Computational Complexity

11.12 .2018

Problem 1. (0.5 pt$)$ Let $\operatorname{bin}(a)$ be the binary encoding of a number in a string over $\{0,1\}$. Prove that the set of words of the form $\operatorname{bin}(a) \# \operatorname{bin}(b) \# \operatorname{bin}(a \cdot b)$ (where $a, b \in \mathbb{N}$) is in AC^{1}.

Problem 2. (0.5 pt$)$ Prove that if $\operatorname{NTIME}\left(n^{100}\right) \subseteq \operatorname{DTIME}\left(n^{1000}\right)$, then $\mathrm{P}=\operatorname{NP}$.

Problem 3. (0.5 pt) Prove that the following problem is NL-complete: given two regular expressions, decide whether there is a word that matches both of them.
Hint. Given a regular expression, a nondeterministic finite automaton recognizing its language can be computed in logarithmic space.

