Computational Complexity

11.12.2018

Problem 1. (0.5 pt) Let bin(a) be the binary encoding of a number in a string over $\{0,1\}$. Prove that the set of words of the form $bin(a)\#bin(b)\#bin(a \cdot b)$ (where $a,b \in \mathbb{N}$) is in AC^1 .

Problem 2. (0.5 pt) Prove that if $NTIME(n^{100}) \subseteq DTIME(n^{1000})$, then P = NP.

Problem 3. (0.5 pt) Prove that the following problem is NL-complete: given two regular expressions, decide whether there is a word that matches both of them.

Hint. Given a regular expression, a nondeterministic finite automaton recognizing its language can be computed in logarithmic space.