarrow (o \rightarrow o) \rightarrow o$ is **not** homogeneous

A recursion scheme is homogeneous if all nonterminals (and all subterms appearing in rules) have homogeneous types

A type $\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o$ is <u>homogeneous</u> if $ord(\alpha_1) \geq ... \geq ord(\alpha_k)$, and all $\alpha_1, ..., \alpha_k$ are homogeneus (defined by induction)

E.g.,
$$(o \rightarrow o) \rightarrow o \rightarrow o$$
 is homogeneous $o \rightarrow (o \rightarrow o) \rightarrow o$ is **not** homogeneous

A recursion scheme is homogeneous if all nonterminals (and all subterms appearing in rules) have homogeneous types

Theorem 1. For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Theorem 1. For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Proof [Broadbent – PhD thesis]

Theorem 1. For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Proof [Broadbent – PhD thesis]

recursion schemes

homogeneous
recursion schemes

collapsible pushdown
automata
of a special form

<u>Theorem 1.</u> For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Proof [Broadbent – PhD thesis]

recursion schemes

homogeneous
recursion schemes

collapsible pushdown
automata
of a special form

Disadvantages:

- The translations between shcemes and collapsible pushdown automata are complicated itself; observing that the result can be of a special form is even more complicated
- The resulting scheme looks completely unrelated to the original scheme; how the homogeneity was ensured?

<u>Theorem 1.</u> For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

- First idea (invalid) swap parameters: consider $D'fx \rightarrow ?$
- This causes problems: maybe there are places, where we give only the first argument to D, e.g. E(D a); we cannot replace there D by D'

<u>Theorem 1.</u> For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

- Second idea (correct) increase the order of *x*
- We consider a rule $D'x'f \rightarrow ?$, where ord(x') = ord(f) > ord(x); x' is a constant function that returns x when given something

<u>Theorem 1.</u> For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

- Second idea (correct) increase the order of *x*
- We consider a rule $D'x'f \rightarrow ?$, where ord(x') = ord(f) > ord(x); x' is a constant function that returns x when given something
- Every use of *x* is replaced by (*x'* something)
- Every use of *D* argument is replaced by *D'* (constant_function argument)
- constant_function is a new nonterminal

<u>Theorem 1.</u> For every scheme G one can construct (in logarithmic space) a <u>homogeneous</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

- Second idea (correct) increase the order of *x*
- We consider a rule $D'x'f \rightarrow ?$, where ord(x') = ord(f) > ord(x); x' is a constant function that returns x when given something
- Every use of x is replaced by (x' something)
- Every use of *D* argument is replaced by *D'* (constant_function argument)
- constant_function is a new nonterminal
- notice that if ord(x)=ord(f)-1, we have ord(argument)=ord(something), so the sort of $constant_function$ is homogeneous
- if ord(x) < ord(f) 1, it would not be homogeneous; we have to raise the order of x gradually by 1, applying e.g. $constant_function_1$ ($constant_function_2$ ($constant_function_3$ argument))

A modern definition:

- variables, constants, nonterminals are safe
- an application $M=KL_1...L_n$ is <u>safe</u> if $ord(x) \ge ord(M)$ for all free variables x of M, and all $K, L_1, ..., L_n$ are safe (defined by induction) (notice that subterms $KL_1...L_k$ for k < n need not to be safe)
- roughly: a subterm of order k cannot have free variables of order k

A modern definition:

- variables, constants, nonterminals are safe
- an application $M=KL_1...L_n$ is <u>safe</u> if $ord(x) \ge ord(M)$ for all free variables x of M, and all $K, L_1, ..., L_n$ are safe (defined by induction) (notice that subterms $KL_1...L_k$ for k < n need not to be safe)
- roughly: a subterm of order k cannot have free variables of order k

A definition by Damm:

- variables, constants, nonterminals are Damm-safe
- an application $M=KL_1...L_n$ is <u>Damm-safe</u> if $ord(L_i) \ge ord(M)$ for $1 \le i \le n$, and all $K, L_1, ..., L_n$ are Damm-safe (defined by induction) (again, notice that subterms $KL_1...L_k$ for k < n need not to be Damm-safe)
- roughly: if we apply an argument of order k, then we need to apply all arguments of order $\geq k$

A modern definition:

- variables, constants, nonterminals are safe
- an application $M=KL_1...L_n$ is <u>safe</u> if $ord(x) \ge ord(M)$ for all free variables x of M, and all $K, L_1, ..., L_n$ are safe (defined by induction) (notice that subterms $KL_1...L_k$ for k < n need not to be safe)
- roughly: a subterm of order k cannot have free variables of order k

A definition by Damm:

- variables, constants, nonterminals are Damm-safe
- an application $M=KL_1...L_n$ is <u>Damm-safe</u> if $ord(L_i) \ge ord(M)$ for $1 \le i \le n$, and all $K, L_1, ..., L_n$ are Damm-safe (defined by induction) (again, notice that subterms $KL_1...L_k$ for k < n need not to be Damm-safe)
- roughly: if we apply an argument of order k, then we need to apply all arguments of order $\geq k$

Easy to prove (by induction):

Every Damm-safe term is safe.

Easy to prove (by induction):

• Every Damm-safe term is safe.

Difficult to prove [P. – LICS 2012]:

 There is a tree generated by an (unsafe) recursion scheme of order 2 that is not generated by any safe recursion scheme.

Easy to prove (by induction):

• Every Damm-safe term is safe.

Difficult to prove [P. – LICS 2012]:

 There is a tree generated by an (unsafe) recursion scheme of order 2 that is not generated by any safe recursion scheme.

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

Theorem 3. For every Damm-safe scheme G one can construct (in logarithmic space) a <u>homogeneous Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Theorem 3.</u> For every <u>Damm-safe</u> scheme G one can construct (in logarithmic space) a <u>homogeneous Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

Disadvantages:

• as for theorem 1

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

Theorem 3. For every Damm-safe scheme G one can construct (in logarithmic space) a homogeneous Damm-safe scheme H of the same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

Our proof – simple transformation of terms

• Split every rule of *G* into multiple simpler rules (create a new nonterminal for every subterm of the right side of every rule of *G*)

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

• Split every rule of *G* into multiple simpler rules (create a new nonterminal for every subterm of the right side of every rule of *G*)

Example:

$$W^{((o \rightarrow o) \rightarrow o) \rightarrow o} f^{(o \rightarrow o) \rightarrow o} \rightarrow Y^{((o \rightarrow o) \rightarrow o) \rightarrow o} (X^{o \rightarrow (o \rightarrow o) \rightarrow o} (Y^{((o \rightarrow o) \rightarrow o) \rightarrow o} f))$$

- everything is safe here
- subterm X(Yf) is not Damm-safe, because ord(Yf)=0 < 2 = ord(X(Yf))

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

 Split every rule of G into multiple simpler rules (create a new nonterminal for every subterm of the right side of every rule of G)

Example:

$$W^{((o \rightarrow o) \rightarrow o) \rightarrow o} f^{(o \rightarrow o) \rightarrow o} \rightarrow Y^{((o \rightarrow o) \rightarrow o) \rightarrow o} (X^{o \rightarrow (o \rightarrow o) \rightarrow o} (Y^{((o \rightarrow o) \rightarrow o) \rightarrow o} f))$$

- everything is safe here
- subterm X(Yf) is not Damm-safe, because ord(Yf)=0 < 2 = ord(X(Yf))

We transform this rule to:

$$W^{((o \to o) \to o) \to o} f^{(o \to o) \to o} \to Y^{((o \to o) \to o) \to o} \left(S^{((o \to o) \to o) \to (o \to o) \to o} f \right)$$

$$S^{((o \to o) \to o) \to (o \to o) \to o} f^{(o \to o) \to o} g^{o \to o} \to X^{o \to (o \to o) \to o} \left(Y^{((o \to o) \to o) \to o} f \right) g$$

<u>Theorem 2.</u> For every <u>safe</u> scheme G one can construct (in logarithmic space) a <u>Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

Why is this correct?

After the transformation, right sides are in one of the following forms:

- $x y_1 \dots y_n$
- $a(X_1 y_{11} ... y_{1k_1}) ... (X_n y_{n1} ... y_{nk_n})$
- $Y(X_1 y_{11} ... y_{1k_1}) ... (X_n y_{n1} ... y_{nk_n})$

For subterms $X_i y_{i1} \dots y_{ik}$ safety = Damm-safety.

The whole term is of order 0, so it is (Damm-)safe.

Recall that:

- $M=KL_1...L_n$ is safe if $ord(x) \ge ord(M)$ for all free variables x of M, and all $K, L_1, ..., L_n$ are safe
- $M=KL_1...L_n$ is Damm-safe if $ord(L_i) \ge ord(M)$ for $1 \le i \le n$, and all $K, L_1, ..., L_n$ are Damm-safe

<u>Theorem 3.</u> For every <u>Damm-safe</u> scheme G one can construct (in logarithmic space) a <u>homogeneous Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

Remark: the construction from Theorem 1 does <u>not</u> work: even if we start with a Damm-safe scheme G, the resulting homogeneous scheme H is not safe I Damm-safe.

Indeed, a subterm *constant_function argument* is <u>not Damm-safe</u>, because it waits for a second argument of the same order as the first argument. Moreover, if *argument* is a variable, it is <u>not safe</u>.

<u>Theorem 3.</u> For every <u>Damm-safe</u> scheme G one can construct (in logarithmic space) a <u>homogeneous Damm-safe</u> scheme H of the same order as G, such that H and G generate the same tree.

<u>Our proof</u> – simple transformation of terms

- This time we simply swap parameters: we consider $D'fx \rightarrow ?$
- Because our scheme is Damm-safe, whenever we give the first argument x to D, we also give the second argument f (a subterm D something is not Damm-safe),
- Thus, we can swap the arguments whereever *D* is used.
- Remark: it is important to assume that the scheme is Damm-safe. For a safe scheme, the transformation does not work (we have to transform to a Damm-safe scheme first)

Thank you!

