
Tomasz Garbus 370795

1 Homework 1

Task 1: Consider multitape Turing machines in which before moving
a head left, it is necessary to write a blank symbol. Do machines fulfil-
ling this restriction recognize the same class of languages as standard
Turing machines?
Let M be a regular single-tape Turing machine, i.e. M = (ΣT , S, f, s0, SF),
where:

• ΣT ⊃ ΣI is the tape alphabet (ΣI is input alphabet, ⊥/∈ ΣI)

• S is the set of states

• f : (S × ΣT)→ (S × ΣT × {−1, 0, 1}) is the transition function

• s0 ∈ S is the starting state

• SF ⊂ S is the set of accepting states

Let’s construct a restricted (as in the task statement) Turing machine M(2) =
(Σ(2)T , S(2), f (2), s

(2)
0 , S

(2)
F). Let our machine M(2) have two tapes, with the first

tape being writable. The general concept is that we will split the input tape into
two. The first tape will contain everything to the left of the head, the second –
everything to the right of the head, in the reversed order.
Before simulating the original machine, we will perform a small preprocessing.
We will move the head on the first tape to the end of the input and then back
to the beginning, moving the symbols to the second tape.
Mostly M(2) will be similar to the original machine.

• Σ(2)T = ΣT

• S(2) = S∪{smr, sml}. State smr is dedicated to moving right in preproces-
sing phase, sml is dedicated to moving left in preprocessing phase. After
the preprocessing phase, the machine will be in state s0.

• s
(2)
0 = smr

• S
(2)
F = SF

Let ⊥ be the blank symbol and . the beginning of input. Let’s now define the
transition function f (2) : (S × Σ2T)→ (S × Σ2T × {−1, 0, 1}2).
Below are the preprocessing steps:

f (2)(smr, (α,⊥)) =

{
(smr, (α,⊥), (1, 0)) if α 6=⊥
(sml, (⊥,⊥), (−1, 1)) if α =⊥

(note that the second tape will always be empty in state smr)

1

f (2)(sml, (α,⊥)) =

{
(sml, (⊥, α), (−1, 1)) if α 6= .

(s0, (α,⊥), (1,−1)) if α = .

As we can see, after the preprocessing we will end up in the state s0, with blank
first tape and the head right after the . symbol, while the second tape will con-
tain the reversed input and the head will be pointing to the first symbol from
the input. Also, at all times, at most one head should be pointing to a non-blank
symbol.
Below are the steps simulating the behavior of M with M(2).

f (2)(s ∈ S, (α,⊥)) =


(s1, (x1,⊥), (1,−1)) if k1 = 1
(s1, (x1,⊥), (0, 0)) if k1 = 0
(s1, (⊥, x1), (−1, 1)) if k1 = −1

where f(s, α) = s1, x1, k1

f (2)(s ∈ S, (⊥, α)) =


(s1, (x1,⊥), (1,−1)) if k1 = 1
(s1, (x1,⊥), (0, 0)) if k1 = 0
(s1, (⊥, x1), (−1, 1)) if k1 = −1

where f(s, α) = s1, x1, k1.

So to conclude, we have constructed a ”restricted” Turing machine M(2) that
recognizes the same language as M.

Task 2: A finite set C ⊆ Nk (where k ­ 2) is called a rectangle if it
can be represented as C = A× B, for some A ⊆ Ni and B ⊆ Nj, where
i + j = k and i, j ­ 1. We assume the standard representation of fi-
nite sets C ⊆ Nk in words over {0, 1, $,#}: a vector {v1, ..., vm} ∈ Nk is
represented as a1$a2$...$ak (where ai is written in binary), and a set
of vectors {v1, ..., vm} is represented as v1#v2#...#vm (notice that a set
may allow multiple representations).
Prove that the set of words representing rectangles can be recogni-
zed by a deterministic Turing machine working in logarithmic space.
Example: the following two words should be accepted:
0$0#1$1#0$1#1$0 and 0$0$0#0$0$1#0$1011$0.
First, we will verify that there is the same number of $ symbols between each
pair of neighboring # symbols and also that there is at least one # symbol.

let w = input
let n = input length
let p = 0 # a helper counter to iterate through input word
let prev = -1 # length of the previous vector (or -1 if none)
let cur = 0 # length of the current vector
let vectors_count = 1
while p < n:
if w[p] == ’#’:
if prev != -1 and cur != prev:
reject
else:

2

prev = cur
cur = 0
vectors_count = vectors_count + 1
if w[p] == ’$’:
cur = cur + 1
p = p + 1
if cur != prev:
reject # there is no ’#’ after last vector so remember to check it
let k = cur # k from the task description
if k < 2:
reject

We will denote the x-th vector as v_x. Let’s note that we can implement some
useful procedues in a logarithmic space:

• common_suffix(x, y, l) – checks if vx and vy have a common suffix of
length l. Otherwise, rejects.

• common_prefix(x, y, l) – checks if vx and vy have a common prefix of
length l. Otherwise, rejects.

Now, we will look for satisfying values for i and j (as in task description) and
for each pair, check whether for every vector prefix of length i occuring in our
set and every vector suffix of length j occurring in our set, there is a vector
being a concatenation of this prefix and suffix in our set.

i = 1
while i < k:
let j = k - i # takes log memory (we can always keep this

counter on the same tape)
let v1 = 1 # same goes for those 3 variables
let v2 = 1
let v3 = 1
let found_pair = true # this variable tells us whether the pair (i, j)

is good (i.e. we have not verified that it is
not satisfying)

while v1 <= vectors_count:
while v2 <= vectors_count:
let exists = false # this variable will tell us

whether there is a vector which
has a common prefix of length i
with vector v1 and a common suffix
of length j with vector v2

while v3 <= vectors_count:
if common_prefix(v1, v3, i) and common_suffix(v2, v3, j):
exists = true
v3 += 1

3

if not exists:
found_pair = false
v2 += 1
v1 += 1
if found_pair:
accept

If we have not found a good pair (i, j) yet, we should reject.
reject

This roughly sketched algorithm for recognizing the language of rectangles can
be implemented on a Turing machine using logarithmic space. Note that each
variable used in the pseudocode is either boolean or logarithmic in size with
regard to the length of the input word.
The functions common_prefix and common_suffix can be implemented in lo-
garithmic memory as well. The general scheme would be as follows:

• keep a counter with already compared elements

• in order to navigate to one of the two compared vectors, keep track of the
symbols since the beginning of input word.

• in order to navigate to a concrete element, keep track of $ symbols

• perform a loop: navigate to one vector, read and remember one charac-
ter, navigate to the other vector and compare the character, increase the
counters

4

