On a Fragment of AMSO and Tiling Systems

Achim Blumensath - Masaryk University (Brno)

Thomas Colcombet – IRIF / CNRS

Paweł Parys - University of Warsaw

Plan of the talk

- 1) Tiling Systems
- 2) Asymptotic Monadic Second-Order Logic (AMSO)

(a fragment of AMSO can be reduced to appropriate tiling systems)

Tiling systems

Problem:

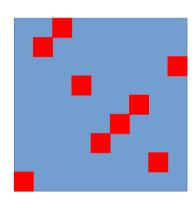
Input: regular languages K, L

Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n

with all Kolumns in K and all Lines in L?

Example: $K = L = \{ words with at exactly one 'a' \}$

Answer: yes



Tiling systems

Problem:

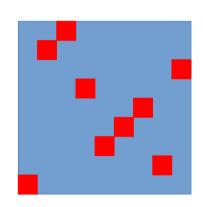
Input: regular languages K, L

Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n

with all Kolumns in K and all Lines in L?

Example: $K = L = \{ words with at exactly one 'a' \}$

Answer: yes



Observation: This problem is undecidable.

Lossy tiling systems

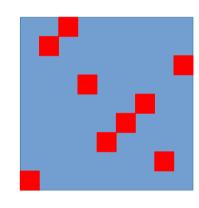
Problem:

Input: regular languages K, L where **K** is closed under letter removal Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}

K = {words with **at most** one 'a'}

Answer: yes



Lossy tiling systems

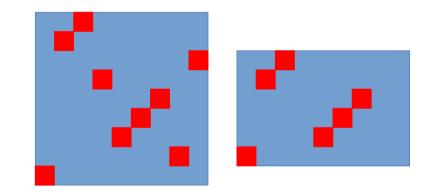
Problem:

Input: regular languages K, L where K is closed under letter removal Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}

K = {words with at most one 'a'}

Answer: yes



Observation: removing lines from a solution gives a solution,

In this example: every solution of height n has width $\geq n$.

Symmetric lossy tiling systems

Problem:

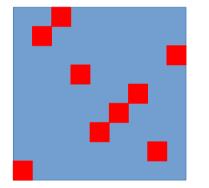
Input: regular languages K, L where K is closed under letter removal and under permutations of letters

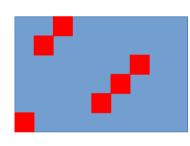
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}

K = {words with at most one 'a'}

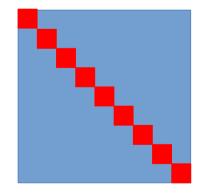
Answer: yes





Observation: removing lines from a solution gives a solution, permuting lines in a solution gives a solution.

In this example: every solution of height n has width $\geq n$.



Contribution

Thm.

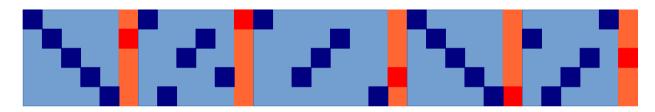
Symmetric lossy tiling problem is decidable.

Is the (non-symmetric) lossy tiling problem decidable? - open

Symmetric lossy tiling systems

Another example:

```
 L = ((d*cd*)*(a+b))* \cap (b+c+d)*a(b+c+d)* \\ exactly one c between any two a / b \& exactly one a \\ K = d*c?d* \cup b*a?b* \\ either many d and at most one c, or many b and at most one a
```



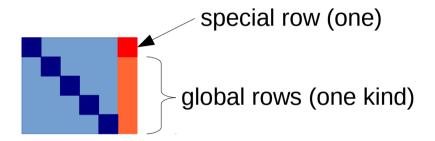
In this example: every solution of height n has width $\geq n^2$

<u>Symmetric lossy tiling systems – decision procedure</u>

General idea

Solution to every instance is a "generalization" of our examples.

We generate some images that can be part of a solution. They are of this form:



We have:

- some number of *special rows*
- some number of kinds of global rows, global rows of each kind can be repeated as many times as we want

We use monoid for L – every row is characterized by its value in this monoid

<u>Symmetric lossy tiling systems – decision procedure</u>

General idea

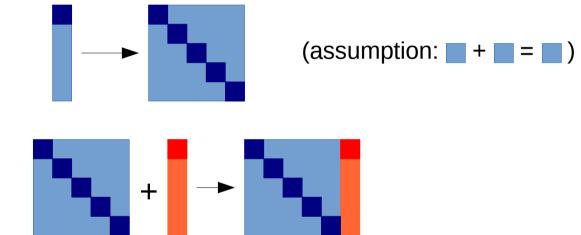
Solution to every instance is a "generalization" of our examples.

We generate some images that can be part of a solution.

Possible operations:

- diagonal schema

- product schema



Thm. If a solution exists \forall n, it can be generated in at most C steps, using in meantime images with at most C special rows, and at most C kinds of global rows.

<u>Symmetric lossy tiling systems – decision procedure</u>

General idea

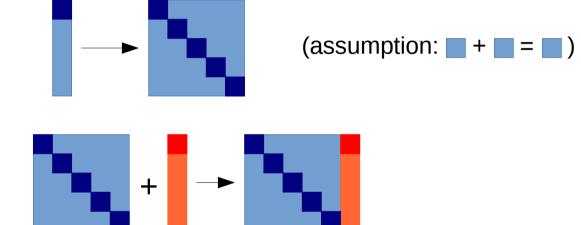
Solution to every instance is a "generalization" of our examples.

We generate some images that can be part of a solution.

Possible operations:

- diagonal schema

- product schema



Thm. If a solution exists \forall n, it can be generated in at most C steps, using in meantime images with at most C special rows, and at most C kinds of global rows.

Proof. We develop a new generalization of the factorization forests theorem of Simon.

Non-symmetric lossy tiling systems (decidability open)

Example:

```
L = a1*+(b1*a1*)*
a and b are alternating after ignoring all 1 & at least one a
K = b*a<sup>?</sup>1*
first some b, then at most one a, then some 1
```


In this example: every solution of height n has width $\geq 2^n-1$ (not covered by our algorithm)

<u>Asymptotic Monadic Second-Order Logic</u> (introduced by Blumensath, Carton & Colcombet, 2014)

Logic	MSO+U	AMSO
Idea	verification of asymptotic behavior (something is bounded / unbounded)	
Structure	ω-words	weighted ω-words (a number is assigned to every position)
Quantities to be measured	set sizes (arbitrary quantities)	weights

Asymptotic Monadic Second-Order Logic

<u>Def.</u> AMSO = MSO extended by:

- quantification over number variables ∃s ∀r
- **CONSTRUCTION** $f(x) \le S$ appearing positively if s quantified existentially (negatively if s quantified universally)

Examples:

- weights are bounded: $\exists s \forall x (f(x) \le s)$
- weights $\rightarrow \infty$: $\forall s \exists x (\forall y > x) (f(y) > s)$
- ∞ many weights occur ∞ often: $\forall s \exists r \forall x (\exists y > x)(s < f(y) \le r)$

Considered <u>problem</u> – satisfiability

Input: *ϕ*∈AMSO

Question: $\exists w(w \models \phi)$?

Asymptotic Monadic Second-Order Logic

Considered <u>problem</u> – satisfiability

Input: ♦∈AMSO

Question: $\exists w(w \models \phi)$?

undecidable for MSO+U \Rightarrow undecidable for AMSO

Asymptotic Monadic Second-Order Logic

Considered <u>problem</u> – satisfiability

Input: φ∈AMSO

Question: $\exists w(w \models \phi)$?

undecidable for MSO+U \Rightarrow undecidable for AMSO

What about fragments of AMSO?

We have reductions: (no number quantifiers in ψ)

<u>decidable!!!</u>

$$\exists r \forall s \exists t \ \psi(r,s,t)$$
 symmetric lossy tiling system only $s < f(y) \le t$ allowed

number quantifiers $\psi(...)$ \rightarrow multi-dimensional lossy tiling system

Conjecture: satisfiability decidable for these fragments.

