Computational Complexity

10.12.2019

Problem 1. (8 pt) Prove that the following problem is NP-complete (wrt. polynomial-time reductions):

Input: weights w_1, \ldots, w_n of *n* items, a number *k* of boxes, a number w_{max} (all the numbers are given in binary);

Question: is it possible to distribute items between *k* boxes (each item in exactly one box) so that the total weight of items in each box is at most w_{max} ?

Problem 2. (8 pt) Prove that the following problem belongs to the class NL:Input: a finite directed graph *G*;Question: is the length of every cycle in *G* divisible by 2019?

Problem 3. (8 pt) The first-order logic over directed graphs has the following syntax:

 $\varphi ::= \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi_1 \mid \exists x. \varphi_1 \mid \forall x. \varphi_1 \mid E(x_1, x_2).$

We evaluate a sentence (i.e., a formula without free variables) of first-order logic in a given graph: variables range over vertices of the graph, and $E(x_1, x_2)$ says that there is an edge from x_1 to x_2 . For example, the sentence $\forall x. \exists y. E(x, y)$ is true in graphs in which there is an outgoing edge from every vertex.

Prove that the following problem is PSPACE-hard (wrt. polynomial-time reductions): **Input:** a finite directed graph *G*, a sentence φ of first-order logic; **Question:** is φ true in *G*?