Computational Complexity Exam (Theory Test) 5.02.2020

vour name & index number For each question, give answer: YES, NO, or NOT KNOWN. The third possibility means that the current state of knowledge allows for both possibilities. Correct answer gives 1 pt, incorrect answer gives -0.5 pt. 1. Does there exist an undecidable language L and a deterministic Turing machine that (in an infinite loop) outputs all words from L? The statement says that L is semidecidable but not decidable; such languages exist. 2. Is there an algorithm that given a Turing machine M and a number $k \in \mathbb{N}$ answers whether for every input the machine M stops after at most k steps? We can check all possibilities (only the first k letters of the input can be read). 3. Is there an NP-complete (w.r.t. polynomial-time reductions) language containing only finitely many NOT KNOWN words? Equivalent to P = NP. 4. Does SAT \in coNP? NOT KNOWN Equivalent to NP = coNP. 5. Is $\mathsf{NTIME}(n^2)$ closed under logarithmic-space reductions? NO This would contradict the time hierarchy theorem: every language in $NTIME(n^4)$ can be reduced to a language in $NTIME(n^2)$ (we add padding). 6. Is L closed under polynomial-time reductions? NOT KNOWN Equivalent to L = P. 7. Is it true that either P = NP, or there is a language $L \in NP \setminus P$ that is not NP-complete? YES This is the statement of the Ladner's theorem (lecture). 8. Is it true that if P = PSPACE then EXPTIME = EXPSPACE? YES Can be shown using the padding technique. 9. Does $AC^0 = AC^5$? NO Parity (i.e., XOR of input bits) cannot be recognized in AC^0 (lecture). 10. Does QBF \in uniform-NC¹ (where QBF = "quantified Boolean formula")? NO Impossible because QBF is PSPACE-complete and uniform- $NC^1 \subseteq L \neq PSPACE$. 11. Does $P/poly \subseteq PSPACE$? NO Impossible, because P/poly contains some undecidable languages. 12. Is RP closed under polynomial-time reductions? YES Direct from definition.

Notice that $\mathsf{BPP} \cap \mathsf{coBPP} = \mathsf{BPP}$; it is an open problem whether $\mathsf{BPP} \subseteq \mathsf{NP}$.

NOT KNOWN

13. Does $\mathsf{BPP} \cap \mathsf{coBPP} \subseteq \mathsf{NP}$?

- 14. Current best polynomial approximation algorithm for VERTEX-COVER gives 2-approximation. Does there exist a PTAS (polynomial time approximation scheme) for VERTEX-COVER? NOT KNOWN By definition PTAS requires $(1 + \varepsilon)$ -approximation for every ε , but we only have 2-approximation. But $\mathbf{P} = \mathbf{NP}$ implies existence of PTAS.
- 15. Current best algorithm for k-clique works in $O(n^{0.8k})$ time. Is k-clique (with parameter k) in **FPT**? NOT KNOWN

This algorithm is not **FPT**, as for **FPT** we need $O(f(k) \cdot n^c)$ for a constant c. But **P** = **NP** implies that the problem is in **FPT**.

16. Does NPSPACE \cap coNPSPACE = IP? NPSPACE \cap coNPSPACE = PSPACE = IP. YES