XPath evaluation in linear time

Paweł Parys

Common work with Mikołaj Bojańczyk

XPath is a query language: XPath queries select nodes in a XML document tree. We consider a fragment called FOXPath.

Input: FOXPath query *Q*, XML document *D* Output: document tree nodes, which satisfy the query

Contribution: We solve the above problem in time $O(|D| \cdot 2^{|Q|})$ or $O(|D| \cdot \log |D| \cdot |Q|^2)$

Example query – navigation only (CoreXPath):

```
self::"a" and not (ancestor::"table")
```

Example query – comparing data (FOXPath):

Example query – counting, positional arithmetic (full XPath 1.0):

CoreXPath (no data)

O(|D| |Q|) - Gottlob, Koch, Pichler 2002

 $O(|D|^{2} \cdot 2^{|Q|})$ - real world XPath engines

FOXPath (comparing data)

 $O(|D|^2 |Q|)$ - previous works

 $O(|D|\cdot 2^{|Q|})$, $O(|D|\cdot \log |D|\cdot |Q|^2)$ – Bojańczyk, Parys 2008

 $O(|D| |Q|^c)$ – work in progress...

Full XPath (counting, node positions)

 $O(|D|^4 |Q|^2)$ - Gottlob, Koch, Pichler 2003

 $O(|D|^3 |Q|^c)$ – work in progress...

Tool used: Simon's theorem

(I. Simon, Factorization forests of finite height, 1990)

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u = u_1 u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

u and v are equivalent, if for any words w_1 , w_2 there is

$$w_1 u w_2 \in L \Leftrightarrow w_1 v w_2 \in L$$

 \mathbf{D} : regular language L

S: number *K*

D: word *u*

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u=u_1u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

$$L=(a+b)*b$$

aaaab

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u=u_1u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

$$L=(a+b)*b$$

aaaab

Simon's theorem

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or $u=u_1u_2$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

repeated K times

$$L=(a+b)*b$$

aaaab

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u=u_1u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

$$L=(a+b)*b$$

bbaaababaaa

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u=u_1u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

$$L=(a+b)*b$$

bbaaababaaa

 \mathbf{D} : regular language L

S: number *K*

D: word u

S: factorization $u=u_1...u_n$ where all u_i are equivalent

or
$$u=u_1u_2$$

D: chooses one of u_i as new u

. . . .

S wins, if after K steps u has only one letter

Example

$$L=(a+b)*b$$

b b a a a b a b a a a

Corollary from Simon's theorem

Given a regular language L and a word u. After preprocessing in time linear in the length of u we may in constant time answer questions:

$$u_i...u_j \in L$$
?

