
Complexity - homework 2

Micha l Kuku la

7th January 2019

1

Proof. Let’s denote with Ω the set of all Turing machines with logarithmic
working tape and additional stack. For a given pair (ω,w), where ω ∈ Ω and
w ∈ Σ∗, |w| = n, we will call a configuration each quadruple (q, i, j,m), where:

• q ∈ Q(ω) is a current state of machine ω.

• i ∈ {1, ..., n} is a current position of ω on the input tape, where the word
w is written.

• j ∈ {1, ..., log(n)} is a current position of ω on the working tape.

• m ∈ (Σ ∪ {#})log(n) is a current state of memory - letters written on the
working tape (# is blank).

Total number of configurations for given (ω,w) equals
|Q(ω)|·|(Σ∪{#})log(n)|·n·log(n) = qclog(n)nlog(n) = qnlog(c)+1log(n) = poly(n)
for some constants q and c. Let’s denote with C set of configurations.
Now, consider a function γ : C×(Σ∪{#})→ C×({ε}∪Σ∪Σ2) which describes
transitions between configurations, given top letter on a stack tape. We have
three cases:

γ(c, a) =


(c′, ε) (1)

(c′, a) (2)

(c′, ab) (3)

1. From configuration c, when top stack letter is a, we go to configuration c′

and move left on stack.

2. From configuration c, when top stack letter is a, we go to configuration c′

and do not move on stack.

3. From configuration c, when top stack letter is a, we go to configuration
c′, move right on stack and write b on the top of it.

We see that such construction describes a deterministic pushdown automata
pda(ω,w), where:

1



• stack alphabet is a language of ω,

• input alphabet is unary.

• states are configurations, as described above.

• start state is a start configuration of ω - (qstart, 1, 1,#
log(n)).

• start stack symbol is #.

• accepting states are configurations of form (qacc, i, j,m).

• transition function is γ described above.

Machine ω accepts w if and only if language generated by automata pda(ω,w)
is not empty - all words 1n correspond to ω’s runs of length n. Machine halts in
accepting state after n steps if and only if word a 1n is accepted by pda(ω, n).
So, in order to prove that a language recognized by ω is in P , we would do in
poly(n) time two steps:

1. for a given word w, construct pda(ω,w).

2. check if language recognized by this automata is non-empty.

The important observation is that pda(ω, n) is of poly(n) size, so composing
these two steps will result in a polynomial time algorithm, if both work in
polynomial time.
Here is how we do both steps:

1. Consider the Turing machine which firstly writes to the memory the rep-
resentation of ω, then calculates the transition function γ, given this rep-
resentation and input word w, and writes all of the transitions to the
memory. Size of the machine ω is constant, number of transitions and
configurations is polynomial. Obviously, machine works in polynomial
time.

2. Firstly, given a deterministic pushdown automata, we would like to con-
struct a context-free grammar, which recognizes the same language. As
we know from JAiO course, we can do it in polynomial time and in such
way that the number of nonterminals in an output grammar is polynomial
of number of states in automata 1.
Now, after obtaining an equivalent context-free grammar, we do the fol-
lowing:

(a) We remove all terminals from production rules. We will check if in
such grammar the start symbol is nullable.

(b) For ich production rule X → ε denote that X is nullable.

1https://docs.google.com/document/d/1wzb162HaleLLWwUpE9Mur2EZkRJL72rVPV2dHo0O2kk/edit
- W. Czerwiński notes to JAiO 2017 course - section ”Równoważność automatów ze stosem i
gramatyk” - in polish

2

https://docs.google.com/document/d/1wzb162HaleLLWwUpE9Mur2EZkRJL72rVPV2dHo0O2kk/edit


(c) Iterate over all production rules. If for some rule X− > Y1...Yk all of
the nonterminals on the right side of the production rule are nullable,
we denote that X is nullable. If X is a start symbol of a grammar,
return true.

(d) If in the previous iteration of point a we have denoted at least one
new nonterminal as nullable, do point a again. If not, we have found
all nullable nonterminals, we stop the algorithm and return false.

In each iteration of point a (except the last one) we have denoted at
least one new nonterminals as nullable, so we have performed at most as
many iterations, as the number of nonterminal symbol in grammar. Thus,
algorithm works in polynomial time. We have then checked in polynomial
time if pda(ω,w) is not empty, qed.

�

2

Proof. We will use the hint and a fact from the lecture that the circuit for words
of length n from the uniform sequence of circuits corresponding to L ∈ P can be
found in logarithmic space. What is important - using construction described
on lecture, in such circuit each gate can have at most 3 inputs.
We will denote as gen circuit() a procedure, which works in logarithmic space
and puts on the top of a stack the representation of nth circuit corresponding
to language L (of course, the length of the input word can be calculated in
logarithmic memory). Let’s denote by q(i) quintuple (i, in1, in2, in3, op), which
describes an nth gate from a circuit - n is a gate number, ini are the numbers
of input gates or values 0, 1 if already determined and op ∈ {or, and, neg} is an
operation linked with gate n. In logarithmic memory, we can keep 4, or any
constant number of such quintuples - size of each of them is logarithmic because
number of gates in our circuit is polynomial.
Our Turing machine with logarithmic memory and additional stack will work
as follows:

1. perform gen circuit() - to put circuit on stack.

2. determine the output gate of the circuit, the input gates of it and operation
by scanning the circuit top-down and writing in memory corresponding
quintaple. Put q(out) on stack and remove it from the memory.

3. Now, we will work recursively. Put the top quintaple from stack to mem-
ory and remove it from stack. Let’s denote it by q(top). For each of it’s
inputs ini, which do not have determined values, we perform gen circuit()
procedure, scan the circuit to find quintuple q(ini) and put it to memory.
Now, we check if value of any of quintuples from memory can be deter-
mined - we can do it if all 3 inputs of one of the quintuples correspond
to gates where an input word is written. If so, we calculate the value and

3



replace corresponding input in q(top) to a result value. Now, if some of the
input values of q(top) are still not calculated, we push (maybe) modified
q(top) back to stack, and then we push each q(ini), if not determined yet.
We clean quintuples from memory and go back to point 3. If all inputs
of q(top) are calculated, we determine the value of it and update the cur-
rent top-of-the-stack quintuple. If now this quintaple can be determined,
we pop it from stack, put in memory, calculate and repeat. We do it as
long as we can determine top stack quintuple value. After that, we clean
memory and go to back point 3.

4. If in any moment we have calculated the value of q(out), we finish the
computations and depending on result go to accepting or rejecting state.

�

4


	
	

