
Tadeusz Dudkiewicz (td370782)

1.1

Yes, machines fulfilling this restriction recognize same class of languages as
regular Turing machines. Obviously they can’t recognize more languages as
they are Turing machines with the restriction. It’s enough to show that each
regular Turing machine can be simulated on the restricted machine.

I’m going to simulate a regular tape on two restricted tapes. On the first
one I’ll keep content of cells from the orginal tape which are on the left side of
a head and on the second one content of cells on the right side of the head (in
a reversed order). Head on 1st tape is over last symbol in left side of orginal
tape, head on 2nd tape is over the last non-blank symbol. When simulating,
the symbol under head on the 1st tape corresponds to symbol under the head
on the original tape.

I’ll use special ’new blank’ symbol to replace all occurances (in reads and
writes) of blank symbol in the orginal machine. I’ll also asume there is a special
symbol ’beginning of the tape’ which head can read, but can’t move left after
reading it.

Example orginal tape:

> A B C D E F

^

Corresponding restricted tapes:

> A B C

^

> F E D

^

When in the orginal machine the head moves to the right writing symbol
A on the tape, the new machine writes symbol A on 1st tape. If head on
2nd tape has a symbol different from blank ’begging of the tape’ under it the
restricted machine writes this symbol on blank under head on 1st tape (without
moving this head) and moves had on 2nd tape to the left (wrting blank over
that symbol). When there is ’beginning of the tape’ under head on 2nd tape
the restricted machine writes ’new blank’ symbol on 1st tape.

When in the orginal machine the head moves to the left writing symbol A
on the tape, the new machine moves head over 2nd tape one position to the
right and then writes symbol A on it. Head on 1st tape just moves to the left
(writing blank over symbol A).

Apart from two tapes for each working tape of orginal machine the new
machine has two additional tapes for input tape. Before running the machine
input tape is copied into this pair of tapes (moving head to the left of input
and than writing it backwards on 2nd tape of pair) and any subsequent reads
of input tapes work on this pair of tapes, so it is possible to move head to the
left when reading the input.

1

1.2

I’m going to assume that representation of set with repetitions is correct (e.g.
”0$1#0$0#0$1” is a correct rectangle with A = 0 and B = 0, 1). If it’s incorrect
it’s easy to check for duplicated vectors before running my solution using con-
stant number of counters (each of which needs at most log(input size) number
of bits):

for starting position i (from 0 to size of input):

if i isn’t a start of a vector:

continue with next value of i

for starting position j (from 0 to size of input):

if j isn’t a start of a vector or i == j:

continue with next value of j

for length k (from 0):

if on both i+k and j+k there is \$ or \# or blank then:

reject word (a duplicated vector was found)

if on i+k and j+k there are different symbols then:

exit this inner loop (vectors are different)

where by testing whether i isn’t a start of a vector I mean checking whether i
!= 0 and there isn’t # on position i-1.

The first step should be checking wheather input is valid, i.e if between each
pair of symbols $, # or the end of input there is at least one 0 or 1 (this can
be easly done by looking at consecutive symbols on input tape), there are no
leading zeros (does any 00 follows $ or #) and wheather between all # there is
the same number of $ (which can be done by counting number of $ before first
and then comparing it to number of $ between subsequent # and the end of
input - with two counters and in logarithmic space).

Machine also accepts empty set (empty input), as it’s a valid rectangle.
In over cases I’m going to iterate over all possible lengths of first vectors l and

check whether it’s possible that first set was composed of vectors of length l. I’ll
do this by iterating over all vectors which have different prefix of length l (where
l isn’t a length in symbols, but the number of integers in it’s represenation) as
1st vector. Then for each such prefix I’m going to iterate over all vectors with
same prefix as 1st vector, take their suffixes and check if there exists a vector
with tested prefix and this suffix (and vice-versa). Obviosuly relation of ’have
same set of suffixes’ is transitive and by checking 1st prefix with others I’ll
ensure that all prefixes have same suffixes sets and thus given word represents
a rectangle wich A set composed of vectors of length l.

This solution uses counters each taking value from range from 0 to length of
input and thus uses logarithmic space. Since the number of counters is constant
the solution runs in a logarithmic space. Every loop is either bounded by length
of input.

Pseudocode:

2

Subroutines that are inlined in the machine:

samePrefix(i, j, length):

check_length = offset = 0

while check_length < length:

if on both offset+i and offset+j there is $:

increase check_length

elif on both offset+i and offset+j there are # or blank then:

if check_length + 1 != l then:

reject a word (different sizes of sets)

increase check_length

elif on offset+i and offset+j there are different symbols then:

return false

increase offset

return true

sameSufix(i, j, skip_length):

i_offset = j_offset = i_skipped = j_skipped = 0

skip skip_length vectors on i

while i_skipped < skip_length:

if on i+i_offset there is $ then:

increase i_skipped

elif on i+i_offset there is # or blank then:

reject word (bad size of a set)

increase i_offset

skip skip_length vectors on j

while j_skipped < skip_length:

if on j+j_offset there is $ then:

increase j_skipped

elif on j+j_offset there is # or blank then:

reject word (bad size of a set)

increase j_offset

check whether rest (until # or bank) is the same

for offset (from 0 to size of input):

if on both i+i_offset+offset and j+j_offset+offset there is # or blank then:

return ture (both sets have ended)

elif on i+i_offset+offset or on j+j_offset+offset there is # or blank then:

return false (different sizes of sets or lengths of some vector)

elif on i+i_offset+offset and j+j_offset+offset there are different symbols then:

return false (different vectors)

return true

3

Main pseudocode

compute number of vectors in the first set:

max_length = 0

for position i (starting from 0):

if on i there is $ on the tape:

increase max_length

if on i there is # or blank on the tape:

increase max_length

break this loop

try all possible solutions

for possible length of vectors in first set l (from 1 to max_length - 1):

for starting position i (from 0 to size of input):

if i isn’t a start of a vector or samePrefix(0, i, l):

continue with next value of i

for starting position j (from 0 to size of input):

if j isn’t a start of a vector or not samePrefix(0, j, l):

countine with next value of j

found = 0

for starting position k (from 0 to size of input):

if k isn’t a start of a vector:

continue with next value of k

if samePrefix(i, k, l) and sameSufix(j, k, l):

found = 1

break this loop

if found = 0 then:

continue the outermost loop with next value of l

for starting position j (from 0 to size of input):

if j isn’t a start of a vector or not samePrefix(i, j, l):

continue with next value of j

found = 0

for starting position k (from 0 to size of input):

if k isn’t a start of a vector:

continue with next value of k

if samePrefix(0, k, l) and sameSufix(j, k, l):

found = 1

break this loop

if found = 0 then:

continue the outermost loop with next value of l

accept word (all checks passed for current value of l)

reject word (none value of l passed all tests)

4

