Computational Complexity

10.12.2019

Problem 1. (8 pt) Prove that the following problem is NP-complete (wrt. polynomialtime reductions):
Input: weights w_{1}, \ldots, w_{n} of n items, a number k of boxes, a number $w_{\max }$ (all the numbers are given in binary);
Question: is it possible to distribute items between k boxes (each item in exactly one box) so that the total weight of items in each box is at most $w_{\max }$?

Problem 2. (8 pt) Prove that the following problem belongs to the class NL:
Input: a finite directed graph G;
Question: is the length of every cycle in G divisible by 2019 ?

Problem 3. (8 pt) The first-order logic over directed graphs has the following syntax:

$$
\varphi::=\varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi_{1}\left|\exists x . \varphi_{1}\right| \forall x . \varphi_{1} \mid E\left(x_{1}, x_{2}\right)
$$

We evaluate a sentence (i.e., a formula without free variables) of first-order logic in a given graph: variables range over vertices of the graph, and $E\left(x_{1}, x_{2}\right)$ says that there is an edge from x_{1} to x_{2}. For example, the sentence $\forall x . \exists y \cdot E(x, y)$ is true in graphs in which there is an outgoing edge from every vertex.

Prove that the following problem is PSPACE-hard (wrt. polynomial-time reductions):
Input: a finite directed graph G, a sentence φ of first-order logic;
Question: is φ true in G ?

