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Plan of the talk
1) Tiling Systems
2) Asymptotic Monadic Second-Order Logic (AMSO)

(a fragment of AMSO can be reduced to appropriate tiling systems)



  

Tiling systems

Problem:
Input: regular languages K, L
Question: ∀ n∈ℕ, there exists a rectangle of height n 
                with all Kolumns in K and all Lines in L?

Example: K = L = {words with at exactly one 'a'}
Answer: yes



  

Tiling systems

Problem:
Input: regular languages K, L
Question: ∀ n∈ℕ, there exists a rectangle of height n 
                with all Kolumns in K and all Lines in L?

Observation: This problem is undecidable.

Example: K = L = {words with at exactly one 'a'}
Answer: yes



  

Lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal
Question: ∀ n∈ℕ, there exists a rectangle of height n 
                with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}
                 K = {words with at most one 'a'}
Answer: yes



  

Lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal
Question: ∀ n∈ℕ, there exists a rectangle of height n 
                with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}
                 K = {words with at most one 'a'}
Answer: yes

Observation: removing lines from a solution gives a solution,
                     

In this example: every solution of height n has width ≥n. 



  

Symmetric lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal

                                    and under permutations of letters
Question: ∀ n∈ℕ, there exists a rectangle of height n 
                with all Kolumns in K and all Lines in L?

Example: L = {words with exactly one 'a'}
                 K = {words with at most one 'a'}
Answer: yes

Observation: removing lines from a solution gives a solution,
                     permuting lines in a solution gives a solution.

In this example: every solution of height n has width ≥n. 



  

Contribution

Thm.
Symmetric lossy tiling problem is decidable.

Is the (non-symmetric) lossy tiling problem decidable? - open



  

Symmetric lossy tiling systems

Another example:

L =  ((d*cd*)*(a+b))* ∩ (b+c+d)*a(b+c+d)*
       exactly one c between any two a / b & exactly one a
K = d*c?d* ∪ b*a?b*
       either many d and at most one c, or many b and at most one a

In this example: every solution of height n has width ≥n2



  

Symmetric lossy tiling systems – decision procedure

General idea
Solution to every instance is a „generalization” of our examples.

special row (one)

global rows (one kind)

We generate some images that can be part of a solution.
They are of this form:

We have:
- some number of special rows
- some number of kinds of global rows,
  global rows of each kind can be repeated as many times as we want 

We use monoid for L – every row is characterized by its value in this monoid



  

Symmetric lossy tiling systems – decision procedure

General idea
Solution to every instance is a „generalization” of our examples.

We generate some images that can be part of a solution.
Possible operations:

 - diagonal schema

 - product schema

(assumption:     +     =     )

+

Thm. If a solution exists ∀n, it can be generated in at most C steps,
using in meantime images with at most C special rows, and at most C kinds of global rows. 



  

Symmetric lossy tiling systems – decision procedure

General idea
Solution to every instance is a „generalization” of our examples.

We generate some images that can be part of a solution.
Possible operations:

 - diagonal schema

 - product schema

(assumption:     +     =     )

+

Thm. If a solution exists ∀n, it can be generated in at most C steps,
using in meantime images with at most C special rows, and at most C kinds of global rows. 

Proof. We develop a new generalization of the factorization forests theorem of Simon.



  

Non-symmetric lossy tiling systems (decidability open)

Example:

L =  a1*+(b1*a1*)*
       a and b are alternating after ignoring all 1 & at least one a
K = b*a?1*
       first some b, then at most one a, then some 1

In this example: every solution of height n has width ≥2n-1
(not covered by our algorithm)



  

Asymptotic Monadic Second-Order Logic

(introduced by Blumensath, Carton & Colcombet, 2014)

MSO+U AMSO

Idea

Structure

Quantities
to be measured

verification of asymptotic behavior
(something is bounded / unbounded)

-words
weighted -words

(a number is assigned 
to every position)

set sizes
(arbitrary quantities)

Logic

weights



  

Asymptotic Monadic Second-Order Logic

Def. AMSO = MSO extended by:

- quantification over number variables   ∃s ∀r

- construction f(x)≤s appearing positively if s quantified existentially
                                           (negatively if s quantified universally)

Examples:
- weights are bounded: ∃s ∀x (f(x)≤s)
- weights→∞:   ∀s ∃x (∀y>x) (f(y)>s)
- ∞ many weights occur ∞ often: ∀s ∃r ∀x (∃y>x)(s<f(y)≤r)

Considered problem – satisfiability
Input: ∈AMSO
Question: w (w  |=



  

Asymptotic Monadic Second-Order Logic

Considered problem – satisfiability
Input: ∈AMSO
Question: w (w  |=

undecidable for MSO+U ⇒ undecidable for AMSO



  

Asymptotic Monadic Second-Order Logic

Considered problem – satisfiability
Input: ∈AMSO
Question: w (w  |=

undecidable for MSO+U ⇒ undecidable for AMSO

What about fragments of AMSO?

We have reductions:

∃r ∀s ∃t  (r,s,t)
only s<f(y)≤t allowed

∃r ∀s ∃t  (r,s,t)

number quantifiers (...)   

(no number quantifiers in )

symmetric lossy tiling system

lossy tiling system

multi-dimensional lossy tiling system

decidable!!!

Conjecture: satisfiability decidable for these fragments.



  

Thank you!
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