Problem 1.1. (6 pt) A single-tape Turing machine *M* is called *predictable* if its head moves in the same way for every input word (formally: if there exists a function $pos : \mathbb{N} \to \mathbb{N}$ such that after *k* steps of every run of *M*, regardless of the input word, the head is over the tape cell number pos(k)). Is it the case that for every nondeterministic Turing machine *M* there exists a predictable nondeterministic Turing machine *M'* recognizing the same language as *M* and working at most polynomially slower?

Problem 1.2. (6 pt) A function $f: \Sigma^* \to \Gamma^*$ is called a *morphism* if $f(w \cdot v) = f(w) \cdot f(v)$ for all words $w, v \in \Sigma^*$ (the symbol "·" denotes concatenation of words). A morphism f is *nonabbreviating* if $|f(w)| \ge |w|$ for all $w \in \Sigma^*$ (i.e., f does not decrease the length of words). For a set of words $L \subseteq \Sigma^*$ we define $f(L) = \{f(w) \mid w \in L\}$. We say that a class \mathscr{C} is closed under images of nonabbreviating morphisms if for every L in \mathscr{C} , and for every nonabbreviating morphism f, also f(L) belongs to \mathscr{C} .

Prove that the complexity class P is closed under images of nonabbreviating morphisms if and only if P = NP.