Problem 2.1. (6 pt) Prove that the following problem is PSPACE-complete:
Input: a finite alphabet A, a letter $x_{0} \in A$, a finite set X of tuples of the form (a, j, b, k, c) where a, b, c are letters from A and j, k are natural numbers written in unary (i.e., written as a symbol 1 repeated j or k times, respectively; observe that j and/or k can be equal 0);
Question: does there exist an infinite sequence of letters $x_{0}, x_{1}, x_{2}, \cdots \in A$ (starting with the given letter) such that for every tuple $(a, j, b, k, c) \in X$ and for every position $i \in \mathbb{N}$, if $x_{i}=a$ and $x_{i+j}=b$ then $x_{i+j+k}=c$ (in other words, a tuple (a, j, b, k, c) is an implication: if on some position we have a and j positions later we have b, then k more positions later we have c)?

